GEODESICS OF O_{n}^{2} AND AN ANALYSIS ON A RELATED RIEMANN SURFACE

Tominosuke Otsuki

(Received April 14, 1975)
0. Introduction. As is shown in [6] and [8], the following nonlinear differential equation:

$$
\begin{equation*}
n x\left(1-x^{2}\right) \frac{d^{2} x}{d t^{2}}+\left(\frac{d x}{d t}\right)^{2}+\left(1-x^{2}\right)\left(n x^{2}-1\right)=0 \tag{E}
\end{equation*}
$$

where $n(>1)$ is a real constant, is the equation for the support function $x(t)$ of a geodesic in the 2-dimensional Riemannian manifold O_{n}^{2} with the metric:

$$
\begin{equation*}
d s^{2}=\left(1-u^{2}-v^{2}\right)^{n-2}\left\{\left(1-v^{2}\right) d u^{2}+2 u v d u d v+\left(1-u^{2}\right) d v^{2}\right\} \tag{0.1}
\end{equation*}
$$

in the unit disk: $u^{2}+v^{2}<1$. O_{n}^{2} can be regarded as a surface of revolution in the 4 -dimensional Lorentzian space punctured at a point from a closed one [10].

Any non constant solution $x(t)$ of (E) such that

$$
x^{2}+\left(\frac{d x}{d t}\right)^{2}<1
$$

is periodic and its period T is given by the improper integral:

$$
\begin{equation*}
T=2 \int_{a_{0}}^{a_{1}} \frac{d x}{\sqrt{1-x^{2}-C\left(\frac{1}{x^{2}}-1\right)^{\alpha}}} \tag{0.2}
\end{equation*}
$$

where

$$
\begin{align*}
C= & \left(a_{0}^{2}\right)^{\alpha}\left(1-a_{0}^{2}\right)^{1-\alpha}=\left(a_{1}^{2}\right)^{\alpha}\left(1-a_{1}^{2}\right)^{1-\alpha} \tag{0.3}\\
& \left(0<a_{0}<\sqrt{\alpha}<a_{1}<1, \alpha=1 / n\right)
\end{align*}
$$

is the integral constant of (E) and $0<C<A=\alpha^{\alpha}(1-\alpha)^{1-\alpha}$.
By means of the above mentioned geometrical meaning of $x(t), T$ represents the angular period of a geodesic of O_{n}^{2} in the unit disk. The following was proved in [4]:
(i) T is differentiable with respect to C,
(ii) $T>\pi$,
(iii) $\lim _{C \rightarrow 0} T=\pi$ and $\lim _{C \rightarrow A} T=\sqrt{2} \pi$;
and then the following inequality:

$$
\begin{equation*}
T<\sqrt{2} \pi \tag{U}
\end{equation*}
$$

was conjectured in [5] and [11] by means of a numerical analysis of (E) done by M. Urabe [11]. This inequality has been proved recently in [8] and [9] in cases of $n \geqq 3$ and $1<n<3$ respectively.

In [6], the author conjectured also that T is a monotone increasing function of C which will imply (U). He will prove this conjecture by means of an analysis on a related Riemann surface with O_{n}^{2}.

1. Preliminaries. The differential equation of geodesics of O_{n}^{2} is

$$
\left(1-u^{2}-v^{2}\right) \frac{d^{2} v}{d u^{2}}=n\left(-v+u \frac{d v}{d u}\right)\left\{1-v^{2}+2 u v \frac{d v}{d u}+\left(1-u^{2}\right)\left(\frac{d v}{d u}\right)^{2}\right\}
$$

in the coordinates (u, v), which can be written as
($\left.\mathrm{E}^{\prime}\right) \quad r\left(1-r^{2}\right) \frac{d^{2} r}{d \theta^{2}}+\left\{(n+2) r^{2}-2\right\}\left(\frac{d r}{d \theta}\right)^{2}+r^{2}\left(1-r^{2}\right)\left(n r^{2}-1\right)=0$
in the polar coordinates (r, θ) in the (u, v)-plane, i.e. $u=r \cos \theta, v=$ $r \sin \theta$.

The differential equation (E^{\prime}) has the following first integral:

$$
\left(\frac{d r}{d \theta}\right)^{2}=C_{1} r^{4}\left(1-r^{2}\right)^{n}-r^{2}\left(1-r^{2}\right)
$$

where C_{1} is a positive integral constant. Any solution $r(\theta)$ of (E^{\prime}) such that $r \neq 0,0<r<1$, is periodic and its period Θ is given by the improper integral:

$$
\begin{equation*}
\Theta=2 \int_{r_{0}}^{r_{1}}\left[C_{1} r^{4}\left(1-r^{2}\right)^{n}-r^{2}\left(1-r^{2}\right)\right]^{-1 / 2} d r, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{gathered}
r_{0}^{2}\left(1-r_{0}^{2}\right)^{n-1}=r_{1}^{2}\left(1-r_{1}^{2}\right)^{n-1}=1 / C_{1} \\
0<r_{0}<\sqrt{\alpha}<r_{1}<1 .
\end{gathered}
$$

