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Introduction. The concept of rigidity plays an important role in the
study of hypersurfaces in a Riemannian manifold. In fact, we always
hope to classify hypersurfaces up to isometry of the ambient manifold.
In the late of 19th century, Beez obtained the following remarkable
theorem: Let M be an isometrically immersed hypersurf ace of a Euclidean
(n + l)-space En+1. If the type number of an isometric immersion is
greater than two everywhere and n ^ 3, then M is determined up to
isometry of Rn+1, i.e., M is rigid (See [1], or [7], Vol. II, p. 42-46). Many
attempts have been made to extend this theorem in various ways ([2],
[3]). Among them, Eisenhart proved that Beez's result remains true in
the case where the ambient space is a space form M(K) (See [4], p. 212).
And in 1936, the first simple proof of the above results was given by
T. Y. Thomas (See [10], p. 184-188). On the other hand, E. Cartan [2]
developed the theory of deformability of hypersurfaces in a Euclidean
space. This was used to weaken the assumption on the type number.
Recently, by using the above deformability theory, Harle proved that if
the ambient space M{K) satisfies K ^ 0, n ^ 4, and M has constant
scalar curvature and an isometric immersion with the type number
greater than one everywhere, then M is rigid (See [6], Theorem 3-3).

The purpose of this paper is to prove the following result: If M is
a hypersurf ace of M(K), K^Q, n ^ 3, having non-zero constant mean
curvature, then M is rigid (Theorem 3.1). This result is a generalization
with respect to the assumption on the type number of Eisenhart's result.

The proofs contained in this paper heavily rely on the methods
developed by E. Cartan [2], Dolbeault-Lemoine [3] and Harle [6].

The author expresses his deep gratitude to Professor M. Obata who
encouraged him and gave him a lot of valuable suggestions.

1. Hypersurfaces. All manifolds and maps considered in this paper
will be assumed to be of class C°°. Let M(K) be a simply connected
and complete Riemannian (n + l)-manifold of constant curvature K.
From now on M(K) will be called a space form. Let f:M-+M(K) be
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an isometric immersion of a Riemannian ^-manifold M into M(K). For
simplicity, we say that M is a hypersurface immersed in M(K) and, for
all local formulas and computations, we may consider / as an imbedding
and thus identify xeM with f(x) e M{K). The tangent space TX{M) is
identified with a subspace of the tangent space TX{M(K)), and the normal
space T£ is the subspace of TX(M(K)) consisting of all X e TX(M(K)) which
are orthogonal to TX(M) with respect to the Riemannian metric of M(K).
For an arbitrary point xeM, we may choose a field of unit normal
vector ζ defined in a neighborhood U of x. The second fundamental
form a and the corresponding symmetric operator A are defined and
related to covariant differentiations V and V in M(K) and M, respectively,
by the following formulas:

(1.1) VXY = VXY + a(X, Y) , a(X, Y) = g(AX, Y)ξ ,

(1.2) Fzζ= -AX,

where X and Y are vector fields tangent to M and g a metric induced
on M by the immersion /. From now on the operator A will be called
the second fundamental form of f with respect to ξ. The rank of A at
a point x is called the type number of / at this point and is commonly
denoted by t(x). The Gauss equation is:

(1.3) R(X, Y) = K(X AY) + AX A AY 9 X, Ye TX(M) ,

where B denotes the curvature tensor of M and X AY the skew-symmetric
endomorphism of TX(M) defined by (X A Y)Z = g(Y, Z)X - g(X, Z)Y.
The Codazzi equation is expressed by

(1.4) VX{AY) - VY{AX) = A[X, Y] .

REMARK. In terms of the operator F, the curvature tensor of M is
expressed as

(1.5) R(X, Y)Z = VX{VYZ) - VY{VXZ) - VίXtY,Z ,

where X, Y and Z are vector fields on M.

DEFINITION 1.1. Let / and / be isometric immersions of M into
M(K). An open subset U of M is said to be congruent when there is
an isometry φ of M{K) such that f = φof on U.

