Tôhoku Math. Journ. 28 (1976), 411-427.

GEODESICS OF O_{π}^2 AND AN ANALYSIS ON A RELATED RIEMANN SURFACE

TOMINOSUKE OTSUKI

(Received April 14, 1975)

0. Introduction. As is shown in [6] and [8], the following nonlinear differential equation:

(E)
$$nx(1-x^2)\frac{d^2x}{dt^2} + \left(\frac{dx}{dt}\right)^2 + (1-x^2)(nx^2-1) = 0$$
,

where n(>1) is a real constant, is the equation for the support function x(t) of a geodesic in the 2-dimensional Riemannian manifold O_n^2 with the metric:

$$(0.1) \qquad ds^2 = (1 - u^2 - v^2)^{n-2} \{ (1 - v^2) du^2 + 2uv du dv + (1 - u^2) dv^2 \}$$

in the unit disk: $u^2 + v^2 < 1$. O_n^2 can be regarded as a surface of revolution in the 4-dimensional Lorentzian space punctured at a point from a closed one [10].

Any non constant solution x(t) of (E) such that

$$x^2+\left(rac{dx}{dt}
ight)^2<1$$

is periodic and its period T is given by the improper integral:

(0.2)
$$T = 2 \int_{a_0}^{a_1} \frac{dx}{\sqrt{1 - x^2 - C(\frac{1}{x^2} - 1)^{lpha}}}$$
 ,

where

$$\begin{array}{ll} (0.3) \qquad \qquad C = (a_0^2)^{\alpha}(1-a_0^2)^{1-\alpha} = (a_1^2)^{\alpha}(1-a_1^2)^{1-\alpha} \\ (0 < a_0 < \sqrt{\alpha} < a_1 < 1, \; \alpha = 1/n) \end{array}$$

is the integral constant of (E) and $0 < C < A = \alpha^{\alpha}(1-\alpha)^{1-\alpha}$.

By means of the above mentioned geometrical meaning of x(t), T represents the angular period of a geodesic of O_n^2 in the unit disk. The following was proved in [4]:

- (i) T is differentiable with respect to C,
- (ii) $T > \pi$,
- (iii) $\lim_{c\to 0} T = \pi$ and $\lim_{c\to A} T = \sqrt{2\pi};$

and then the following inequality:

$$(U) T < \sqrt{2}\pi$$

was conjectured in [5] and [11] by means of a numerical analysis of (E) done by M. Urabe [11]. This inequality has been proved recently in [8] and [9] in cases of $n \ge 3$ and 1 < n < 3 respectively.

In [6], the author conjectured also that T is a monotone increasing function of C which will imply (U). He will prove this conjecture by means of an analysis on a related Riemann surface with O_n^2 .

1. Preliminaries. The differential equation of geodesics of O_n^2 is

$$(1 - u^2 - v^2) \frac{d^2 v}{du^2} = n \Big(-v + u \frac{dv}{du} \Big) \Big\{ 1 - v^2 + 2u v \frac{dv}{du} + (1 - u^2) \Big(\frac{dv}{du} \Big)^2 \Big\}$$

in the coordinates (u, v), which can be written as

(E')
$$r(1-r^2)\frac{d^2r}{d\theta^2} + \{(n+2)r^2-2\}\left(\frac{dr}{d\theta}\right)^2 + r^2(1-r^2)(nr^2-1) = 0$$

in the polar coordinates (r, θ) in the (u, v)-plane, i.e. $u = r \cos \theta$, $v = r \sin \theta$.

The differential equation (E') has the following first integral:

$$\Bigl(rac{dr}{d heta}\Bigr)^{\!\!\!2} = C_{_1}r^{_4}\!(1-r^{_2})^n - r^{_2}\!(1-r^{_2})$$
 ,

where C_1 is a positive integral constant. Any solution $r(\theta)$ of (E') such that $r \neq 0$, 0 < r < 1, is periodic and its period Θ is given by the improper integral:

(1.1)
$$\Theta = 2 \int_{r_0}^{r_1} [C_1 r^4 (1-r^2)^n - r^2 (1-r^2)]^{-1/2} dr ,$$

where

$$egin{aligned} r_{\scriptscriptstyle 0}^2 (1-r_{\scriptscriptstyle 0}^2)^{n-1} &= r_{\scriptscriptstyle 1}^2 (1-r_{\scriptscriptstyle 1}^2)^{n-1} &= 1/C_{\scriptscriptstyle 1} \ , \ 0 &< r_{\scriptscriptstyle 0} < \sqrt{lpha} < r_{\scriptscriptstyle 1} < 1 \ . \end{aligned}$$