If we put $C_{1}=1 / C^{n}$, then we get $r_{0}=a_{0}$ and $r_{1}=a_{1}$, and we can prove the equality:

$$
\Theta=T
$$

by making use of the properties of the solution $x(t)$ and its geometrical meaning. Furthermore, if we change the integral variable in (1.1) from r to x by $n r^{2}=x$, then we obtain easily

$$
\begin{equation*}
T=T(c)=\sqrt{n c} \int_{x_{0} x}^{x_{1}} \frac{d x}{(n-x)\left\{x(n-x)^{n-1}-c\right\}}, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{gather*}
c=(n C)^{n}=x_{0}\left(n-x_{0}\right)^{n-1}=x_{1}\left(n-x_{1}\right)^{n-1}, \tag{1.3}\\
0<x_{0}<1<x_{1}<n .
\end{gather*}
$$

Now, we try to express $T(c)$ by means of complex analysis. If we take a piecewise smooth, oriented, simple close curve γ in the complex z-plane such that x_{0} and x_{1} and 1 are inside of γ and the zero and n and the other solutions than x_{0} and x_{1} of the equation:

$$
\begin{equation*}
z(n-z)^{n-1}-c=0 \tag{1.5}
\end{equation*}
$$

are all outside of γ, and the orientation of γ is coherent to the canonical

Figure 1.
one of the z-plane, then $T(c)$ can be written by the integral along γ as follows:

$$
\begin{equation*}
T(c)=-\frac{\sqrt{n c}}{2} \int_{r} \frac{d z}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}}} \tag{1.6}
\end{equation*}
$$

This expression of $T(c)$ sets the integral (1.2) free from the improper property based on the interval $\left(x_{0}, x_{1}\right)$ of integration and shows that $T(c)$ is analytic in c for $0<c<(n-1)^{n-1}$.

Differentiating (1.6) with respect to c, we obtain

$$
\begin{aligned}
T^{\prime}(c)= & -\frac{1}{4} \sqrt{\frac{n}{c}} \int_{r}\left\{\frac{1}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}}}\right. \\
& \left.+\frac{c}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}^{3}}}\right\} d z,
\end{aligned}
$$

i.e.

$$
\begin{equation*}
T^{\prime}(c)=-\frac{1}{4} \sqrt{\frac{n}{c}} \int_{r} \frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}} \tag{1.7}
\end{equation*}
$$

Now, we set

$$
\begin{equation*}
I_{n}(c):=\int_{r} \frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}} \tag{1.8}
\end{equation*}
$$

If we can prove the following inequality:

$$
I_{n}(c)<0 \quad \text { for } \quad 0<c<(n-1)^{n-1}
$$

then the period T given by (0.2) is monotone increasing as a function of C for $0<C<A$.
2. A Riemann surface related with the integral $I_{n}(c)$. Now, we define a Riemann surface $\mathscr{F}=\mathscr{F}_{n}(c)$ in C^{2} with the coordinates (z, w) by the equation:

$$
\begin{equation*}
z(n-z)^{n-1}-w^{2}=c, \tag{2.1}
\end{equation*}
$$

which is an algebraic curve when n is an integer. The closed curve γ in (1.8) can be considered as an oriented closed curve on the surface and the integral (1.8) as an integral along γ on \mathscr{F}. Therefore the value of $I_{n}(c)$ does not change even if we replace γ by another piecewise smooth closed curve through a piecewise smooth homotopy on \mathscr{F} whose projection on the z-plane avoids the roots of the equation (1.5) and $z=n$.

Let $b>0$ be a real constant such that

$$
\begin{equation*}
b=\sqrt{(n-1)^{n-1}-c}, \tag{2.2}
\end{equation*}
$$

then the projection γ_{z} and γ_{w} of the curve γ on \mathscr{F} onto the z-plane and the w-plane respectively may be illustrated as in Fig. 2, taking into consideration of the transition of integrals from (1.2) to (1.6).

Figure 2.
In fact, since we have

$$
\begin{equation*}
\left\{z(n-z)^{n-1}\right\}^{\prime}=n(1-z)(n-z)^{n-2} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{z(n-z)^{n-1}\right\}^{\prime \prime}=-n(n-1)(2-z)(n-z)^{n-3} \tag{2.4}
\end{equation*}
$$

we obtain easily from (2.1) around $z=x_{i}(i=0,1)$

$$
n\left(1-x_{i}\right)\left(n-x_{i}\right)^{n-2}\left(z-x_{i}\right)+O\left(\left(z-x_{i}\right)^{2}\right)=w^{2}
$$

from which we get the relation

$$
\begin{equation*}
z-x_{i}=\frac{w^{2}}{n\left(1-x_{i}\right)\left(n-x_{i}\right)^{n-2}}+O\left(w^{4}\right) \tag{2.5}
\end{equation*}
$$

and we obtain around $z=1$

$$
b^{2}-\frac{n(n-1)^{n-2}}{2}(z-1)^{2}+O\left((z-1)^{3}\right)=w^{2}
$$

or

$$
\begin{gathered}
\frac{n(n-1)^{n-2}}{2}(z-1)^{2}+O\left((z-1)^{3}\right)=b^{2}-w^{2} \\
=\mp 2 b(w \mp b)-(w \mp b)^{2}
\end{gathered}
$$

from which we obtain the relation:

$$
\begin{equation*}
w \mp b=\mp \frac{n(n-1)^{n-2}}{4 b}(z-1)^{2}+O\left((z-1)^{3}\right) \tag{2.6}
\end{equation*}
$$

These relations implies the correspondence between γ_{z} and γ_{w} as is shown in Fig. 2.

