Tôhoku Math. Journ. 28 (1976), 235-238.

NON LINEAR FUNCTIONAL EQUATIONS

K. SRINIVASACHARYULU

(Received December 25, 1974)

The aim of this note is to study some problems in the theory of nonlinear functional equations; this subject has been studied by M. Krasnoselskii, F. Browder, J. L. Lions and others. We prove here some results on solvability of functional equations; these results generalize some known results.

1. We recall some definitions: let B be a real Banach space, B^* its dual and $\langle \cdot \rangle : B^* \times B \to R$ the duality pairing of B^* and B. A nonlinear mapping $f: B \to B^*$ defined everywhere is said to be monotone if $\langle fx - fy, x - y \rangle \geq 0$; we say that a mapping $f: B \to B^*$ is said to be hemicontinuous if it is continuous from line segments of B to the weak topology of B^* . $f: B \to B^*$ is called demicontinuous if it is continuous from the strong topology of B to the weak topology of B^* , i.e. $x_n \to x$ implies $\lim \langle fx_n, y \rangle = \langle fx, y \rangle$ for all $y \in B$. We remark that these definitions were introduced by F. E. Browder (cf. [1]). We prove the following result:

PROPOSITION 1. Let B be a reflexive Banach space and let $f: B \to B^*$ be a monotone and hemicontinuous mapping; then f is demicontinuous.

PROOF. Let $x_n \to x_0$; we first prove that $||fx_n|| \leq M$. Since f is monotone, we have $\langle fx_n - fx, x_n - x \rangle \geq 0$ for all x; putting $y_n = fx_n/||fx_n||$, we have $\langle y_n - fx/||fx_n||, x_n - x \rangle \geq 0$. Since $||y_n|| = 1$ and B is reflexive, y_n converges weakly to y_0 ; thus $\langle y_0 - 0, x_0 - x \rangle \geq 0$ for all x and hence $y_0 = 0$, a contradiction to $||y_0|| = 1$. Hence the sequence (fx_n) has a weakly convergent subsequence $fx_{n_i} \to w$. Since $\langle fx - fx_{n_1}, x - x_{n_i} \rangle \geq 0$, we have $\langle fx - w, x - x_0 \rangle \geq 0$. Let $x = x_0 +$ $tu, t \geq 0$; then $\langle f(x_0 + tu) - w, tv \rangle \geq 0$ and since f is hemicontinuous, we have $\langle fx_0 - w, u \rangle \geq 0$ for all u. Consequently $fx_0 = w$ and f is demicontinuous.

As a consequence, we have the following result:

COROLLARY 1. Let B be a Banach space and, $f: B \rightarrow B^*$ be a mapping as in Proposition 1; if B is finite dimensional, then f is continuous.

K. SRINIVASACHARYULU

We now prove a result (cf., Theorem [3]) which is useful in the sequal (cf., [2], p. 314) and which is well-known to specialists:

PROPOSITION 2. Let B be a finite dimensional Banach space and let $f: B \rightarrow B$ (we identify B with its dual), be a monotone and hemicontinuous mapping; if $\langle fx, x \rangle > 0$ for all $x \in B$ verifying ||x|| = R, then there exists a $||x_0|| \in B$ such that $||x_0|| < R$ and $fx_0 = 0$.

PROOF. By Corollary 1, f is continuous; let $D = \{x \in B \mid ||x|| < R\}$ be the open ball. To prove $fx_0 = 0$, it is sufficient to prove that the continuous mapping g = I - f has a fixed point $x_0 \in B$. But

$$\langle gx, x
angle = \langle x - fx, x
angle = \langle x, x
angle - \langle fx, x
angle < || x ||^2$$

for $x \in \partial D$. Then the mapping $\overline{g} \colon B \to B$ defined by

$$ar{g}(x) = egin{cases} gx & ext{if} & || \, gx \, || < R \ rac{Rgx}{|| \, gx \, ||} || \, g(x) \, || \geq R \end{cases}$$

is continuous and maps the closed ball \overline{D} into itself; hence \overline{g} has a fixed point $x_0 \in \overline{D}$ by Brower's "fixed point" theorem: clearly $||x_0|| < R$; for if $||x_0|| = R$, we have $\overline{g}(x_0) = x_0 = (Rgx_0)/||gx_0||$. Hence $\langle x_0, x_0 \rangle = R \langle x_0, gx_0 \rangle /||gx_0|| < R||x_0||^2/||gx_0||$ i.e. $||gx_0|| < R$, a contradiction to $||gx_0|| = R$.