If we put $C_1 = 1/C^n$, then we get $r_0 = a_0$ and $r_1 = a_1$, and we can prove the equality:

$$\Theta = T$$

by making use of the properties of the solution x(t) and its geometrical meaning. Furthermore, if we change the integral variable in (1.1) from r to x by $nr^2 = x$, then we obtain easily

(1.2)
$$T = T(c) = \sqrt{nc} \int_{x_0}^{x_1} \frac{dx}{x\sqrt{(n-x)\{x(n-x)^{n-1}-c\}}},$$

where

(1.3)
$$c = (nC)^n = x_0(n - x_0)^{n-1} = x_1(n - x_1)^{n-1}$$

$$(1.4) 0 < x_0 < 1 < x_1 < n .$$

Now, we try to express T(c) by means of complex analysis. If we take a piecewise smooth, oriented, simple close curve γ in the complex z-plane such that x_0 and x_1 and 1 are inside of γ and the zero and n and the other solutions than x_0 and x_1 of the equation:

$$(1.5) z(n-z)^{n-1}-c=0$$

are all outside of γ , and the orientation of γ is coherent to the canonical

FIGURE 1.

one of the z-plane, then T(c) can be written by the integral along γ as follows:

(1.6)
$$T(c) = -\frac{\sqrt{nc}}{2} \int_{T} \frac{dz}{z\sqrt{(n-z)\{z(n-z)^{n-1}-c\}}} dz$$

This expression of T(c) sets the integral (1.2) free from the improper property based on the interval (x_0, x_1) of integration and shows that T(c)is analytic in c for $0 < c < (n-1)^{n-1}$.

Differentiating (1.6) with respect to c, we obtain

$$T'(c) = -rac{1}{4} \sqrt{rac{n}{c}} \int_r \Big\{ rac{1}{z \sqrt{(n-z)\{z(n-z)^{n-1}-c\}}} + rac{c}{z \sqrt{(n-z)\{z(n-z)^{n-1}-c\}^3}} \Big\} dz$$
 ,

i.e.

(1.7)
$$T'(c) = -\frac{1}{4}\sqrt{\frac{n}{c}}\int_{r}\frac{(n-z)^{n-3/2}dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}}$$

Now, we set

(1.8)
$$I_n(c):=\int_{\tau}\frac{(n-z)^{n-3/2}dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}}.$$

If we can prove the following inequality:

 $I_n(c) < 0 \quad ext{for} \quad 0 < c < (n-1)^{n-1}$,

then the period T given by (0.2) is monotone increasing as a function of C for 0 < C < A.

2. A Riemann surface related with the integral $I_n(c)$. Now, we define a Riemann surface $\mathscr{F} = \mathscr{F}_n(c)$ in C^2 with the coordinates (z, w) by the equation:

(2.1)
$$z(n-z)^{n-1}-w^2=c$$
,

which is an algebraic curve when n is an integer. The closed curve γ in (1.8) can be considered as an oriented closed curve on the surface and the integral (1.8) as an integral along γ on \mathscr{F} . Therefore the value of $I_n(c)$ does not change even if we replace γ by another piecewise smooth closed curve through a piecewise smooth homotopy on \mathscr{F} whose projection on the z-plane avoids the roots of the equation (1.5) and z = n.

Let b > 0 be a real constant such that

(2.2)
$$b = \sqrt{(n-1)^{n-1}-c}$$
,

then the projection γ_z and γ_w of the curve γ on \mathscr{F} onto the z-plane and the w-plane respectively may be illustrated as in Fig. 2, taking into consideration of the transition of integrals from (1.2) to (1.6).

FIGURE 2.

