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1. Introduction. Consider the boundary value problem

( * ) x9 + A(t)x = F(t, x)

(**) Lx = r ,

where A is an n x n matrix, F is an ^-vector, L is a bounded linear
operator defined on the space of continuous ^-vector-valued functions on
an interval [a, b], under the sup-norm, and r is a vector in Rn.

The existence of a solution to the problem ((*), (**)) is shown here
under quite general assumptions on the matrix A and the vector F,
which include the following two: the homogeneous problem corresponding
to (*), (**) has only the zero solution, and the vector F(t, u) is continuously
differentiate in the neighborhood of a certain vector u0 e Rn.

The method followed here is based on the fact that certain (in
general nonlinear) operator T associated with the problem ((*), (**)) is
Frechet differentiate in a neighborhood of a point in its domain. This
operator satisfies the conditions of Theorem I, p. 61, in Miranda's mon-
ograph [8] (cf. preliminaries, Theorem A). Thus, it is locally invertible
(cf. Definition 2.3), and this implies the existence of solutions to the
problem ((*), (**)).

Extensions of the above considerations to second order systems are
also considered. In Section 4 it is shown that this method works also
for boundary value problems on infinite intervals, or other existence
problems.

For work related to the present paper, the reader is referred, for
example, to the book of Falb and Jong [2], the papers [10], [11], [12] of
Urabe, and the dissertation of McCandless [7].

2. Preliminaries. We start with certain notations and definitions,
and (for the sake of completeness) we state the above mentioned theorem
in Miranda's monograph [8].

In what follows R = (— oo, oo), R+ = [0, oo), and J = [a, b], where
α, b are two fixed real numbers. The symbol || |[ will denote the norm
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in Rn and the corresponding norm for n x n real matrices U = [ui5\, i =
1, 2, , n, j = 1,2, , n. If E is a subset of R, then by C[E, Rn\ we
denote the space of all bounded and continuous functions on E with
values Rn. C[E, Rn] will always be considered with the norm

(2.1) ll/IU

under which it is a Banach space. By Cc we denote the space of all
functions / e C[R+, Rn] such that lim,^ f(t) exists and is a finite vector.
Cc is a closed subspace of C[R+, Rn].

DEFINITION 2.1. Let B19 B2 be Banach spaces with norms || ||x, 11 ||2
respectively. Let S be an open subset of Bx. Let f:S—+B2,ueS be
such that there exists a linear operator D(u):Bι-^B2 with the property

(2.2) f(u + h) - f{u) = D{u)h + w(u, h) ,

for every heBlf where

(2.3) lim
l|λ|l

Then D{u)h is the "Frechet differential of / at u with increment fe."

It can be shown that if the Frechet differential of / at u e S exists,
and / is continuous at ue S, then its "Frechet derivative" D(u) at the
point u e S is a bounded linear operator on B1 into Bκ

DEFINITION 2.2. Assume that Bl9 B2, S, f are as in Definition 2.1,
and that / is continuous and Frechet differentiable at every point of
S. Moreover, assume that for every ε > 0 there exists δ(ε) >0 such that

( i ) If u19 u2eS with H^ — u2\\1 ̂  S(ε), then

(2.4) WlDM-DinJMt^eWh^, heB,;

(ii) \\w(u, h)\\2 ̂  eWhWt for every ueS and heBί with ||fe|| ^ δ(e).
Then / is said to be "C-differentiable on S".

DEFINITION 2.3. Let B19 B2, S, f be as in Definition 2.1, and let uoeS
with f(u0) = vQe B2. Then / is said to be "locally invertible" at (uQ, vQ)
if there exist numbers a > 0, β > 0 such that for any vx e J52 with 11 vx —
vo||2 ^ β, the equation f(u) = vx has a unique solution with the property
\\u — uo\\1 ̂  a.

Now we are ready for the following

THEOREM A. Let f:S—>B2 be C-differentiable on S. Moreover, let
D(u0): Bx —> B2 be one to one and onto for some u0 e S. Then the function
f is locally invertible at (u0, f(u0)).
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For a proof of this theorem the reader is referred to Miranda [8].
In what follows, we shall denote the Frechet derivative of / at u0

by f'(u0). Now let Bίf B2, S be as in Definition 2.1 and let uoeS. Then
if / : S—>B2 is Frechet differentiate at u0 and T: B2 —>• B2 is a bounded
linear operator, then the Frechet derivative of Tf at u0 exists and equals
Tf'(u0). This follows easily from the definition of the Frechet differential.