Now, differentiating (2.1) we have $n(1-z)(n-z)^{n-2} d z=2 w d w$ and using this the integrand of (1.8) can be written as

$$
\frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}}=\frac{(n-z)^{n-3 / 2}}{w^{3}} \cdot \frac{2 w d w}{n(1-z)(n-z)^{n-2}},
$$

hence we get the expression of I_{n} by

$$
\begin{equation*}
I_{n}(c)=\frac{2}{n} \int_{r} \frac{(n-z)^{1 / 2} d w}{(1-z) w^{2}} \tag{2.7}
\end{equation*}
$$

Next, we need the following lemmas with regard to the integrals (1.8) and (1.6).

Lemma 1. If $n>-1$, then

$$
\lim _{r \rightarrow \infty} \int_{|z|=r} \frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}}=0 .
$$

Proof. Setting $z=r e^{i \theta}$, for sufficiently large r there exists a positive constant K_{1} such that

$$
\left|\frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}}\right| \leqq K_{1} r^{-(n+1) / 2}|d \theta| .
$$

Hence we have

$$
\left|\int_{|z|=r} \frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}}\right| \leqq 2 \pi K_{1} r^{-(n+1) / 2},
$$

which implies this lemma. q.e.d.

Remark 1. Let A_{r} be a set of subarcs on the circle $|z|=r$ with a bounded angular measure from 0 , then we have also

$$
\lim _{r \rightarrow \infty} \int_{A_{r}} \frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}}=0
$$

Lemma 2. If $n>1 / 2$, then

$$
\lim _{r \rightarrow 0} \int_{|z-n|=r} \frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}}=0 .
$$

Proof. Setting $z=n+r e^{i \theta}$, for sufficiently small r there exists a positive constant K_{2} such that

$$
\left|\frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}}\right| \leqq K_{2} c^{-3 / 2} r^{n-1 / 2}|d \theta| .
$$

Hence we have

$$
\left|\int_{|z-n|=r} \frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}}\right| \leqq 2 \pi K_{2} c^{-3 / 2} r^{n-1 / 2},
$$

which implies this lemma.
q.e.d.

Remark 2. Let B_{r} be a set of subarcs on the circle $|z-n|=r$ with a bounded angular measure from n, then we have also

$$
\lim _{r \rightarrow 0} \int_{B_{r}} \frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}}=0
$$

Finally, let ζ be a solution of the equation (1.5) other than x_{0} and x_{1}.
Lemma 3.

$$
\lim _{r \rightarrow 0} \int_{|z-\zeta|=r} \frac{d z}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}}}=0 .
$$

Proof. It is clear that $\zeta \neq 0,1$ and n and ζ is simple by (2.3). Setting $z=\zeta+r e^{i \theta}$, for sufficiently small r there exists a positive constant K_{3} such that

$$
\left|\frac{d z}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}}}\right| \leqq \frac{K_{3} n^{-1 / 2} r^{1 / 2}|d \theta|}{\mid \zeta \sqrt{(1-\zeta)(n-\zeta)^{n-1} \mid}} .
$$

Hence we have

$$
\left|\int_{|z-\zeta|=r} \bar{z} \sqrt{\frac{d z}{(n-z)\left\{z(n-z)^{n-1}-c\right\}}}\right| \leqq \frac{2 \pi K_{3} n^{-1 / 2} r^{1 / 2}}{\mid \zeta \sqrt{(1-\zeta)(n-\zeta)^{n-1} \mid}}
$$

which imply this lemma. q.e.d.

Remark 3. Let C_{r} be a set of subarcs on the circle $|z-\zeta|=r$ with a bounded angular measure from ζ, then we have also

$$
\lim _{r \rightarrow 0} \int_{|z-\zeta|=r} \frac{d z}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}}}=0
$$

3. Changes of the curve of integration. In order to find a suitable change of the curve γ of integration on the Riemann surface $\mathscr{F}_{n}(c)$, we shall investigate the correspondence between z and w on this surface.

By the argument in $\S 2$, we see that the singular points on $\mathscr{F}_{n}(c) \subset$ C^{2} are
(i) $\left(x_{0}, 0\right),\left(x_{1}, 0\right)$ and $(\zeta, 0)$, where ζ are the solutions of the equation (1.5) other than x_{0} and x_{1};
(ii) $(1, b)$ and $(1,-b)$;
(iii) ($n, i \sqrt{c}$) and ($n,-i \sqrt{c}$), if $n>2$.