In fact, since we have

$$(2.3) {z(n-z)^{n-1}}' = n(1-z)(n-z)^{n-2}$$

and

(2.4)
$$\{z(n-z)^{n-1}\}'' = -n(n-1)(2-z)(n-z)^{n-3},$$

we obtain easily from (2.1) around $z = x_i$ (i = 0, 1)

$$n(1-x_i)(n-x_i)^{n-2}(z-x_i) + O((z-x_i)^2) = w^2$$
 ,

from which we get the relation

(2.5)
$$z - x_i = \frac{w^2}{n(1 - x_i)(n - x_i)^{n-2}} + O(w^4);$$

and we obtain around z = 1

$$b^2 - rac{n(n-1)^{n-2}}{2}(z-1)^2 + O((z-1)^3) = w^2$$
 ,

or

$$egin{aligned} rac{n(n-1)^{n-2}}{2}(z-1)^2 + O((z-1)^3) &= b^2 - w^2 \ &= \mp 2b(w \mp b) - (w \mp b)^2 \ , \end{aligned}$$

from which we obtain the relation:

(2.6)
$$w \mp b = \mp \frac{n(n-1)^{n-2}}{4b}(z-1)^2 + O((z-1)^3)$$
.

These relations implies the correspondence between γ_z and γ_w as is shown in Fig. 2.

Now, differentiating (2.1) we have $n(1-z)(n-z)^{n-2}dz = 2wdw$ and using this the integrand of (1.8) can be written as

$$\frac{(n-z)^{n-3/2}dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}}=\frac{(n-z)^{n-3/2}}{w^3}\cdot\frac{2wdw}{n(1-z)(n-z)^{n-2}},$$

hence we get the expression of I_n by

(2.7)
$$I_n(c) = \frac{2}{n} \int_r \frac{(n-z)^{1/2} dw}{(1-z) w^2} .$$

Next, we need the following lemmas with regard to the integrals (1.8) and (1.6).

LEMMA 1. If n > -1, then

$$\lim_{r\to\infty}\int_{|z|=r}\frac{(n-z)^{n-3/2}dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}}=0\;.$$

PROOF. Setting $z = re^{i\theta}$, for sufficiently large r there exists a positive constant K_1 such that

$$\Big|rac{(n-z)^{n-3/2}dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}}\Big| \leq K_1 r^{-(n+1)/2} |d heta| \;.$$

Hence we have

$$\left|\int_{|z|=r} \frac{(n-z)^{n-3/2} dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}}\right| \leq 2\pi K_1 r^{-(n+1)/2}$$
 ,

which implies this lemma.

REMARK 1. Let A_r be a set of subarcs on the circle |z| = r with a bounded angular measure from 0, then we have also

$$\lim_{r\to\infty}\int_{A_r}\frac{(n-z)^{n-3/2}dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}}=0\;.$$

LEMMA 2. If n > 1/2, then

$$\lim_{r\to 0} \int_{|z-n|=r} \frac{(n-z)^{n-3/2} dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}} = 0 \ .$$

PROOF. Setting $z = n + re^{i\theta}$, for sufficiently small r there exists a positive constant K_2 such that

$$\left|rac{(n-z)^{n-3/2}dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}}
ight| \leq K_2 c^{-3/2} r^{n-1/2} |d heta| \;.$$

Hence we have

$$\left|\int_{|z-n|=r}rac{(n-z)^{n-3/2}dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}}
ight|\leq 2\pi K_2 c^{-3/2}r^{n-1/2}$$
 ,

which implies this lemma.

REMARK 2. Let B_r be a set of subarcs on the circle |z - n| = rwith a bounded angular measure from n, then we have also

$$\lim_{r \to 0} \int_{B_r} rac{(n-z)^{n-3/2} dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}} = 0 \; .$$

Finally, let ζ be a solution of the equation (1.5) other than x_0 and x_1 . LEMMA 3.

$$\lim_{r\to 0} \int_{|z-\zeta|=r} \frac{dz}{z\sqrt{(n-z)\{z(n-z)^{n-1}-c\}}} = 0$$

PROOF. It is clear that $\zeta \neq 0$, 1 and *n* and ζ is simple by (2.3). Setting $z = \zeta + re^{i\theta}$, for sufficiently small *r* there exists a positive constant K_3 such that

$$\left|\frac{dz}{z\sqrt{(n-z)\{z(n-z)^{n-1}-c\}}}\right| \leq \frac{K_3 n^{-1/2} r^{1/2} |d\theta|}{|\zeta \sqrt{(1-\zeta)(n-\zeta)^{n-1}|}}$$

416

q.e.d.

q.e.d.