Now assume that the n x n matrix A(t) in (*) is continuous on J.
Then X(t) will denote tfye fundamental matrix of solutions of

(2.5) x' + A(t)x = 0

with X(0) = I (the n x n identity matrix). Now let L in (**) be a
bounded linear operator mapping C[J, Rn\ into Rn. Moreover, denote by
L the n x n matrix whose columns are the values of L on the corre-
sponding columns of X(t). Assume that L is nonsingular with inverse
L~\ Then any solution of ((*), (**)) (with F(t, u) continuous on J x Rn)
satisfies the equation

(2.6) x(t) = X(t)L-\r -Lp(.; x)) + p(t; x) ,

(2.7) p(t; x) = [tX(t)X-1(8)F(8f x(s))ds .
Jo

For a proof of this fact the reader is referred to Opial [9]. Let V
be an open subset of Rn and assume that F(t, u) is continuous on J x Rn

and continuously differentiate in V with respect to u. Let Fx(t, u) =
[(dFi/dXj)(t, u)] denote the Jacobian matrix of F at the point (t, u) eJ x
U. Now let G = {u e C[J, Rn]; u(t) eU,te J}, and x0 e G. Then the Frechet
derivative at x0 of the operator Q:G-+ C[J, Rn] with [Qu](t) = F(t, u(t)),
is given by

(2.8) [Q'(xo)h](t) = F x ( t , xo(t))h(t) , t e J

for any heC[J,Rn]. For a proof of this fact in the case of a real
valued function F the reader is referred to Ladas and Lakshmikantham
[6, p. 12]. The reader is also referred to the dissertation of McCandless
[7], where a good treatment has been given of the Frechet differentiability
in Banach spaces.

Now assume that F(t, u) is defined and continuous on R+ x Rn and
that it is continuously differentiate in u for any teR+. Moreover,
assume that the set {F(t, u(t)); teR+} is bounded for any ueC[R+, Rn].
Then the operator Q with [Qu](t) = F(t, u(t)) maps the space C[R+, Rn]
into itself. Another assumption that we make on F is the following:
for every bounded set K in Rn and every ε > 0 there exists d = δ(ε, K)
such that for each uu u2eK with H^ — u2\\ <; δ, \\Fx(t, u^ — Fx(t, u2)\\ ̂  ε
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for every teB+. We shall show that the Frechet derivative of the
operator Q defined above is given, at xoeC[R+, Rn], by

(2.9) [Q'(xo)h](t) = F.(t, xo(t))h(t) , teR+

for any heC[R+, Rn]. In fact, we have, for some functions θif i = 1, 2,
•••, n with 0 ^ θt ^ 1,

(2.10) sup II F(t, xo(t) + h(t)) - F(t, x(t)) - ψit, xo(t))h(t)
teB+\\ dX

^ sup II ϊψHt, χo(t) + θMt))] - ϊψπt, *.(i))ll II *IU+
teR+\\ L da^ J L dXj J

Since || »<,(*) + 0Mt)\\ <; p o | U + + \\h\\B+ < oo, dividing the above ine-
quality by ||Λ||Λ+, and taking the limit of both members of the resulting
inequality as | |λ | |Λ +—>0, our assertion follows.

Similarly, it can be shown that the above hold for Ce9 or C[R, Rn]
under analogous assumptions on F(t, u).

3. Problems on finite intervals. In what follows, the notations and
definitions of Section 2 will be used without further mention.

THEOREM 3.1. For the equation

(3.1) x(t) = f{t) - X{t)L-'Lp{.', x) + p{t; x)

assume the following:
i i ) there exists an open set UQRn such that Fit, u) and its Jacobian

Fxit, u) are defined and continuous on J x U. Moreover, for every ε > 0
there exists <5(ε) > 0 such that u2f u2e U and \\uγ — u2\\ ^ <5(ε) imply
\\Fxit, uj — Fxit, u2)\\ <̂  ε for every teJ;

(i i) let xoeC[J, Rn], with xoit)e U for teJ, be fixed, and let foe
C[J, Rn] be given by

(3.2) xoit) = fit) - Xit)L"Lpi", x0) + pit; xQ)

(iii) let the equation

(3.3) xit) = fit) — XifyL^Lqi ; x0, x) + qit; x0, x)

have a unique solution x e C[J, Rn] for every f e C[J, Rn], where

S t
Xit)X~\s)Fxis, xls))xis)ds .

o

Then there exist two constants a > 0, β > 0 such that for every
feC[J,Rn] with \\f— fo\\ ^ β there exists a unique solution to the
equation



LOCALLY INVERTIBLE OPERATORS 171

(3.5) x(t) = f(t) - X(t)L~ιLp( ; x) + p(t; x)

with the property \\x — sco|| ^ a.

PROOF. Let G = {xeC[J, Rn); x(t)e U, t e J}, and fix xoeG. Now
consider the operator T: G —* C[J, Rn] with

(3.6) [Tx](t) = x{t) + X(t)L-'Lp{.; x) - p(t; x) .