The reasons of singularity are that $w=\sqrt{z(n-z)^{n-1}-c}$ vanishes at $z=x_{0}, x_{1}$ and ζ, and $\left\{z(n-z)^{n-1}-c\right\}^{\prime}$ vanishes at $z=1$ and n (when $n>2$).
(2.5) and (2.6) show the state of $\mathscr{F}_{n}(c)$ around the points $\left(x_{0}, 0\right)$, $\left(x_{1}, 0\right),(1, b)$ and $(1,-b)$.

In the following, we suppose $n \geqq 2$ and investigate the state of $\mathscr{F}_{n}(c)$ around the points ($n, i \sqrt{c}$) and ($n,-i \sqrt{c}$). Setting

$$
z=n+r e^{i \theta}(r>0) \quad \text { and } \quad w= \pm i \sqrt{c}+t e^{i \varphi}(t>0)
$$

and substituting these into (2.1), we have

$$
\left(n+r e^{i \theta}\right)\left\{r e^{i(\theta+m \pi)}\right\}^{n-1}-c=-c \pm 2 i \sqrt{c} t e^{i \varphi}+t^{2} e^{2 i \varphi},
$$

where m is an odd integer, hence

$$
n r^{n-1} e^{i(n-1)(\theta+m \pi)}+r^{n} e^{i(n \theta+(n-1) m \pi)}=2 \sqrt{c} \bar{c} e^{i(\varphi \pm \pi / 2)}+t^{2} e^{2 i \varphi},
$$

which implies

$$
\begin{equation*}
t=\frac{n}{2 \sqrt{c}} r^{n-1}+O\left(r^{n}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\varphi=(n-1)(\theta+m \pi) \mp \frac{\pi}{2}+O(r)
$$

From the above relation between the arguments θ and φ, we get especially for $\theta=\pi$

$$
\varphi=(n-1)(m+1) \pi \mp \frac{\pi}{2}+O(r) .
$$

Considering the correspondence between γ_{z} and γ_{w} as is shown in Fig. 2, we may put $m=-1$ for our purpose. Therefore we have the relations

$$
\begin{equation*}
\varphi=(n-1)(\theta-\pi)-\frac{\pi}{2}+O(r) \quad \text { around }(n, i \sqrt{c}) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi=(n-1)(\theta-\pi)+\frac{\pi}{2}+O(r) \quad \text { around }(n,-i \sqrt{c}) \tag{3.3}
\end{equation*}
$$

Now, for sufficiently small $r>0$ we can choose two angles $\theta_{1}=\theta_{1}(r)$ and $\theta_{2}=\theta_{2}(r)$ around $(n, i \sqrt{c})$ such that
(i) $\theta_{1}<\pi$ and the value φ_{1} of φ in (3.2) for $\theta=\theta_{1}$ is $-3 \pi / 2$ and
(ii) $\theta_{2}>\pi$ and the value φ_{2} of φ in (3.2) for $\theta=\theta_{2}$ is $\pi / 2$.

Since we have for $\theta=\pi$ the equality $\varphi=-\pi / 2$, we may put

$$
\begin{equation*}
\pi-\theta_{1}=\frac{\pi}{n-1}+O(r) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{2}-\pi=\frac{\pi}{n-1}+O(r) \tag{3.5}
\end{equation*}
$$

If $n>2$, we may consider for sufficiently small r as

$$
\begin{equation*}
0<\theta_{1}<\pi \quad \text { and } \quad \pi<\theta_{2}<2 \pi \tag{3.6}
\end{equation*}
$$

Figure 3.

Using the above argument, we shall firstly deform the original curve γ in the integral (1.8) to a curve γ_{1} on $\mathscr{F}_{n}(c)$ as is shown in Fig. 4_{i}, $i=1,2$, without through the singular points described in this section.

Figure 4_{1}.

Figure 42.
Now, we consider the point

$$
w=i \sqrt{c+y} \quad(y>0)
$$

in the w-plane. If y is sufficiently small, then we can choose uniquely the points $\sigma_{1}(y)=n+r_{1} e^{i \theta_{1}}$ and $\sigma_{2}(y)=n+r_{2} e^{i \theta_{2}}$ around $z=n$ in the z plane such that

$$
\left(\sigma_{1}(y), i \sqrt{c+y}\right),\left(\sigma_{2}(y), i \sqrt{c+y}\right) \in \mathscr{F}_{n}(c) \quad \text { and } \quad \theta_{1}=\theta_{1}\left(r_{1}\right), \theta_{2}=\theta_{2}\left(r_{2}\right) .
$$

Since we have from (2.3)

Figure 5_{1}.
T. OTSUKI

Figure 52.