Hence we have

$$\left|\int_{|z-\zeta|=r} rac{dz}{z \sqrt{(n-z) \{z(n-z)^{n-1}-c\}}}
ight| \leq rac{2 \pi K_3 n^{-1/2} r^{1/2}}{|\zeta \sqrt{(1-\zeta)(n-\zeta)^{n-1}|}} \,,$$

which imply this lemma.

REMARK 3. Let C_r be a set of subarcs on the circle $|z - \zeta| = r$ with a bounded angular measure from ζ , then we have also

$$\lim_{r\to 0} \int_{|z-\zeta|=r} \frac{dz}{z\sqrt{(n-z)\{z(n-z)^{n-1}-c\}}} = 0.$$

3. Changes of the curve of integration. In order to find a suitable change of the curve γ of integration on the Riemann surface $\mathscr{F}_n(c)$, we shall investigate the correspondence between z and w on this surface.

By the argument in §2, we see that the singular points on $\mathscr{F}_n(c) \subset C^2$ are

(i) $(x_0, 0)$, $(x_1, 0)$ and $(\zeta, 0)$, where ζ are the solutions of the equation (1.5) other than x_0 and x_1 ;

(ii) (1, b) and (1, -b);

(iii) $(n, i\sqrt{c})$ and $(n, -i\sqrt{c})$, if n > 2.

The reasons of singularity are that $w = \sqrt{z(n-z)^{n-1}-c}$ vanishes at $z = x_0$, x_1 and ζ , and $\{z(n-z)^{n-1}-c\}'$ vanishes at z = 1 and n (when n > 2).

(2.5) and (2.6) show the state of $\mathscr{F}_{n}(c)$ around the points $(x_{0}, 0)$, $(x_{1}, 0)$, (1, b) and (1, -b).

In the following, we suppose $n \ge 2$ and investigate the state of $\mathscr{F}_n(c)$ around the points $(n, i\sqrt{c})$ and $(n, -i\sqrt{c})$. Setting

$$z=n+re^{i heta}~(r>0)~~{
m and}~~w=\pm i\sqrt[r]{c}~+te^{iarphi}~(t>0)$$

and substituting these into (2.1), we have

$$(n + r e^{i heta}) \{ r e^{i (heta + m \pi)} \}^{n-1} - c = - c \pm 2 i \sqrt{c} t e^{i arphi} + t^2 e^{2 i arphi}$$
 ,

where m is an odd integer, hence

$$nr^{n-1}e^{i(n-1)(\theta+m\pi)} + r^n e^{i\{n\theta+(n-1)m\pi\}} = 2\sqrt{c}te^{i(\varphi\pm\pi/2)} + t^2e^{2i\varphi}$$

which implies

(3.1)
$$t = \frac{n}{2\sqrt{c}}r^{n-1} + O(r^n)$$

and

$$\varphi = (n-1)(\theta + m\pi) \mp \frac{\pi}{2} + O(r)$$
.

q.e.d.

From the above relation between the arguments θ and φ , we get especially for $\theta = \pi$

$$arphi = (n-1)(m+1)\pi \mp rac{\pi}{2} + O(r)$$
.

Considering the correspondence between γ_z and γ_w as is shown in Fig. 2, we may put m = -1 for our purpose. Therefore we have the relations

(3.2)
$$\varphi = (n-1)(\theta - \pi) - \frac{\pi}{2} + O(r) \text{ around } (n, i\sqrt{c})$$

and

(3.3)
$$\varphi = (n-1)(\theta - \pi) + \frac{\pi}{2} + O(r) \text{ around } (n, -i\sqrt{c}).$$

Now, for sufficiently small r > 0 we can choose two angles $\theta_1 = \theta_1(r)$ and $\theta_2 = \theta_2(r)$ around $(n, i\sqrt{c})$ such that

(i) $\theta_1 < \pi$ and the value φ_1 of φ in (3.2) for $\theta = \theta_1$ is $-3\pi/2$ and

(ii) $\theta_2 > \pi$ and the value φ_2 of φ in (3.2) for $\theta = \theta_2$ is $\pi/2$. Since we have for $\theta = \pi$ the equality $\varphi = -\pi/2$, we may put

(3.4)
$$\pi - \theta_1 = \frac{\pi}{n-1} + O(r)$$

and

(3.5)
$$\theta_2 - \pi = \frac{\pi}{n-1} + O(r)$$
.