It is easy to see that the operator T is Frechet differentiate on G,
being the composition of an integral operator (which is linear and bounded)
and the operator Q: G -»C[J, Rn] with (Qx)(t) = F(t, x{t)\ t e J. Its Frechet
derivative at x0 and with increment h is given by

(3.7) [T'(xo)h](t) = h(t) + X{t)L-'Lq( ; x0, h) - q(t; x0, h).

Now let / G C[J, Rn] and consider T'(xo)h = /. Then h(t), t e C[J, Rn]
is the unique solution of the linear equation (3.3). Thus, T'(x0) is one-
to-one and onto. Let ε > 0 be given. Then there exists δ^ε) > 0 such
that u19 u2e U with \\uj_ — u2\\ ̂  δ^ε) implies

(3.8) \\F.(.,uJ-Fm

where μ — max {μlf μ2} with

(3.9) μγ = sup{||X(ί)H I I ^ Ί

(3.10) μ2 = sup {(Ίl XiQX-^s) || ds\ .
tej LJ o )

Thus, if ulf u2eG with \\ut — u2\\j ^ ^(ε),
we obtain

(3.11) \\T(Uι)h - nuJhW, ^ ε\\h\\j

for any heC[J, Bn]. Moreover, it follows as in (2.17) and (2.18) that if

(3.12) T{x + h)- Tx = T'(x)h + w(x, h)

for every xeG, heC[J, Bn], then there exists <52(e) > 0 such that

(3.13) sup 11 w(x, h)(t) 11
tJ

sup ! | Γ 4 ^ , x(t) + ΘMt)) - ψHt, x(t))
* β j IIL dXj dxj

for any heC[J, Rn] with ||fe]U ^ S2(e). If we let ί(e) = min {^(ε), 32(ε)}
we see that the operator T is C-differentiable on G, and that the rest
of the assumptions of Theorem A are satisfied. This completes the proof.

The above theorem has the following important
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COROLLARY 3.1. Let the assumptions of Theorem 3.1 be satisfied,
and assume that the number β in the conclusion of the same theorem
is such that | | / 0 |L</3. Then there exist positive numbers a, μ such
that for each r eRn with \\r\\ <I μ there exists a unique solution of the
problem ((*), (**)) satisfying \\x — xo\\j ^ a.

PROOF. Let ε > 0 be such that \\fo\\j + ε < β. Then since

(3.14) limsupllX^L-V - / β ( t ) | | = | |/ 0 | | , ,
||||0 tj

there exists δ(ε) > 0 such that

(3.15) sup \\X{t)L~W -
t e j

whenever \\r || ^ δ(ε) = μ. Thus, for every reRn with | | r | | ^ μ the
equation (2.13) has a unique solution inside Go — {xeC[J, Rn]; \\x — xo\\j ^
a}. This completes the proof.

It is evident from the above corollary that to ensure a unique solution
of ((*), (**)) for sufficiently small | | r | | , it suffices to find an approximate
solution xo(t), satisfying

(3.16) x[{t) + A(t)xo(t) = F(t, xo(t)) + X(t) ,

and such t h a t \\fo\\j < β, where

/o(ί) = -X(t)L-'Lφ{ ; λ) + φ(t; λ)

with

φ(t; λ) = [x(t)X-1(s)X(s)ds .
Jo

We also wish to point out that the solutions obtained by Theorem
3.1 and its corollary can be obtained by Newton's method. This follows
from the proof of Theorem A, where a contraction mapping is involved.

Let us now consider the following boundary value problem:

(3.17) x" = F(t, x)

(3.18) x(a) = x(b) = 0 .

Here F is assumed to be defined and continuous on J x Rn. Then
finding a solution of the above problem amounts to finding a solution
x(t), teJoΐ the integral equation

(3.19) x(t) = — 1 — Γ(6 - t) [\s - a)F(s, x(s))djs
a — b L ja

+ (ί - a) [\b - s)F(sf x(s))ds] .
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We state the following theorem, whose proof can be carried out as

in Theorem 3.1 and its corollary.

THEOREM 3.2. Assume that Hypothesis (i) of Theorem 3.1 is satisfied.
Furthermore, fix x0 e C[J, Rn\ with xo(t) e U for every teJ, and let
/0 e C[J, Rn] be given by

(3.20) xo(t) = /o(ί) + —^—\(b - t) \\s - a)F(s, xo(s))ds
a — o L U

+ (t-a) j\δ - s)F(s, xo(s))ds .