The following result is basic:

PROPOSITION 1.2. (Ryan). Let f be an isometric immersion of M as
hypersurface in M(K). If the type number of f is greater than one at
a point x, then kernel of Ax is given by
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(1.6) ker Ax = {Xe TX(M)\R(X, Y) = K(X A Y) for all Ye TX(M)} .

PROOF. See [8], Proposition 1.1.

PROPOSITION 1.3. Let f and f be isometric immersions of M as
hypersurfaces in M{K). If t(x) for f is ^2 for all x, then t(x) = t{x),
where t(x) is the type number of f at x.

PROOF. Denote the right side of (1.6) by N(x). Let A and A be
the second fundamental forms corresponding to / and /, respectively.
If t(x) ^ 1, then I l Λ Ϊ F ^ O f o r all X and Y and hence dim N(x) = n
contrary to the assumption t(x) ̂  2. Thus t(x) ^ 2 for all x. Hence
ker Ax = N(x) = ker Ax. Since A and A are symmetric, Im Ax = ImAx =
Nix)1. In particular, t(x) = t(x).

PROPOSITION 1.4. (Beez [1] and Eisenhart [4]). Let f and f be iso-
metric immersions of an orientable Rίemannian n( ̂  S)-manifold M as
hypersurfaces in M(K). If the second fundamental forms A and A for
f and f, respectively, coincide at each point of M, then there is an
isometry φ of M{K) such that f — φ°f.

PROOF. See for example [9], Theorem 4.

COROLLARY 1.5. Let M, f and f be as in Proposition 1.4. Assume
that M is connected. If the second fundamental forms A and A coincide
at each point of M up to a sign, then there is an isometry φ of M(K)
such that f — φ°f.

PROOF. Let ξ and ξ be fields of unit normals globally defined on M
for the immersions / and /, respectively. Let ikf+(resp. M~) be a set of
points xeM at which A = A (resp. A = —A). Then both M+ and Mr
are closed. By assumption, M is a disjoint union of M+ and Mr. Since
M is connected, either M = M+ or M = M~. If M = M+, we are done.
If M = M~, we change ξ to — ξ.

PROPOSITION 1.6. (Beez [1] and Eisenhart [4]). Let f and f be isometric
immersions of connected M as hypersurfaces in M(K). If t(x) is ^ 3
at each x, then there is an isometry φ of M{K) such that f = φ°f.

A simple proof is given in [8], Theorem 1.3.

PROPOSITION 1.7. (Harle). Let M be a connected Riemannian n(^ 3)-
manifold, and let f and f be isometric immersions of M into M(K).
Assume that M contains no open subset on which f is totally geodesic.
If there is a family of open submanifolds {Ua} each of wich is congruent
and forms a covering of M, then there is an isometry φ of M(K) such
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that f = φof.

PROOF. See [6], Proposition 1-7.

2. Deformability of hypersurfaces. Let Jlίbea Riemannian n(^ 3)-
manifold. From now on we will denote the scalar product by (X, Y).

The following fact is basic and will be used without further men-
tioning.

Let f and f be isometric immersions of M as hypersurfaces in M(K).
If M contains no open congruent submanifold (See Definition 1.1), and
the type number t(x) (resp. t(x)) of the immersion f (resp. f) is ^ 2 at
each x, then t(x) — t(x) = 2 at each x.

In fact, since M contains no open congruent submanifold, in view
of Proposition 1.6 the type numbers of / and / are at most two at each
point. From Proposition 1.3 t(x) = t(x) ^ 2 at each x, which shows that
the type numbers have to be exactly 2.

The main objective in this section is to prove the following result.

THEOREM 2.1. Let M be a Riemannian n-manifold with n ^ 3 and
let f and f be isometric immersions of M in M(K), K^O, with non-zero
constant mean curvature. If the type number t(x) of the immersion f
at each x is ^ 2, then M contains an open congruent submanifold.