If $n_{1}^{2} > 2$, we may consider for sufficiently small r as

 $(3.6) 0 < \theta_1 < \pi ext{ and } \pi < \theta_2 < 2\pi ext{ .}$

FIGURE 3.

Using the above argument, we shall firstly deform the original curve γ in the integral (1.8) to a curve γ_1 on $\mathscr{F}_n(c)$ as is shown in Fig. 4_i , i = 1, 2, without through the singular points described in this section.

FIGURE 4₁.

FIGURE 4_2 .

Now, we consider the point

$$w = i\sqrt{c+y}$$
 (y>0)

in the w-plane. If y is sufficiently small, then we can choose uniquely the points $\sigma_1(y) = n + r_1 e^{i\theta_1}$ and $\sigma_2(y) = n + r_2 e^{i\theta_2}$ around z = n in the zplane such that

 $(\sigma_1(y), i\sqrt{c+y}), (\sigma_2(y), i\sqrt{c+y}) \in \mathscr{F}_n(c) \text{ and } \theta_1 = \theta_1(r_1), \theta_2 = \theta_2(r_2).$ Since we have from (2.3)

FIGURE 5₁.

 $n(1-z)(n-z)^{n-2}rac{dz}{dw}=2w$

and so for $w = i\sqrt{c+y}$ (y > 0) we have $dz/dw \neq 0$. Therefore, if we vary y in the interval $0 < y < \infty$, then we obtain two curves $\sigma_1(y)$ and

 $\sigma_2(y)$ starting from the point z = n and diverging to the infinity.

Then, we shall deform the curve γ_1 to a curve γ_2 on $\mathscr{F}_n(c)$ as is shown in Fig. 5_i , i = 1, 2, without through the singular points.

Finally, we take sufficiently large positive numbers y_1 , y_2 and p such that

$$|\sigma_{\scriptscriptstyle 1}(y_{\scriptscriptstyle 1})| = |\sigma_{\scriptscriptstyle 2}(y_{\scriptscriptstyle 2})| = p > \sup\left\{|\zeta|
ight\}$$

where ζ are the solutions of the equation (1.5). This choice of y_1 and y_2 is assured by means of the above consideration about $\mathscr{F}_n(c)$. Then, we deform the curve γ_2 to a curve γ_3 on $\mathscr{F}_n(c)$ as is shown in Fig. 6.

In this deformation from γ_2 to γ_3 , we admitted that the intermediate piecewise smooth curve passes through the singular points $(\zeta, 0) \in \mathscr{F}_n(c)$, where ζ are solutions of (1.5).

LEMMA 4.

$$T(c)=-\ \pi-rac{\sqrt{nc}}{2}\int_{r_3}rac{dz}{z\sqrt{(n-z)\{z(n-z)^{n-1}-c\}}}$$

PROOF. By the method of the construction of the curves γ_1 and γ_2 we get easily for sufficiently small r>0

$$\int_{r_1} \frac{dz}{z\sqrt{(n-z)\{z(n-z)^{n-1}-c\}}} = \int_{r} \frac{dz}{z\sqrt{(n-z)\{z(n-z)^{n-1}-c\}}} + \oint_{|z|=r} \frac{dz}{z\sqrt{(n-z)\{z(n-z)^{n-1}-c\}}} \cdot$$

On the 2nd term of the right handside, z = 0 corresponds to $w = -i\sqrt{c}$ from the arguments in §1 and this section. Hence we obtain easily

$$\oint_{|z|=r}rac{dz}{z\sqrt{(n-z)\{z(n-z)^{n-1}-c\}}}=-rac{2\pi}{\sqrt{nc}}\;.$$

Furthermore, we have

$$\int_{r_1} \frac{dz}{z\sqrt{(n-z)\{z(n-z)^{n-1}-c\}}} = \int_{r_2} \frac{dz}{z\sqrt{(n-z)\{z(n-z)^{n-1}-c\}}}$$

and in the right hand side we can also replace γ_2 with γ_3 by virtue of Lemma 3. Hence we obtain the formula expressed in this lemma.

q.e.d.