Let the equation

(3.21) x(t) = f(t) + -^—Γ(6 - t) Γ (s - a)Fx(s, xo(s))x(s)ds
a — 6 L )a

+ (ί - a) j \δ - 8)Fβ(8, xo(s))x(s)dsj

have a unique solution x e C[J, Rn]for every f e C[J, Rn\. Then there exist
two positive numbers a,β such that for every f e C[J,Rn\ with \\f—fQ\\j^β9

there exists a unique solution x e C[J, Rn] of the equation

(3.22) x(t) = f(t) + — ^ - Γ ( δ ~ ί) Γ (s - a)F(s, x(s))ds
a — b L u

+ ( t - a)\\b - 8)F(89 x(s))ds\

with the property \\x — xo\\j ^ a. Moreover, if \\fQ\\j ^ β, then the
problem ( (3 .17) , (3 .18)) has a unique solution x(t) satisfying \\x — xo\\j ̂  a.

4. Problems on infinite intervals. It is evident that Theorem 3.1
and Corollary 3.1 can be extended to problems of the form ((*), (**)).
We formulate below such a result and omit its proof, which follows as
before. Moreover, we formulate a theorem concerning the existence of
bounded solutions of the equation (*) on the whole axis R.

THEOREM 4.1. For the problem ((*), (**)) assume the following:
( i ) lim^^ X(t) = X(oo) exists and is a finite matrix. Moreover,

| | ( ) ( ) | | +oo
teR+ Jo

(ii) T: Cc —*Rn is a bounded linear operator such that L'1 exists;
(iii) F(t, u): R+ x Rn-+Rn is continuous, and continuously differen-

tiable in u. Moreover, for every ε > 0 there exists δ(ε) > 0 such that
for every uίf u2eRn with \\Uj_ — u2\\ ̂  δ(ε),
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(4.1) \\Fβ(t, O - Fm(t, u2)\\ :S ε , teR+ .

(iv) for every ueC[R+, Rn], the set {F(t, u(t)); teR+} is bounded;
moreover,

[ " s , U(s))\\ds< +00

(v) for every feCc the equation (3.3) has a unique solution xeCc,
where q is given by (3.4) and x0 e Cc is fixed and such that

K +00

for every u in some neighborhood of x0.

Then if fQ is given by (3.2), there exist two constants a > 0, β > 0

such that for every feC[J, Rn] with \\f — fo\\B+ ^ β, there exists a

unique solution xeCcto the equation (3.5) with \\x — xQ\\R+<L a. Moreover,

if ll/olU+ < βf then the problem ((*), (**)) has a solution for \\r\\ suffici-

ently small.

Now assume that Plf P2 are n x n projections, Pί + P2 = /. The
following theorem ensures the existence of a solution to the integral
equation

(4.2) x(t) = j XtyPiX-WFis, x(s))ds

8, x(s))ds .

In connection with (4.2) we shall consider the equations

(4.3) xQ(t) = /0(ΐ) + Γ Xit^X-WFis, xo(s))ds
j —00

- ^X{t)P2X-\s)F{s, xo(s))ds ,

(4.4) a (ί) = f(t) + Γ X^P.X-^F^s, xo(s))x(s)ds
J-00

- \"x(f)PtX-K8)Fm(8, xo(s))x(s)ds .

THEOREM 4.2. For the system (*) assume the following:

( i ) sup IT IIXWP.X-'WHdβ + \°°\\X(t)PίX-i(8)\\d8~\ < + 00
teR+ LJ-00 Jί J

(ii) F(tf u) satisfies (iii) of Theorem 4.1 wΐ£fe i2+ replaced by R;
(iii) /or every ueC[R, R% the set {F{t, u(t)); teR} is bounded;
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(iv) sup I T \\X{t)P1χ-ι(8)Fβ(8,φ))\\d8

\\X(t)PXχ)F( ())\\d^ +00

for every u in some neighborhood of x0 e C[R, R+], and the equation (4.4)
has a unique solution in C[R, Rn] for every f eC[R, Rn\.

Then there exist two constants a, β > 0 such that, if foeC[R, Rn] is
given by (4.3), then for every f eC[R, Rn] with \\f — fo\\B ^ β, there
exists a unique solution to the equation

(4.5) x(t) = f{t) + Γ XίOPiX-WXβ, x(s))ds
J —OO

s, x(s))ds

satisfying \\x — x o \ \ B <i a. Moreover, if \\f\\ ^ β, the system (*) has a
unique solution xeC[R, Rn] such that \\x — x o \ \ B <L a. This is given by
(4.5), where f{t) = 0, t e R .

5. Remarks. The assumed uniqueness of the solutions of the integral
equations (3.3), (3.21), can be ensured by considering sufficiently small
intervals J, in which case we obtain contraction mappings. Similarly,
small enough integrals in (v) of Theorem 4.1 and (iv) of Theorem 4.2,
ensure the uniqueness of solutions of (3.3), (4.4) respectively. Corollary
(3.1) overlaps in the case Tx = x(0) — x{ω) = 0 (ω-periodicity) with a
result of Urabe [10]. For initial value problems connected to Frechet
derivatives, the reader is referred to Alekseev [1]. For boundary value
problems on infinite intervals related papers are those of Kartsatos [3-5].
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