2. We say that a mapping $f: B \to B^*$ is weakly coercive if $||fx||_* \to \infty$ as $||x|| \to \infty$ (here $|| ||_*$ denotes the norm in B^*). We prove the following result:

THEOREM 1. Let B be a reflexive and separable Banach space and let $f: B \rightarrow B^*$ be a monotone mapping which is i) weakly coercive and ii) hemicontinuous; then f is onto.

PROOF. Let (x_i) be a dense subset, i.e. a complete system and let W_k denote the subspace spanned by $\{x_1, \dots, x_k\}$; we have $W_k \subset B$ and $\bigcup_{k\geq 0} W_k$ is dense in B. We first prove the existence of approximate solutions $u_k \in W_k$ of the equation fx = y satisfying $\langle fu_k, x \rangle = \langle h, x \rangle$ for every $x \in W_k$. We prove the following lemma:

LEMMA. Let B be as in the Theorem 1; if $f: B \to B^*$ is monotone, hemicontinuous and satisfies (i) (weakly coercive), then $\langle fu, x \rangle = \langle h, x \rangle$ has at least one solution u_k in W_k .

PROOF. Let (x'_k) be a dual base of (x_k) , i.e. $\langle x'_j, x_i \rangle = \delta_{ij}$; the equation $\langle fu_k, x \rangle = \langle u, x \rangle$ is equivalent to $fu_k - h \in W_k^{\perp}$ where $W_k^{\perp} \subset B^*$ is the annihilation of W_k . Let $p_k: B^* \to W_k^{\perp}$ be the projection $p_k w = \sum_{i=1}^k a_i x'_i$, $a_i \in \mathbf{R}$; we have $p_k w = \sum_{i=1}^k \langle p_k w, x_i \rangle x'_i$. The equation $\langle fu_k, x \rangle = \langle h, x \rangle$

 $\mathbf{236}$

can then be written as $p_k f u_k = p_k h$; clearly the mapping $\phi_k = p_k f$: $B \rightarrow W_k^{\perp}$ is a finite dimensional and we have $\langle \phi_k u_k, u_k \rangle = \langle p_k f u_k, u_k \rangle = \langle f u_k, u_k \rangle$. Let $H_t = tI + (1 - t)(p_k f - p_k h)$, $0 \leq t \leq 1$, be a homotopy between the identity mapping I and $p_k f - p_k h$; we have

$$egin{aligned} &\langle H_{i}u_{k},\,u_{k}
angle &=\langle tu_{k}+(1-t)(p_{k}fu_{k}-p_{k}h),\,u_{k}
angle \ &>0 \end{aligned}$$

on a sphere of sufficiently large radius by i). Thus the equation $\langle fu_k, x \rangle = \langle h, x \rangle$ is solvable by Proposition 2 (cf., Krasnoselskii [2], p.314).

PROOF OF THEOREM. Clearly we have $||u_k|| \leq M$; for $|\langle fu_k, u_k \rangle| = |\langle h, u_k \rangle| \leq ||h|| \cdot ||u_k||$ implies the existence of M by i). Since B is reflexive, the sequence (u_k) is weakly relatively compact and hence converges weakly to a limit u_0 ; since $\langle fu_k - fx, u_k - x \rangle \geq 0$, we have $\langle h - fx, u_k - x \rangle \geq 0$. As $k \to \infty$, we obtain $\langle h - fx, u_0 - x \rangle \geq 0$ for any $x \in B$.