LEMMA 5.

$$I_n(c) = \int_{\tau_3} rac{(n-z)^{n-3/2} dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}} = rac{2}{n} \int_{\tau_3} rac{(n-z)^{1/2} dw}{(1-z) w^2}$$

PROOF. By (1.6), (1.7) and Lemma 4, we obtain

$$egin{aligned} I_{s}(c) &= -4\,\sqrt{rac{c}{n}}T'(c) \ &= -4\,\sqrt{rac{c}{n}}rac{d}{dc}\Big\{-rac{\sqrt{nc}}{2}\int_{r_{3}}rac{dz}{z\sqrt{(n-z)\{z(n-z)^{n-1}-c\}}}\Big\}\,. \end{aligned}$$

By the analogous computation to that of (1.7), we obtain the formula expressed in this lemma. q.e.d.

4. Proof of $I_n(c) < 0$, when n > 2.

LEMMA 6. When n > 2, the curve $\sigma_1(y)$ (0 < y) lies in the upper half plane and the curve $\sigma_2(y)$ (0 < y) in the lower half plane of the real axis of the z-plane.

PROOF. For the real variable x, we have

(i) $x(n-x)^{n-1}-c \ge 0$ for $x_0 \le x \le x_1$;

- (ii) $-c \leq x(n-x)^{n-1} c < 0$ for $0 \leq x < x_0$ and $x_1 < x \leq n$;
- (iii) $x(n-x)^{n-1} c < -c$ for x < 0

and

(iv) $x(n-x)^{n-1} - c = e^{i(n-1)\pi}x(x-n)^{n-1} - c$ for n < x.

Now, for sufficiently small y > 0, the statement is true by (3.6). From the above property of the function $x(n-x)^{n-1} - c$, we see that if the curves $\sigma_1(y)$ or $\sigma_2(y)$ meet with the real axis of the z-plane, the coordinate x^* of the meeting point must be $x^* < 0$ or $n < x^*$.

If $x^* < 0$ and $\sigma_1(y^*) = x^*$, then the curve $\sigma_1(y)$ must lie on the real axis around y^* since $\{z(n-z)^{n-1}\}'_{z=x} \neq 0$ for x < 0, in another words, a small neighborhood of $z = x^*$ corresponds regularly to a small neighborhood of $w = -i\sqrt{c+y^*}$ through the Riemann surface $\mathscr{F}_n(c)$. Hence, continuing this process, we can take x^* sufficiently near 0, then we obtain a contradiction, because y^* becomes then sufficiently small. We shall obtain also a contradiction in case $\sigma_2(y^*) = x^*$.

Next, $n < x^*$, from (iv) of the above mentioned facts, it must be

$$e^{i(n-1)\pi} = -1 = e^{i\pi}$$
,

i.e. n = even. If n = even, then we have

$$x(n-x)^{n-1} - c = -\{c + x(x-n)^{n-1}\}$$
 for $n < x$

and

$$c + x(x-n)^{n-1} > c$$
.

By an analogous argument to the case $x^* < 0$, we can show that the both curves $\sigma_1(y)$ and $\sigma_2(y)$ can not meet with the real axis on the interval $n < x < \infty$. q.e.d.

PROPOSITION 1. When n > 2, we have $I_n(c) < 0$ for $0 < c < (n-1)^{n-1}$. PROOF. By Lemma 5, we have

$$I_n(c) = \int_{\tau_3} \frac{(n-z)^{n-3/2} dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}}$$

By means of Remark 1 on Lemma 1 and Remark 2 on Lemma 2, we obtain easily

$$egin{aligned} I_n(c) &= \int_{\sigma_1} rac{(n-z)^{n-3/2} dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}} - \int_{\sigma_2} rac{(n-z)^{n-3/2} dz}{\sqrt{\{z(n-z)^{n-1}-c\}^3}} \ &= rac{2}{n} igg\{\!\!\int_{\sigma_1} rac{(n-z)^{1/2} dw}{(1-z)w^2} - \int_{\sigma_2} rac{(n-z)^{1/2} dw}{(1-z)w^2} igg\} \,. \end{aligned}$$