The proof of this theorem will depend on several lemmas.
In order to simplify the statements of these lemmas we prepare

the following definition.

DEFINITION 2.2. The complex tangent space TC

X(M) of a manifold M
is the complexification of the tangent space TX(M). A complex vector
field is defined by assigning to each point x of M an element of TC

X(M).
Any complex vector field Z can be written uniquely as Z = Z' + iZ"
where Zf and Z" are real vector fields.

LEMMA 2.3. (Gray [5]). Let f be an isometric immersion of M in
M(K) such that its type number is constant and greater than one. Then
the nullity distribution N of f is involutive and its leaves are totally
geodesic both in M and M(K).

PROOF. See, for example [6], Proposition 1-5.

LEMMA 2.4. Let M be an orientable Riemannian n-manifold and
let f and f be isometric immersions of M in M(K) with non-zero constant
mean curvature and t(x) = t(x) = 2 at each x. Assume that there is an
orthonormal frame {X, Y, Xz, , Xn} defined around each point of M
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in such a way that the vector fields Xs, , Xn form a basis for the
nullity distribution N (which is defined independent of immersions, in
view of Proposition 1.2) and for the restrictions of A and A to any open
orientable submanίfold U of M the equations

(2.1) {AX, X) = (AX, X) = 0

hold at all points of U. Assume further that M contains no open con-

gruent submanifold. Then the distribution N is parallel on M (See [6],

[7]).

PROOF. In view of Lemma 2.3, it is sufficient to show that the
following equations hold around each point of M, i.e.,

(VxXίy Y) = (VγXt, X) = 0,

(vxxu x) = (vYxu r> = o , % = 3, ..., n .

In order to show these equations, we first show that the following
equations hold around each point of M, i.e.,

(2.2) (FXiX, Y) = 0, i = 3, ...,n.

Assume (VZjX, Y) to be non-zero at a point x of M for some index i.
Thus it will be non-zero at all points of an open orientable submanifold
U. Then for the restriction of A to U

VXί(AY, X) = (VXAY, X) + (AY, FXiX) .

Since (AX, X) and AXt are zero at all points of Z7, the above relation
can be written as

(2.3) VXι{AY, X) = (\Xit Y), Y)(Y, AX) + (AY, FXiX) .

A similar relation holds for the restriction of A to U.
From the Gauss equation it follows that

(AX, X)(AY, Y) - (AX, YY = (AX, X)(AY, Y) - (AX, F>2 ,

which together with (2.1) gives

(2.4) (AX, Y) = e(AX, Y) , β = ± 1 .

From (2.3) and (2.4), we thus have

((A-eA)Y, FXiX) = 0

or

((A-eA)Y, Y}(VXίX, Y) = 0 .

Since (VX.X, Y) is assumed to be non-zero, it follows
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(2.5) (AY, Y) = e(AY, Y) .

Now (2.1), (2.4) and (2.5) show that A = eA and therefore U is con-
gruent, which is a contradiction. Thus (2.2) is proved.

From (2.1) it follows that

0 = VXi(AX, X) = (VXΛX, X) + (AX, V XX) .

By using (2.1), (2.2) and noting that AXt vanishes, this relation becomes

0 = ([Xif X], AX) = -(FxXi9 AX) = ~(VXXU Y)(AX, Y) .

By assumption, N is an (n — 2)-dimensional distribution, which means
that (AX, Y) never vanishes. Thus

(VXXU Y) = 0 , for all i ^ 3 .

Next since A is symmetric, (AX, Y) — (AY, X) = 0 around each point
of ikf. By covariant differentiation with respect to Xi9 this relation yields

(2.6) rzt«AX, Y) - (AY, X}) = 0 .

On the other hand, we have

(2.7) FXi(AX, Y) = (VXAX, Y) + (AX, VXΎ)

= ([Xit X], AY)= -(VXXU AY)

= -(FxXi,X)(AX, Y).