Figure 6.

$$
n(1-z)(n-z)^{n-2} \frac{d z}{d w}=2 w
$$

and so for $w=i \sqrt{c+y}(y>0)$ we have $d z / d w \neq 0$. Therefore, if we vary y in the interval $0<y<\infty$, then we obtain two curves $\sigma_{1}(y)$ and
$\sigma_{2}(y)$ starting from the point $z=n$ and diverging to the infinity.
Then, we shall deform the curve γ_{1} to a curve γ_{2} on $\mathscr{F}_{n}(c)$ as is shown in Fig. $5_{i}, i=1,2$, without through the singular points.

Finally, we take sufficiently large positive numbers y_{1}, y_{2} and p such that

$$
\left|\sigma_{1}\left(y_{1}\right)\right|=\left|\sigma_{2}\left(y_{2}\right)\right|=p>\sup \{|\zeta|\}
$$

where ζ are the solutions of the equation (1.5). This choice of y_{1} and y_{2} is assured by means of the above consideration about $\mathscr{F}_{n}(c)$. Then, we deform the curve γ_{2} to a curve γ_{3} on $\mathscr{F}_{n}(c)$ as is shown in Fig. 6.

In this deformation from γ_{2} to γ_{3}, we admitted that the intermediate piecewise smooth curve passes through the singular points $(\zeta, 0) \in \mathscr{F}_{n}(c)$, where ζ are solutions of (1.5).

Lemma 4.

$$
T(c)=-\pi-\frac{\sqrt{n c}}{2} \int_{r_{3}} \frac{d z}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}}} .
$$

Proof. By the method of the construction of the curves γ_{1} and γ_{2} we get easily for sufficiently small $r>0$

$$
\begin{aligned}
& \int_{r_{1}} \frac{d z}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}}}=\int_{r} \frac{d z}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}}} \\
& \quad+\oint_{|z|=r} \frac{d z}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right)}}
\end{aligned}
$$

On the 2 nd term of the right handside, $z=0$ corresponds to $w=-i \sqrt{c}$ from the arguments in $\S 1$ and this section. Hence we obtain easily

$$
\oint_{|z|=r} \frac{d z}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}}}=-\frac{2 \pi}{\sqrt{n c}} .
$$

Furthermore, we have

$$
\int_{r_{1}} \frac{d z}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}}}=\int_{r_{2}} \frac{d z}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}}}
$$

and in the right hand side we can also replace γ_{2} with γ_{3} by virtue of Lemma 3. Hence we obtain the formula expressed in this lemma.
q.e.d.

Lemma 5.

$$
I_{n}(c)=\int_{\gamma_{3}} \frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}}=\frac{2}{n} \int_{r_{3}} \frac{(n-z)^{1 / 2} d w}{(1-z) w^{2}} .
$$

Proof. By (1.6), (1.7) and Lemma 4, we obtain

$$
\begin{aligned}
I_{n}(c) & =-4 \sqrt{\frac{c}{n}} T^{\prime}(c) \\
& =-4 \sqrt{\frac{c}{n}} \frac{d}{d c}\left\{-\frac{\sqrt{n c}}{2} \int_{r_{3}} \frac{d z}{z \sqrt{(n-z)\left\{z(n-z)^{n-1}-c\right\}}}\right\}
\end{aligned}
$$

By the analogous computation to that of (1.7), we obtain the formula expressed in this lemma.
q.e.d.
4. Proof of $I_{n}(c)<0$, when $n>2$.

Lemma 6. When $n>2$, the curve $\sigma_{1}(y)(0<y)$ lies in the upper half plane and the curve $\sigma_{2}(y)(0<y)$ in the lower half plane of the real axis of the z-plane.

Proof. For the real variable x, we have
(i) $x(n-x)^{n-1}-c \geqq 0$ for $x_{0} \leqq x \leqq x_{1}$;
(ii) $-c \leqq x(n-x)^{n-1}-c<0$ for $0 \leqq x<x_{0}$ and $x_{1}<x \leqq n$;
(iii) $x(n-x)^{n-1}-c<-c$ for $x<0$
and
(iv) $\quad x(n-x)^{n-1}-c=e^{i(n-1) \pi} x(x-n)^{n-1}-c$ for $n<x$.

Now, for sufficiently small $y>0$, the statement is true by (3.6). From the above property of the function $x(n-x)^{n-1}-c$, we see that if the curves $\sigma_{1}(y)$ or $\sigma_{2}(y)$ meet with the real axis of the z-plane, the coordinate x^{*} of the meeting point must be $x^{*}<0$ or $n<x^{*}$.

If $x^{*}<0$ and $\sigma_{1}\left(y^{*}\right)=x^{*}$, then the curve $\sigma_{1}(y)$ must lie on the real axis around y^{*} since $\left\{z(n-z)^{n-1}\right\}_{z=x}^{\prime} \neq 0$ for $x<0$, in another words, a small neighborhood of $z=x^{*}$ corresponds regularly to a small neighborhood of $w=-i \sqrt{c+y^{*}}$ through the Riemann surface $\mathscr{F}_{n}(c)$. Hence, continuing this process, we can take x^{*} sufficiently near 0 , then we obtain a contradiction, because y^{*} becomes then sufficiently small. We shall obtain also a contradiction in case $\sigma_{2}\left(y^{*}\right)=x^{*}$.

