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0. Introduction. As is shown in [6] and [8], the following nonlinear
differential equation:

(E) nx(l - z2) J | + (^Lj + (1 - x2)(nx2 - 1) = 0 ,

where n(> 1) is a real constant, is the equation for the support function
x(t) of a geodesic in the 2-dimensional Riemannian manifold Cξ with the
metric:

(0.1) ds2 = (1 - u2 - v2)n~2{(l - v2)du2 + 2uvdudv + (1 - u2)dv2}

in the unit disk: u2 + v2 < 1. O\ can be regarded as a surface of re-
volution in the 4-dimensional Lorentzian space punctured at a point from
a closed one [10].

Any non constant solution x(t) of (E) such that

is periodic and its period T is given by the improper integral:

(° 2) T = 2

where

(0.3) C - (αo

2)α(l - a2)1-" = (α?)α(l - α?)1""
(0 < aQ < VΈ < αx < 1, α

is the integral constant of (E) and 0 < C < A = αα(l — a)1"*.
By means of the above mentioned geometrical meaning of x(t)9 T

represents the angular period of a geodesic of O2 in the unit disk. The
following was proved in [4]:

( i ) T is differentiate with respect to C,
(ϋ) T>π, _
(iii) lim^o T = π and l i m ^ T = V 2 π;
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and then the following inequality:

(U) T < V~2π

was conjectured in [5] and [11] by means of a numerical analysis of (E)
done by M. Urabe [11]. This inequality has been proved recently in [8]
and [9] in cases of n ^ 3 and 1 < n < 3 respectively.

In [6], the author conjectured also that T is a monotone increasing
function of C which will imply (U). He will prove this conjecture by
means of an analysis on a related Riemann surface with O2.

l Preliminaries. The differential equation of geodesies of O2 is

(1 tf v)^r n(v+ u λ i l v + 2uv + (1 θ (
du2 \ duJi du \du

in the coordinates (u, v), which can be written as

(E') r(l - r2)-g + {(n + 2)r2 - 2}{^j + r2(l - r2)(nr* - 1) = 0

in the polar coordinates (r, θ) in the (u, ?;)-plane, i.e. u = r cos θ, v =
r sin θ.

The differential equation (E') has the following first integral:

- r2Y - r2(l - r2) ,

where Cx is a positive integral constant. Any solution r{θ) of (E') such
that r Φ 0, 0 < r < 1, is periodic and its period θ is given by the im-
proper integral:

(1.1) θ = 2\\Cιr\l - τ2Y - τ\l - r2)]"ι/2dr ,

where

ro

2(l - r 2 ) - 1 - rl(l - r 2 ) ^ 1 = 1/Ct ,

0 < r 0 < Va < r x < l .

If we put Ci = 1/C*, then we get r0 — aQ and rx = α^ and we can
prove the equality:

β = Γ

by making use of the properties of the solution x(t) and its geometrical
meaning. Furthermore, if we change the integral variable in (1.1) from
r to x by nr2 = x, then we obtain easily

(1.2) Γ = Γ(C) = V ^ ( Ί / . . . f . 1 . ,

JxV(n — x){x(n — x)n 1 — c}
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where

(1.3) c = (nC)n = xo(n - O*" 1 = xx{n - x.Y'1 ,

(1.4) 0<x0<l<x1<n.

Now, we try to express T(c) by means of complex analysis. If we
take a piecewise smooth, oriented, simple close curve 7 in the complex
2-plane such that x0 and x1 and 1 are inside of 7 and the zero and n and
the other solutions than x0 and xx of the equation:

(1.5) z(n - zY~ι - c = 0

are all outside of 7, and the orientation of 7 is coherent to the canonical

y=φ-x)n"'1

FIGURE 1.

one of the ^ -plane, then T(c) can be written by the integral along 7 as
follows:

dz
(1.6) T(c) = - nc

2 Jr zV(n - z){z(n - zf'1 - c}

This expression of T(c) sets the integral (1.2) free from the improper
property based on the interval (x0, xj of integration and shows that T(c)
is analytic in c for 0 < c < (n — I)*"1.

Differentiating (1.6) with respect to c, we obtain

p, , N 1 I n [ (

4 y c J r l z V(n - z){z(n - z)n~ι - c)

zV(n — z){z{n — z)n ι —
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i.e.

v ' 4^ c 3rV{z(n-
Now, we set

(1.8) J.(e): = (n -
{z(n - z)n~ι - c}3

If we can prove the following inequality:

In(c) < 0 for 0 < c < (n - I)""1 ,

then the period T given by (0.2) is monotone increasing as a function
of C for 0 < C < A.