Similarly,

(2.8) VXi(AY, X) = -(FYXU Y)(AX, Y) .

The relations (2.6), (2.7) and (2.8) give

(VXXU X) = (VYXU Y) , i = 3, , n .

From non-zero constancy of mean curvature, we have

(AY, Y) = constant ̂ =0 .

By covariant differentiation with respect to Xt this relation yields

(2.9) VX.(AY, Y) = 0 .

From (2.2) the left side of (2.9) can be written as

VXi(AY, Y) = (VXΛY, Y) + (AY, VXJ)

= ([Xit Y), AΓ>= -{VrXit AY)

= -<FrXt, X)(X, AY) - (FYXU Y)(Y, AY) .

Therefore

(FYXU X)(AX, Y) + (FYXU Y)(AY, Y) = 0
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and of course

(FγXif XXAX, Y) + (FYXU Y)(AY, Y) = 0 .

By the argument similar to that in the proof of (2.2), it can be concluded
that

(FγXίf Y) = (FγXif X) = 0 , i = 3, , n .

Hence Lemma 2.4 is proved.

LEMMA 2.5. Let M be an orientable Riemannian n-manifold and
let f and f be isometric immersions of M in M(K) and t(x) = t(x) = 2
at each x. Assume that there is an orthonormal frame {Xί9 •••, XΛ}
defined around each point of M such that the vector fields X3, , Xn

form a basis for the nullity distribution N (See Lemma 2.4). Suppose
that there are two linearly independent complex vector fields Z and
W, which satisfy the condition that their own scalar products never
vanish, belonging to the complexification of the vector space spanned
by Xl9 X2 such that for the restrictions of A and A to any open orientable
submanifold U the equations

(2.10) (AZ, W) = (AZ, W) = 0

hold at all points of U. Finally assume that M contains no open con-
gruent submanifold. Then the following equations hold around each
point of M.

(FzXi9 W) = (FwXif Z) = 0, i = 3, , n .

PROOF. Let x be a point of ikf, and assume

(FzXif W) ±? 0 for some i ^ 3 ,

at all points of an open orientable submanifold U(x) containing x.
Since for the restriction of A to U(x) AXt vanish for all i ^ 3, it

follows that

(Xίy AW) = 0 , i = 3, . . . , w.

By covariant differentiation with respect to Z, this relation yields

(2.ii) <yzxu Awy + (xif VZAW) = o.
In view of (2.10) the first term of the left side of (2.11) can be

written as

(2.12) <?EXU AW)= (F*frifS} <AW> W> >

while the second term as
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(Xt, VZAW) = (Xt, VWAZ + A[Z, W\)

= (xu vwAzy = -<ywxit Azy.

Again by (2.10) this equation becomes

(2.13) (Xu FZAW) = - {Vjf%f> <AZ, Z) .

From equations (2.11), (2.12) and (2.13) it follows immediately

(2.14) JLφi^Σ(AW, W) = {VJ^ f > <AZ, Z) .

A similar relation holds for the restriction of A to U(x).
On the other hand, the extension of the Gauss equation to complex

vector fields gives

(AZ, ZXAW, wy - (AZ, wy = (Az, zχλw9 wy - (Az, wy,

which implies, due to (2.10),

(2.15) {AZ, Z)(AW, W) = (AZ, Z)(AWf W) .

From (2.14) we obtain

> Z > < A W >

, ZXAW, W) ,

which together with (2.15) yield

(2.16) ^ ^ ((AW, wy - (Aw, wy) = o.

Since (FzXt, W) is assumed to be non-zero, it follows from (2.16) that

(AW, wy - (Aw, wy = o

at all points of U(x), which means that

(2.17) {AW, W) = e(AW, W) , e = ± 1 .

From (2.15) and (2.17) we obtain

(2.18) (AZ, Z) = e(AZ, Z) .