Next, $n<x^{*}$, from (iv) of the above mentioned facts, it must be

$$
e^{i(n-1) \pi}=-1=e^{i \pi},
$$

i.e. $n=$ even. If $n=$ even, then we have

$$
x(n-x)^{n-1}-c=-\left\{c+x(x-n)^{n-1}\right\} \text { for } n<x
$$

and

$$
c+x(x-n)^{n-1}>c
$$

By an analogous argument to the case $x^{*}<0$, we can show that the both curves $\sigma_{1}(y)$ and $\sigma_{2}(y)$ can not meet with the real axis on the interval $n<x<\infty$.
q.e.d.

Proposition 1. When $n>2$, we have $I_{n}(c)<0$ for $0<c<(n-1)^{n-1}$. Proof. By Lemma 5, we have

$$
I_{n}(c)=\int_{r_{3}} \frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}} .
$$

By means of Remark 1 on Lemma 1 and Remark 2 on Lemma 2, we obtain easily

$$
\begin{aligned}
I_{n}(c) & =\int_{\sigma_{1}} \frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}}-\int_{\sigma_{2}} \frac{(n-z)^{n-3 / 2} d z}{\sqrt{\left\{z(n-z)^{n-1}-c\right\}^{3}}} \\
& =\frac{2}{n}\left\{\int_{\sigma_{1}} \frac{(n-z)^{1 / 2} d w}{(1-z) w^{2}}-\int_{a_{2}} \frac{(n-z)^{1 / 2} d w}{(1-z) w^{2}}\right\} .
\end{aligned}
$$

Now, along the curves $\sigma_{1}(y)$ and $\sigma_{2}(y)$ we can set

$$
z=\sigma_{j}(y)=n+r_{j}(y) e^{i \theta_{j}(y)}, \quad j=1,2,
$$

and

$$
\begin{equation*}
0<\theta_{1}(y)<\pi \quad \text { and } \quad \pi<\theta_{2}(y)<2 \pi \tag{4.1}
\end{equation*}
$$

by Lemma 6. Since we may put $w=i \sqrt{c+y}$, we have for the curve $\sigma_{1}(y)$

$$
\begin{align*}
\frac{(n-z)^{1 / 2} d w}{(1-z) w^{2}} & =-\frac{i \sqrt{r_{1}} e^{i \theta_{1} / 2}}{(n-1)+r_{1} e^{i \theta_{1}}} \cdot \frac{d(i \sqrt{c+y})}{-(c+y)} \tag{4.2}\\
& =-\frac{\sqrt{r_{1}} e^{i \theta_{1} / 2}\left\{(n-1)+r_{1} e^{-i \theta_{1}}\right\}}{2\left\{(n-1)^{2}+r_{1}^{2}+2(n-1) r_{1} \cos \theta_{1}\right\}} \cdot \frac{d y}{\sqrt{(c+y)^{3}}}
\end{align*}
$$

here we have used the expression

$$
n-z=r e^{i(\theta+m \pi)}, \quad m=-1
$$

in the argument of the beginning of $\S 3$. Hence we obtain

$$
\begin{align*}
\frac{(n-z)^{1 / 2} d w}{(1-z) w^{2}}= & -\frac{\left\{(n-1) \sqrt{r_{1}}+\sqrt{r_{1}^{3}}\right\} \cos \theta_{1} / 2}{2\left\{(n-1)^{2}+r_{1}^{2}+2(n-1) r_{1} \cos \theta_{1}\right\}} \cdot \frac{d y}{\sqrt{(c+y)^{3}}} \tag{4.3}\\
& +\{\text { imag. part }\}
\end{align*}
$$

in which the real part of the right hand side <0 by (4.1).
Analogously, along the curve $\sigma_{2}(y)$ we have

$$
\begin{aligned}
\frac{(n-z)^{1 / 2} d w}{(1-z) w^{2}}= & -\frac{\left\{(n-1) \sqrt{r_{2}}+\sqrt{r_{2}^{3}}\right\} \cos \theta_{2} / 2}{2\left\{(n-1)^{2}+r_{2}^{2}+2(n-1) r_{2} \cos \theta_{2}\right\}} \cdot \frac{d y}{\sqrt{(c+y)^{3}}} \\
& +\{\text { imag. part }\}
\end{aligned}
$$

in which the real part of the right hand side >0 by (4.1).
Since $I_{n}(c)$ is real valued, we obtain

$$
I_{n}(c)=\frac{2}{n}\left\{\mathscr{R} \int_{\sigma_{1}} \frac{(n-z)^{1 / 2} d w}{(1-z) w^{2}}-\mathscr{R} \int_{\sigma_{2}} \frac{(n-z)^{1 / 2} d w}{(1-z) w^{2}}\right\}<0
$$

by means of the above mentioned facts.
q.e.d.