2. A Riemann surface related with the integral In(c). Now, we define
a Riemann surface J ^ = J^(c) in C2 with the coordinates (z, w) by the
equation:
(2.1) z(n - zY~ι - w2 = c ,

which is an algebraic curve when n is an integer. The closed curve 7
in (1.8) can be considered as an oriented closed curve on the surface and
the integral (1.8) as an integral along 7 on ^~. Therefore the value of
In(c) does not change even if we replace 7 by another piecewise smooth
closed curve through a piecewise smooth homotopy on ^ whose projec-
tion on the z-plane avoids the roots of the equation (1.5) and z = n.

Let 6 > 0 be a real constant such that

- c(2.2) 6 = V(n - I

then the projection Ίz and Ύw of the curve 7 on ^ onto the z-plane and
the w-plane respectively may be illustrated as in Fig. 2, taking into
consideration of the transition of integrals from (1.2) to (1.6).

2-plane w-plane

•Θ

W c

FIGURE 2.

In fact, since we have

(2.3) {z(n - z)n~Ύ = n(l - z)(u -

and
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n 4 1 5

(2.4) {z(n - z)n~T = -n(n- 1)(2 - z)(n - z)n~*,

we obtain easily from (2.1) around z — xt {i = 0, 1)

n(l - xt)(n - XiY-\z - x{) + O((z - x%)2) = w2,

from which we get the relation

(2.5) z - xt = — - ^ — τ + 0 ( 0 ;
n(l — %i)(n — Xi)n 2

and we obtain around z = 1

¥ _ n(n- ±Y-\Z __ 1 ) 2 + O((Z _

or

= + 2b(w + 6) - (w + b)2,

from which we obtain the relation:

(2.6) w =F b = qr ^ n ~~ 1 ^ " 2 (s - I)2 + O((z -

These relations implies the correspondence between Ύz and Ύw as is shown
in Fig. 2.

Now, differentiating (2.1) we have n(l — z)(n — z)n~~2dz = 2tί;c2^ and
using this the integrand of (1.8) can be written as

(n - z)n~mdz = (n - z)n'z/2

 m 2wdw

V{z(n — z)n~ι — c}3 ^ 3 ^ ( 1 — z)(n — zf~2

hence we get the expression of In by

- z)1/2dw(2.7) IM = A f ί p
n ir (1 — z)w2

Next, we need the following lemmas with regard to the integrals
(1.8) and (1.6).

LEMMA 1. // n > — 1, then

(n z) az Q β

\z\=rV{z(n — z)n~ι — cf

PROOF. Setting z = reiθ, for sufficiently large r there exists a posi-
tive constant Kγ such that
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Hence we have

(n - zγ
V{z(n - zY~ι - c

T. OTSUKI

K]r-^+ι)/2\dθ\ .

I Jl«l=rl

(n -
S 2πKίr-{n+1)/2 ,

\=rV{z(n - zf'1 - c}3

which implies this lemma. q.e.d.

REMARK 1. Let Ar be a set of subarcs on the circle \z\ = r with
a bounded angular measure from 0, then we have also

limί (» ~ zY-^dz
r-^oo )ATV{Z(U - zY'1 -

LEMMA 2. If n> 1/2, then

cf

limj (n = 0 .
r->0 J\z-n\=r

PROOF. Setting z = n + τeiθ, for sufficiently small r there exists a
positive constant K2 such that

(n - z)

Hence we have

V{z(n - z)*-1 - c)

(n - zY~%l2dz < 9π K n-
= 2

which implies this lemma. q.e.d.

REMARK 2. Let Br be a set of subarcs on the circle \z — n\ = r
with a bounded angular measure from n, then we have also

(n - zY~3/2dzlimj = 0 .
- a;)71-1 - c}3

Finally, let ζ be a solution of the equation (1.5) other than x0 and xx.

LEMMA 3.

ίim (
r-*0 J\z-ζ\=rί

dz = 0 .
z){z(n — zY x —. c}

PROOF. It is clear that ζ Φ 0, 1 and w and ζ is simple by (2.3).
Setting z = ζ + reί<?, for sufficiently small r there exists a positive con-
stant K3 such that

K5n-1/2rι/2\dθ\

zv(n — z){z(n — z)""1 —
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Hence we have

If d z

- z){z{n - z)*'1 - c}

2πK5n-1/2r1/2

ζ)(n - ζ)

which imply this lemma. q.e.d.