Finally, from (2.10), (2.17) and (2.18) it follows that

(2.19) A = eA

and therefore U(x) is congruent. Since M contains no open congruent
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submanifold, this is a contradiction. Thus (FZXU W) vanishes at x.
Since the above proof is symmetric in Z and W it follows that (FwXίf Z}
also vanishes around each point of M. Hence the proof of Lemma 2.5
is complete.

PROOF OF THEOREM 2.1. Assume that M contains no open congruent
submanifold. Then in view of Lemma 2.3, in a neighborhood U of each
point p of M it is possible to find an orthonormal frame {Xlf , Xn}
such that the vectors X3, , Xn form a basis of the nullity distri-
bution N.

For the restriction of A to Z7, we have

(A[Xl9 X2], Xt) = 0 , ί = 3, -- ,n.

The relation and Codazzi equation (1.4) yield

(2.20) (FXlXίf X2)(AX2, X2)

+ [(FXIXU xxy - (FX2xίf X2)](AXU x2y
- (FX2Xif X,XAXU Zi> - 0

for all i ^ 3 at all points of U. A similar relation holds for the restriction
of A to U. Consider the following subset P of U: the set of the points
q of U such that

(FXlXif X2)q = (FX2XU Xλ\ = 0 ,

(FXlXi9 X,)q = (FX2Xi9 X2)qj i = 3, , n .

In this case the following holds.

(2.21) The set P has no interior points.

In fact, consider a point q e Int P. Locally it is possible to replace
Xίf X2 by unit vector fields X, Y such that

(2.22) <X, Y) = 0 , (AX, Y) = 0,

in a neighborhood of q, provided the non-zero eigenvalues of Aq are
distinct. A direct computation gives:

(2.23) (FxXif Y) = (FYXif X) = 0,

<yxxu x) = <yYxu Y),
for all ί ^ 3 and at all points of a neighborhood of q.

From non-zero constancy of mean curvature it follows

(AX, X) + (AY, Y) = constant ̂  0 .

By covariant differentiation with respect to Xt of both sides of the above
relation, we have
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(2.24) VX.{{AX, X) + (AY, Y)) = 0 , i = 3, ., n .

On the other hand, we have

(2.25) FXi(AXf X) = (VXAX, X) + (AX, V XX)

= ([Xif X]9 AX) = ([Xif XI X)(AX, X)

= -(rzxifxχAX,x>.
Similarly,

(2.26) VXi(AY, Y) = -<yτXu Y)(AYf Y) .

The relations (2.24), (2.25) and (2.26) give

<yxXu XXAX, X) + (VYXU Y)(AYf Y) = 0,

which implies, in consequence of (2.23),

(VxXiy X) = (VYXU Y) = 0 , for all i ^ 3.

Thus in this case N is parallel at q.
Next assume that the non-zero eigenvalues of Aq are equal. If they

are equal in a neighborhood of q, it is possible to find vector fields X, Y
satisfying (2.22) and therefore to show that N is parallel at q.

Finally assume that the non-zero eigenvalues of Aq are equal at q,
but each neighborhood of q contains a point at which they are distinct.
A simple continuity argument shows that in this case N is also parallel
at q. Therefore it turns out that N is parallel. The parallelism of N
and the fact that its leaves are totally geodesic imply that

(R(X, Σt)Xi9 X) = 0 ,

where X is a unit vector field orthogonal to Xίt On the other hand,
we have by AXt = 0

(2.27) (R(X, Xt)Xi9 X) = K^ 0 .

This is a contradiction. Hence (2.21) is proved.
Next it will be shown that:

(2.28) U — P has no interior points .

To show this, consider a point q e Int (U — P); this means that for
some index i0 ^ 3 the numbers

(2.29) (ΓXlXi0, X2)q, (FXlXi0, X^ - (FX2Xi0, X2)q, (FXzXiQ, X.%

are not simultaneously zero. For any ί Ξ> 3, let Δι denote the function
on U:

A* = [<yXίxt, x,y - <yXΐx
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(b) (FXιX(0, X2% = O p ' fo) = 0

The following two subcases should be discussed:

(a) (FXlXίQ, X2)q =̂= 0 \Δ%q) ^ 0 J<0 = 0 in a neighborhood of q .