Proposition 2. When $n=2$, we have $I_{2}(c)<0$ for $0<c<1$.
Proof. In this case, $\mathscr{F}_{2}(c)$ is given by $z(2-z)-c=w^{2}$ and its singular points are $\left(x_{0}, 0\right),\left(x_{1}, 0\right),(1, b)$ and $(1,-b)$ in all, where $b=$ $\sqrt{1-c}$. We have

$$
I_{2}(c)=\int_{r} \frac{(2-z)^{1 / 2} d z}{\sqrt{\{z(2-z)-c\}^{3}}}=\int_{r} \frac{(2-z)^{1 / 2} d w}{(1-z) w^{2}} .
$$

Since the equation (1.5) has the only real roots x_{0} and x_{1}, we obtain the equality as in case $n>2$:

$$
I_{2}(c)=\int_{\sigma_{1}} \frac{(2-z)^{1 / 2} d z}{\sqrt{\{z(2-z)-c\}^{3}}}-\int_{\sigma_{2}} \frac{(2-z)^{1 / 2} d z}{\sqrt{\{z(2-z)-c\}^{3}}} .
$$

On the other hand, since the point $(2, i \sqrt{c})$ is regular on $\mathscr{F}_{2}(c)$ and for real $x>2$ we have

$$
x(2-x)-c=-\{c+x(x-2)\}, \quad x(x-2)>0,
$$

we obtain easily that

$$
\begin{equation*}
\theta_{1}(r) \equiv 0 \quad \text { and } \quad \theta_{2}(r)=2 \pi \text { for } 0<r . \tag{4.4}
\end{equation*}
$$

Hence the both curves $\sigma_{1}(y)$ and $\sigma_{2}(y)(0<y)$ coincides with the half line: $2<x$ of the real axis, including their directions by $y=x(x-2)$.

Now, we shall compute the integrand of $I_{2}(c)$ along the curves $\sigma_{1}(y)$ and $\sigma_{2}(y)$. In this case, we can also use (4.2) and (4.3), then by means of (4.4) we obtain: (i) Along $\sigma_{1}(y)$

$$
\frac{(2-z)^{1 / 2} d z}{\sqrt{\{z(2-z)-c\}^{3}}}=-\frac{\sqrt{r_{1}}}{2\left(1+r_{1}\right)} \cdot \frac{d y}{\sqrt{(c+y)^{3}}}=-\frac{\sqrt{x-2}}{2(x-1)} \cdot \frac{d y}{\sqrt{(c+y)^{3}}} ;
$$

(ii) along $\sigma_{2}(y)$

$$
\frac{(2-z)^{1 / 2} d z}{\sqrt{\{z(2-z)-c\}^{3}}}=\frac{\sqrt{r_{2}}}{2\left(1+r_{2}\right)} \cdot \frac{d y}{\sqrt{(c+y)^{3}}}=\frac{\sqrt{x-2}}{2(x-1)} \cdot \frac{d y}{\sqrt{(c+y)^{3}}}
$$

Hence we obtain

$$
I_{2}(c)=-\int_{0}^{\infty} \frac{\sqrt{x-2}}{(x-1)} \cdot \frac{d y}{\sqrt{(c+y)^{3}}}=-2 \int_{2}^{\infty} \frac{\sqrt{x-2} d x}{\sqrt{\{c+x(x-2)\}^{3}}}<0
$$

5. Proof of $I_{n}(c)<0$, when $1<n<2$. In this section, we shall prove indirectly the inequality $I_{n}(c)<0$ for $0<c<(n-1)^{n-1}$, when $1<$ $n<2$.

Replacing $n x^{2}$ and $n C$ by x and C respectively, the period T given by (0.2) can be written as:

$$
\begin{equation*}
T_{n}\left(x_{0}\right):=\int_{x_{0}}^{x_{1}} \frac{d x}{\sqrt{x(n-x)-C x^{1-\alpha}(n-x)^{\alpha}}} \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
C=x_{0}^{\alpha}\left(n-x_{0}\right)^{1-\alpha}=x_{1}^{\alpha}\left(n-x_{1}\right)^{1-\alpha}, \quad \alpha=1 / n \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
0<x_{0}<1<x_{1}<n . \tag{5.3}
\end{equation*}
$$

We shall denote anew the period given by (1.2) as

$$
\begin{equation*}
\Theta_{n}(c):=\sqrt{n c} \int_{x_{0}}^{x_{1}} \frac{d x}{x \sqrt{(n-x)\left\{x(n-x)^{n-1}-c\right\}}}, \tag{5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
c=C^{n}=x_{0}\left(n-x_{0}\right)^{n-1} . \tag{5.5}
\end{equation*}
$$

As is stated in $\S 1$, we have the equality [6]

$$
T_{n}\left(x_{0}\right)=\Theta_{n}(c)
$$

The following was proved in [9].
Lemma 7. $\quad T_{n}\left(x_{0}\right)=T_{m}\left(y_{0}\right)$, where $m=n /(n-1), y_{0}=m-(m-1) x_{1}$.
Proposition 3. When $1<n<2$, we have $I_{n}(c)<0$ for $0<c<$ $(n-1)^{n-1}$.