REMARK 3. Let Cr be a set of subarcs on the circle | z — ζ | = r with
a bounded angular measure from ζ, then we have also

lim [ dz = 0 .
r-κ) Jiz-ci=r £ V ( w — 2){z(w — z)n x — c}

3. Changes of the curve of integration. In order to find a suitable
change of the curve 7 of integration on the Riemann surface ^1(6), we
shall investigate the correspondence between z and w on this surface.

By the argument in § 2, we see that the singular points on J^~Jc) a
C2 are

( i ) (x0, 0), (xίf 0) and (ζ, 0), where ζ are the solutions of the equa-
tion (1.5) other than xQ and a?x;

(ii) (1,6) and (1, - 6 ) ; _
(iii) {n,iVc) and (n, — iVc ), if n > 2.
The reasons of singularity are that w = λ/z(n — z)n~γ — c vanishes

at z = x09 xx and ζ, and {z(n — z)""1 — c}' vanishes at 2 = 1 and n (when

(2.5) and (2.6) show the state of ^n(c) around the points (x0, 0),
(xμ 0), (1, 6) and (1, - 6).

In the following, we suppose n ^ 2 and investigate the state of
around the points {n,%Vc) and (n, — iVc ). Setting

2 = n + τeiθ (r > 0) and w = ± i V~c + teiφ (t > 0)

and substituting these into (2.1), we have

(n + re^ire^+^y-1 - c = - e± 2iV~cteίψ + t2e2ί(p ,

where m is an odd integer, hence

which

(3.1)

and

implies

φ =

t

(n

n
2V

- 1X<?

c

+

n-l +

« )
_ π
+ ~2

+ O(r).
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From the above relation between the arguments θ and φ, we get espe-
cially for θ — π

-J + O(r) .
Δ

Considering the correspondence between Ί% and Ίw as is shown in Fig. 2,
we may put m = — 1 for our purpose. Therefore we have the relations

(3.2) φ = (n - 1)(0 - π) - — + O(r) around (w, i Ί / T )

and

(3.3) 9> = (n - l)(θ - π) + — + O(r) around (n, - iVT) .

Now, for sufficiently small r > 0 we can choose two angles θt = ^L(r)

and 02 = 02M around (n, iV~~c) such that
( i ) θx<π and the value φ, of ^ in (3.2) for θ = <?x is -3ττ/2

and
(ii) ^2 > π and the value % of <ρ in (3.2) for θ = θ2 is ττ/2.

Since we have for θ = π the equality φ — — π/2, we may put

(3.4)

and

(3.5)

7Γ — 0 ! =

- π =

π
n-1

O(r)

π + O(r) .

If rή> 2, we may consider for sufficiently small r as

(3.6) 0 < θι < π and π < θ2 < 2π .

z-plane w-plane

FIGURE 3.

Using the above argument, we shall firstly deform the original curve
7 in the integral (1.8) to a curve Ί1 on ^n{c) as is shown in Fig. 4O

ί = 1, 2, without through the singular points described in this section.
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2-plane
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FIGURE 4I.

FIGURE 42.

Now, we consider the point

w = iVc + 1/ (

in the w-plane. If y is sufficiently small, then we can choose uniquely
the points σ^y) = n + r^" 1 and α 2(τ/) = w + f2β

ί<?2 around a; = 7t, in the z-
plane such that

and ^ = ^(r,), ^2 = Θ2(r2) .

Since we have from (2.3)

s-plane

FIGURE 5I.
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FIGURE 6.

A?
- z)(n - z)n~2 — =

dw

and so for w = i Vc + y (y > 0) we have dz/dw Φ 0. Therefore, if we
vary y in the interval 0 < y < <χ>, then we obtain two curves σ^y) and
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o2(y) starting from the point z — n and diverging to the infinity.
Then, we shall deform the curve rίι to a curve 72 on ^I(c) as is

shown in Fig. 5,, i = 1, 2, without through the singular points.
Finally, we take sufficiently large positive numbers y19 y2 and p such

that

= \σ*(v%)\ = p> sup{|ζ|}

where ζ are the solutions of the equation (1.5). This choice of yι and
y2 is assured by means of the above consideration about _^(c). Then, we
deform the curve 72 to a curve 73 on J^n{c) as is shown in Fig. 6.

In this deformation from 72 to 73, we admitted that the intermediate
piecewise smooth curve passes through the singular points (ζ, 0) e
where ζ are solutions of (1.5).

LEMMA 4.