Any neighborhood of q has a point

at which ΔiQ ̂  0 .

The functions {VZlXHf X2>, <FX2Xΐo, Xx>

both vanish on a neighborhood of q .

Any neighborhood of q contains a point

at which either one of (FXlXiQ, X2>,

(FX2Xio, Xj} is non-zero at this point .

(a) Assume (FXlXiQ, X2), Λίo to be non-zero at all points of a neigh-
borhood Vq of q.

In view of the assumption made above, the quadratic equation

(FXlXi0, X2)f - [(FXlXi0, X,) - (FX2Xί0, X2)]t
/U V V \ Λ

— <? x2^iQ, Λi> = W ,

defines two complex valued C°°-functions a, β such that

(2.30) aβ = -

a + β = —

Consider the complex vector fields Z, W on Vq defined by

(2.31) Z=aX1 + X2,

which are linearly independent at each point since a and β take different
values at each point. Then for the restriction of A to Vq

(2.32) (AZ, W) = aβ(AXlt X,) + (a + β)<AXu X2> + {AX,, X2>

* 2, X2)

- <F^2Xί0, X^XAX,, X2) - (FX2Xi0,

which is zero due to (2.20). A similar relation holds for the restriction
of A to Vg.

On the other hand, neither (Z, Z) nor (W, W) vanishes. In fact,
assume (Z, Z) (resp. (W, W}) to be zero at a point of Vq. Since a and
β are conjugate to each other, it follows from (2.31) that
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aβ = 1 and a + β = 0

hold at x. In view of (2.20) and (2.32), it follows

(AXιy X1)x + (AX21 X2)x = 0 ,

which contradicts non-zero constancy of mean curvature.

Thus Z and W satisfy the conditions of Lemma 2.5, i.e.,

(2.33) (FZXU W) = (FwXif Z) = 0, i = 3, , n .

From (2.31) and (2.33) it follows that

aβ(FXlXu Xx) + a(FXlXu X2) + β(FX2Xif X,) + (FX2XU X2) - 0 ,

aβ(FZιXi9 X,) + /S^X,, X2> + a(FX2Xu X,) + <FX2X,, X2> = 0 ,

which yield

(α ~ βX<FZιXu X2> - (FX2Xif X,» - 0 .

Since a and /9 take different values at each point, this equation becomes

(FXlXif X2) - (FX2XU X1) = 0, i = 3, , n ,

which, together with (2.30), imply aβ — —1.
From aβ = — 1 and non-zero constancy of mean curvature, it follows

By covariant differentiation with respect to Xt of both sides of the above
relation, we have

(2.34) FJ<AZ'
 Z> + <AW> W> ) = 0 .

On the other hand, we have

FXi(AZ, Z) = {VX.AZ, Z) + (AZ, FXiZ)

= <\Xit Z], AZ) + (AZ, VXiZ)

= 2(FX.Z, AZ) - (FZXU AZ)

_ 2(FXiZ, Z)(AZ, Z) - <FzXj, Z)(AZ, Z)
(Z, Z)

which implies

/oyn (7 (<AZ1_Z)\_ (FZXUZ)(AZ,Z)
(2 35) VχK~7z^y) T
Similarly,



RIGIDITY OF HYPERSURPACES 211

(2 3 6 ) Fχ\ (w, wy)" " (wΓwy
The relations (2.34), (2.35) and (2.36) give

(FZXU Z}(AZ, Z) (FwXif WXAW, W) _ Q

(z, zy • (w, wy
and of course

By the argument similar to that in the proof of Lemma 2.5, it can be
concluded that

u Z)(AZ, Z) {VWXU W){AW, W) _ Q

(z, zy (w, wy

(FZX{, Z) = (FwXit W) = 0, i = 3, , n ,

which, together with (2.33), imply that N is parallel in the neighborhood

Vq.
The next case to be analyzed is that of

in a neighborhood Vq of q and Jίo vanishing at all points of Vq. In this
case the functions a, β coincide at each point, and the vector field

χ = aX, + X2

\ \ , + X2\\

satisfies the conditions of Lemma 2.4 and therefore N is parallel in the
neighborhood Vq.