Proof. By the above change of notation and (1.7), (1.8) and Lemma 7, we obtain

$$
\begin{aligned}
I_{n}(c) & =-4 \sqrt{\frac{c}{n}} \frac{d}{d c} \Theta_{n}(c)=-4 \sqrt{\frac{c}{n}} \frac{d}{d c} T_{n}\left(x_{0}\right)=-4 \sqrt{\frac{c}{n}} \frac{d}{d c} T_{m}\left(y_{0}\right) \\
& =-4 \sqrt{\frac{c}{n}} \frac{d}{d c} \Theta_{m}(h)
\end{aligned}
$$

where $h=y_{0}\left(m-y_{0}\right)^{m-1}$ by (5.5) replaced n, x_{0} by m, y_{0}. Hence, we have

$$
\begin{equation*}
I_{n}(c)=-4 \sqrt{\frac{c}{n}} \cdot \frac{d h}{d c} \cdot \frac{d}{d h} \Theta_{m}(h) \tag{5.6}
\end{equation*}
$$

Since $1<n<2$, we see easily that $2<m$. Hence, by Proposition 1 and
(1.7) we have

$$
\begin{equation*}
\frac{d}{d h} \Theta_{m}(h)>0 \tag{5.7}
\end{equation*}
$$

On the other hand, from the equalities:

$$
c=x_{0}\left(n-x_{0}\right)^{n-1}=x_{1}\left(n-x_{1}\right)^{n-1}, \quad y_{0}=m-(m-1) x_{1},
$$

we get

$$
\begin{aligned}
\frac{d h}{d c} & =\frac{d h}{d y_{0}} \cdot \frac{d y_{0}}{d x_{1}} \cdot \frac{d x_{1}}{d c}=-(m-1) \frac{d h}{d y_{0}} / \frac{d c}{d x_{1}} \\
& =-\frac{(m-1) m\left(1-y_{0}\right)\left(m-y_{0}\right)^{m-2}}{n\left(1-x_{1}\right)\left(n-x_{1}\right)^{n-2}}
\end{aligned}
$$

hence by $1<x_{1}<n$ and $0<y_{0}<1$ we obtain

$$
\begin{equation*}
d h / d c>0 \tag{5.8}
\end{equation*}
$$

Thus (5.6), (5.7) and (5.8) imply $I_{n}(c)<0$.
q.e.d.

Finally, from (1.7), (1.8) and Propositions 1, 2 and 3, we obtain our main theorem.

Theorem. For any real constant $n>1$, the period T of the nonlinear differential equation (E) given by

$$
T=2 \int_{a_{0}}^{a_{1}}\left\{1-x^{2}-C\left(\frac{1}{x^{2}}-1\right)^{1 / n}\right\}^{-1 / 2} d x
$$

where $C=\left(a_{0}^{2}\right)^{1 / n}\left(1-a_{0}^{2}\right)^{1-1 / n}=\left(a_{1}^{2}\right)^{1 / n}\left(1-a_{1}^{2}\right)^{1-1 / n}\left(0<a_{0}<\sqrt{1 / n}<a_{1}<1\right)$, is increasing as function of the integral constant $C(0<C<A=$ $\left.(1 / n)^{1 / n}(1-1 / n)^{1-1 / n}\right)$.

References

[1] S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, 60-75.
[2] S. FURUYa, On periods of periodic solutions of a certain nonlinear differential equation, Japan-United States Seminar on Ordinary Differential and Functional Equations, Lecture Notes in Mathematics, Springer-Verlag, 243 (1971), 320-323.
[3] Wu-Yi Hsiang and H. B. Lawson, Jr., Minimal submanifolds of low cohomogeneity, J. Differ. Geometry, 5 (1970), 1-38.
[4] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math., 92 (1970), 145-173.
[5] T. Otsuki, On integral inequalities related with a certain nonlinear differential equation, Proc. Japan Acad., 48 (1972), 9-12.
[6] T. Otsuki, On a 2-dimensional Riemannian manifold, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 401-414.
[7] T. Otsuki, On a family of Riemannian manifolds defined on an m-disk, Math. J. Okayama Univ., 16 (1973), 85-97.
[8] T. Otsuki, On a bound for periods of solutions of a certain nonlinear differential equation (I), J. Math. Soc. Japan, 26 (1974), 206-233.
[9] T. OTSUKI, On a bound for periods of solutions of a certain nonlinear differential equation (II), Funkcialaj Ekvacioj, 17 (1974), 193-205.
[10] M. Maeda and T. Otsuki, Models of the Riemannian manifolds O_{n}^{2} in the Lorentzian 4 -space, J. Differ. Geometry, 9 (1974), 97-108.
[11] M. Urabe, Computations of periods of a certain nonlinear autonomous oscilations, Study of algorithms of numerical computations, Sûrikaiseki Kenkyûsho Kôkyû-roku, 149 (1972), 111-129 (Japanese).

Department of Mathematics
Tokyo Institute of Technology
Tokyo 152, Japan