) = _ π _ τ/^c [
2 )nzV(n - z){z(n - zY'1 - c} '

PROOF. By the method of the construction of the curves τx and 72

we get easily for sufficiently small r > 0

f dz Γ dz
— z){z{n — zY~ι — c) irzv(n — z){z(n — zY~ι — c)

dz
J \z\=r {n - z){z(n - zY 1 - c)

On the 2nd term of the right handside, z = 0 corresponds to w = — iV c
from the arguments in § 1 and this section. Hence we obtain easily

f dz __ 2π

J \z\=rzλ/{n — z){z(n — zY~ι — c} λ/nc

Furthermore, we have

f dz f dz
— z){z(n — zY~ι — c} ir2zv(n — z){z(n — zY"1 — c}

and in the right hand side we can also replace 72 with 73 by virtue of
Lemma 3. Hence we obtain the formula expressed in this lemma.

q.e.d.

LEMMA 5.

j n = f (n - zY~*/2dz = 2^ f (n - z)1/2dw
ΛC) h,V{z{n - zY~ι - cf nh, (1 - z)w2 '

PROOF. By (1.6), (1.7) and Lemma 4, we obtain
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n

* n dc\ 2 inzV(n - z){z(w - a)*"1 - c) I "

By the analogous computation to that of (1.7), we obtain the formula
expressed in this lemma. q.e.d.

4. Proof of In(c) < 0, when n > 2.

LEMMA 6. When n > 2, the curve σ^y) (0 < y) lies in the upper
half plane and the curve σ2(y) (0 < y) in the lower half plane of the
real axis of the z-plane.

PROOF. For the real variable x, we have
( i ) x(n — x)n~ι — c ^ 0 for x0 <J x <S x^
(ii) — c ^ x(n — xY'1 — c < 0 for 0 ^ x < x0 and x1<x^n\
(iii) x(n — x)n~x — c < — c for x < 0

and
(iv) #(w — a)*""1 — c — eί(n~1)πx(x — w)""1 — c for % < x.
Now, for sufficiently small y > 0, the statement is true by (3.6).

From the above property of the function x(n — α)*"1 — c, we see that if
the curves σλ(y) or σ2(y) meet with the real axis of the z-plane, the co-
ordinate x* of the meeting point must be x* < 0 or n < x*.

If x* < 0 and σ^y*) = #*, then the curve σ^y) must lie on the real
axis around y* since {z(n — z)Λ"1}Ux =£ 0 for x < 0, in another words, a
small neighborhood of z = #* corresponds regularly to a small neighbor-
hood of w = — iVc + y* through the Riemann surface ^n(c). Hence,
continuing this process, we can take x* sufficiently near 0, then we ob-
tain a contradiction, because y* becomes then sufficiently small. We
shall obtain also a contradiction in case σ2(y*) = x*.

Next, n < #*, from (iv) of the above mentioned facts, it must be

i.e. 7i = even. If n = even, then we have

αs(n- — a?)""1 — c = — {c + x(a? — n)*~l\ for n < $

and

c + ίc(α? — n)*""1 > c .

By an analogous argument to the case x* < 0, we can show that the
both curves σjiy) and σ2(y) can not meet with the real axis on the in-
terval n < x < oo. q.e.d.
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P R O P O S I T I O N 1. When n>2,we have In(c) <0 for Q<c<(n- l)n'\

PROOF. By Lemma 5, we have

Jr3Vlz(n — z)n~ι — ihzv{z(n - z)n~ι - cf

By means of Remark 1 on Lemma 1 and Remark 2 on Lemma 2, we
obtain easily

- z)n~ι - cf

Now, along the curves σ&y) and σ2(y) we can set

« = <rj(v) = n + rάy)*"'™ , i = 1, 2 ,
and

(4.1) 0 < ΘJiv) <π and π < Θ2(y) < 2π

by Lemma 6. Since we may put w = iVc + y, we have for the curve

- z)w2 (n - 1) + r x e^ - (c + y)

- 1) + r, e~iθ^ dy

=

2{(n - I)2 + r\ + 2(n - IKEcosffJ V(c +
here we have used the expression

n - z = reί((9+m;r) , m = - 1 ,

in the argument of the beginning of §3. Hence we obtain

= {(n - l)τ/n + τ/r!} cos g ^ dy
K ' } (1 - ^ )^2 2{(n - I)2 + r2 + 2(w - l)n cosβj i/(c + yf

+ {imag. part} ,

in which the real part of the right hand side < 0 by (4.1).
Analogously, along the curve σ2(y) we have

(n - z)1/2dw = _ {(n - V)VT2 + τ/rf} cos ^2/2 # dy

(1 - ^)tϋ2 2{(n - I)2 + r\ + 2(n - l)r2 cos ί, " / T W
+ {imag. part} ,

in which the real part of the right hand side > 0 by (4.1).
Since In(c) is real valued, we obtain
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n I ioi (1 — z)w2 Jσ2 ( l — z)wL

by means of the above mentioned facts. q.e.d.