Let $x_k \in B$ be a sequence such that $x_k \to x$; since f is demicontinuous (cf., Proposition 1 and Remark), we have $fx_k \to fx$ weakly and hence

$$\langle fx_{{\scriptscriptstyle k}},\, x_{{\scriptscriptstyle k}}
angle = \langle fx_{{\scriptscriptstyle k}},\, x
angle + \langle fx_{{\scriptscriptstyle k}},\, x_{{\scriptscriptstyle k}} - x
angle$$

tends to $\langle fx, x \rangle$ since $|\langle fx_k, x_k - x \rangle| \leq ||fx_k|| * ||x_k - x|| \rightarrow 0$. Put $x = u_0 - tz$ where t > 0; then $\langle h - fu_0, z \rangle \geq 0$ as $t \rightarrow 0$. Hence $fu_0 = h$.

In many applications, it is desirable to calculate explicitly a solution of the equation f(x) = 0; in Theorem 1, the Galerkin approximation method shows that a solution can be obtained as a weak limit. In fact we prove the following:

THEOREM 2. Let B be a separable and reflexive Banach space and let $f: B \rightarrow B^*$ be a weakly coercive and hemicontinuous mapping; if, moreover, f is strongly monotone, i.e. f satisfies

$$\langle fy - fx, y - x \rangle \geq \mu(||y - x||) ||x - y||$$

where $\mu(t) \ge 0$ for $t \ge 0$ and is a continuous increasing function such that $\mu(0) = 0$ and $\lim_{t\to\infty} \mu(t) = \infty$; then the subsequence (u_{k_i}) in Theorem 1 converges strongly to u_0 .

PROOF. Since $\langle fu_k - fx, u_k - x \rangle \ge \mu(||u_k - x||) ||u_k - x||$ we have, $\langle fu_0 - fx, u_0 - x \rangle \ge \underline{\lim}_{k_i \to \infty} \mu(||u_{k_i} - x||) ||u_{k_i} - x||$ as $k_i \to \infty$; since $u_{k_i} \to u_0$ weakly and the norm is weakly lower semicontinuous, we have $||u_0 - x|| \le \underline{\lim}_{k_i \to \infty} ||u_{k_i} - x||$. Therefore

$$\lim_{\overline{k_i \to \infty}} \mu(|| \, u_{k_i} - x \, ||) \, || \, u_{k_i} - x \, || \geq \mu(|| \, u_{\scriptscriptstyle 0} - x \, ||) \, || \, u_{\scriptscriptstyle 0} - x \, ||$$

since μ is continuous increasing. Since $u_{k_i} \rightarrow u_0$ weakly and

K. SRINIVASACHARYULU

$$\langle fu_{k_{i}} - fu_{\scriptscriptstyle 0}, \, u_{k_{i}} - u_{\scriptscriptstyle 0} \rangle \ge \mu(|| \, u_{k_{i}} - u_{\scriptscriptstyle 0} \, ||) \, || \, u_{k_{i}} - u_{\scriptscriptstyle 0} \, ||)$$

we see that $\lim_{k_i\to\infty}\mu(||u_{k_i}-u_0||)||u_{k_i}-u_0||=0$. Consequently $\lim_{k_i\to\infty}||u_{k_i}-u_0||=0$ since $\mu(t)>0$ for t>0 and μ is continuous increasing.

References

- [1] F.E. BROWDER, Problèmes Non Linéaires, Séminaire de Mathématiques Supérieures, Université de Montréal, 1966.
- [2] M. A. KRASNOSELSKII, Topological methods in the theory of nonlinear integral equations, Pergamon Press, New York, 1964.
- [3] K. SRINIVASACHARYULU, Some Fixed Point Theorems II, Bulletin de la Soc. Royale des Sciences de Liège, 3-4 (1970), 93-95.

DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ DE MONTRÉAL MONTREAL (P. Q.), CANADA

238