The parallelism of N in the last subcase of (a) is proved by using
the reasoning of the proof of the first subcase and a simple continuity
argument.

(b) The first subcase cannot occur, for otherwise all functions listed
in (2.29) would vanish at q. Hence to study the next case it may be
assumed that in a neighborhood Vg of q, the functions (PXlXiQ, X2>,
{VXzXH, Xt) vanish, while Jίo is never zero. Using again (2.20) we obtain

[<rXlxi0, x,y - (FX2xiQf X2)KAXU x2y = o
and of course

[<FX lX ί 0, X,) - (VXzXiQ, X2)](AX19 X2) = 0 ,

which show that the vector fields Xl9 X2 satisfy the condition of Lemma
2.5, and by the same argument with the first subcase of (a), the paral-
lelism of N is established in Vq.
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Finally, the last case of (b) can be related to the first case of (a),
and as before, a continuity argument proves the parallelism of N at q,
in this case.

Thus N is parallel at q e Int (U - P), which contradicts (2.27). Hence
(2.28) is proved.

The conclusions (2.21) and (2.28) are obviously incompatible, and
hence M contains an open congruent submanifold.

3. Rigidity of hypersurfaces The main purpose in this section is
to prove the following theorem.

THEOREM 3.1. Let M be a Rίemannian n-manifold with n^S and
let f and f be isometric immersions of M in M{K), K^?Q with non-zero
constant mean curvature. Then there is an isometry φ of M{K) such
that f=φof.

The proof of Theorem 3.1 will depend on the following proposition
and lemmas.

PROPOSITION 3.2. Let M, M(K), f and f be as in Theorem 3.1. As-
sume further that the type number of the immersion f at each x is ^ 2.
Then there is an isometry φ of M(K) such that f = φof.

PROOF. In view of the assumption made above, Proposition 1.3
implies that A and A have rank ^ 2 everywhere.

Let U be the subset of M consisting of these points which are con-
tained in some open congruent neighborhood (this neighborhood may
depend on the point). It follows from Theorem 2.1 that M — U has no
interior points, i.e., that U is dense in M. Since U is covered by open
congruent submanifolds, each connected component of U is congruent.
Let a; be a point of M, and V an orient able neighborhood of x. It will
be shown that there is a function e(y) defined on V, assuming only the
values +1 or —1, and such that

(3.1) Ay = e(y)Ay for all yeV.

In fact, if y e U, this follows from the congruence of each component.
On the other hand, if y $ TJ, it can be approximated by points at which
(3.1) holds, and by continuity (3.1) holds at y. Again the continuity of
A and A gives the continuity of e. Since V is assumed to be connected,
e must be constant, and V is congruent. This argument shows that M
can be covered by congruent neighborhoods, and thus from Proposition
1.7 the proof of Proposition 3.2 is complete.

LEMMA 3.3. (Ryan). Let Mbea hyper surface in M(K) whose principal
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curvatures are constant. If exactly two principal curvatures λ ^ μ are
distinct, then Xμ + K = 0.

PROOF. See [8], Theorem 2.5.

LEMMA 3.4. Let M, M{K), f and f be as in Theorem 3.1. Then M
contains an open congruent submanifold.

PROOF. Assume that M contains no open congruent submanifold.
In view of Proposition 3.2, the type numbers of / and / are at most
one at all points, which shows that the type numbers of / and / have
to be exactly 1. Thus M satisfies the conditions of Lemma 3.3, i.e.,

K=0,

which contradicts K^O. Hence Lemma 3.4 is proved.

PROOF OF THEOREM 3.1. We repeat the same argument of Proposition
3.2 using Lemma 3.4.
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