PROPOSITION 2. When n = 2, we have I2(c) < 0 for 0 < c < 1.

PROOF. In this case, ^l{c) is given by z(2 — z) — c = w2 and its
singular points are (α0, 0), (xlf 0), (1, 6) and (1, - b) in all, where b =
Λ/1 — c. We have

( 2 ~ ^ ) 1 / 2 ^ = f (2 - *)1 / 2

r i/{z(2 - «) - C}3 Jr (1 - Z)W

Since the equation (1.5) has the only real roots x0 and x19 we obtain the
equality as in case n > 2:

T(C) = f (2 - ^)1/2d^ _ f
2 W J^ τ/{^(2 - z) - cY )

(2 -
) - cY io2 V{z(2 - z) - cY

On the other hand, since the point (2, %Λ/c ) is regular,on ά^lio) and
for real x > 2 we have

^y/O ™\ O [O I .̂//y. O\1 .̂/.v, O\ V> Λ

we obtain easily that

(4.4) θx{τ) = 0 and Θ2(r) = 2π for 0 < r .

Hence the both curves σ^y) and σ2(y) (0 < ί/) coincides with the half line:
2 < x of the real axis, including their directions by y = #(# — 2).

Now, we shall compute the integrand of I2(c) along the curves σλ(y)
and σ2(2/). In this case, we can also use (4.2) and (4.3), then by means
of (4.4) we obtain: (i) Along σx{y)

(2 - z)1/2dz = __ Vτ\ dy_
V{z{2 - z) - c}3 2(1 + ?

(ii) along σ2(y)

(2 - z)1/2dz Vr%

V{z(2 - z ) - cY 2(1 + r 2 )

Hence we obtain
/^^T _ _ _ _ _ = _ _ = = = = = = _ _ ^ _

- 2 ) } 3

q.e.d.

2(x - 1) V{c + yf
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5. Proof of In(c) < 0, when 1 < n < 2. In this section, we shall
prove indirectly the inequality In(c) < 0 for 0 < e < (n — I)"" 1 , when 1 <
n < 2.

Replacing nx2 and nC by x and C respectively, the period T given
by (0.2) can be written as:

(5.1) Tn(x0): = , ,

j*oVx(n — x) — Cx1 a(n — x)a

where

\<J,Δij vy — ιΛ/Q 1 AC' *~Ό/ — *i']l#C' ^l) 1 ^ ^ —

and

(5.3) O < x o < l < x 1 < % .

We shall denote anew the period given by (1.2) as

(5.4) θ.(c): =
— x)n ι — c]

where

(5.5) c = Cn = xo(n - x,Y~γ .

As is stated in § 1, we have the equality [6]

Tn(xo) = β.(c) .

The following was proved in [9].

LEMMA 7. Tn(x0) = Tm(y0), where m = n/(n — 1), y0 = m — (m — 1)^.

PROPOSITION 3. TFAβ^ 1 < n < 2, ^β have In(c) < 0 /or 0 < c <
(n - l)n~\

PROOF. By the above change of notation and (1.7), (1.8) and Lemma
7, we obtain

In(c) =-±J- j-Θn{c) = -^J± ^-Tn(x0) - - 4 J± f-v n dc v n dc y n dc

n dc

where h = yo(m — t/o)™"1 by (5.5) replaced n, x0 by m, y0. Hence, we have

©(Λ)(5.6) IM = - 4 J± ψ πr©.(Λ)
Λ n dc dh

Since 1 < w < 2, we see easily that 2 < m. Hence, by Proposition 1 and
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(1.7) we have

(5.7) 4rθM > 0
ah

On the other hand, from the equalities:

c = xQ(n — x0Y~ι — xγ(n — x^)n~ι , y0 = m — (m —

we get
dh _ dh dy0 dxγ / ^ \ dh I dc
dc dy0 dxx dc dy01 dxt

_ \ιι^ L)ΎΠ\L yo)χιi<' yp)

hence by 1 < xι < n and 0 < y0 < 1 we obtain

(5.8) dh/dc > 0 .

Thus (5.6), (5.7) and (5.8) imply In(c) < 0 . q.e.d.

Finally, from (1.7), (1.8) and Propositions 1, 2 and 3, we obtain our
main theorem.

THEOREM. For any real constant n > 1, the period T of the non-
linear differential equation (E) given by

S a1( /I

J 1 "*" c (?"
where C = (al)Un(l - αS)1"17* = (a\)1/n(l - aiy~1/n (0 < a0 < Vίpϋ < a, < 1),
is increasing as function of the integral constant C (0 < C < A =
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