Now, along the curves $\sigma_1(y)$ and $\sigma_2(y)$ we can set

$$z = \sigma_{j}(y) = n \, + \, r_{j}(y) e^{i heta_{j}(y)}$$
 , $\,\, j = 1, 2$,

and

$$(4.1) 0 < \theta_1(y) < \pi \quad \text{and} \quad \pi < \theta_2(y) < 2\pi$$

by Lemma 6. Since we may put $w = i\sqrt{c+y}$, we have for the curve $\sigma_1(y)$

$$(4.2) \quad \frac{(n-z)^{1/2}dw}{(1-z)w^2} = -\frac{i\sqrt{r_1}e^{i\theta_1/2}}{(n-1)+r_1e^{i\theta_1}} \cdot \frac{d(i\sqrt{c+y})}{-(c+y)} \\ = -\frac{\sqrt{r_1}e^{i\theta_1/2}\{(n-1)+r_1e^{-i\theta_1}\}}{2\{(n-1)^2+r_1^2+2(n-1)r_1^{\frac{p}{2}}\cos\theta_1\}} \cdot \frac{dy}{\sqrt{(c+y)^3}},$$

here we have used the expression

 $n-z=re^{i(heta+m\pi)}$, m=-1 ,

in the argument of the beginning of §3. Hence we obtain

$$(4.3) \quad \frac{(n-z)^{1/2}dw}{(1-z)w^2} = -\frac{\{(n-1)\sqrt{r_1} + \sqrt{r_1^3}\}\cos\theta_1/2}{2\{(n-1)^2 + r_1^2 + 2(n-1)r_1\cos\theta_1\}} \cdot \frac{dy}{\sqrt{(c+y)^3}} + \{\text{imag. part}\},$$

in which the real part of the right hand side < 0 by (4.1). Analogously, along the curve $\sigma_2(y)$ we have

$$\frac{(n-z)^{1/2}dw}{(1-z)w^2} = -\frac{\{(n-1)\sqrt{r_2} + \sqrt{r_2^3}\}\cos\theta_2/2}{2\{(n-1)^2 + r_2^2 + 2(n-1)r_2\cos\theta_2\}} \cdot \frac{dy}{\sqrt{(c+y)^3}} + \{\text{imag. part}\},$$

in which the real part of the right hand side > 0 by (4.1). Since $I_n(c)$ is real valued, we obtain

$$I_n(c) = rac{2}{n} \Big\{ \mathscr{R} \int_{\sigma_1} rac{(n-z)^{1/2} dw}{(1-z) w^2} - \mathscr{R} \int_{\sigma_2} rac{(n-z)^{1/2} dw}{(1-z) w^2} \Big\} < 0$$

by means of the above mentioned facts.

PROPOSITION 2. When n = 2, we have $I_2(c) < 0$ for 0 < c < 1.

PROOF. In this case, $\mathscr{F}_2(c)$ is given by $z(2-z) - c = w^2$ and its singular points are $(x_0, 0)$, $(x_1, 0)$, (1, b) and (1, -b) in all, where $b = \sqrt{1-c}$. We have

$$I_2(c) = \int_{ au} rac{(2-z)^{1/2} dz}{\sqrt{\{z(2-z)-c\}^3}} = \int_{ au} rac{(2-z)^{1/2} dw}{(1-z)w^2}$$

Since the equation (1.5) has the only real roots x_0 and x_1 , we obtain the equality as in case n > 2:

$$I_2(c) = \int_{\sigma_1} rac{(2-z)^{1/2} dz}{\sqrt{\{z(2-z)-c\}^3}} - \int_{\sigma_2} rac{(2-z)^{1/2} dz}{\sqrt{\{z(2-z)-c\}^3}} \; .$$

On the other hand, since the point $(2, i\sqrt{c})$ is regular on $\mathscr{F}_2(c)$ and for real x > 2 we have

$$x(2-x)-c=-\left\{ c+x(x-2)
ight\}$$
 , $x(x-2)>0$,

we obtain easily that

$$(4.4) \qquad \qquad \theta_{\scriptscriptstyle 1}(r) \equiv 0 \quad \text{and} \quad \theta_{\scriptscriptstyle 2}(r) = 2\pi \ \text{for} \ 0 < r \ .$$

Hence the both curves $\sigma_1(y)$ and $\sigma_2(y)$ (0 < y) coincides with the half line: 2 < x of the real axis, including their directions by y = x(x - 2).

Now, we shall compute the integrand of $I_2(c)$ along the curves $\sigma_1(y)$ and $\sigma_2(y)$. In this case, we can also use (4.2) and (4.3), then by means of (4.4) we obtain: (i) Along $\sigma_1(y)$

$$\frac{(2-z)^{1/2}dz}{\sqrt{\{z(2-z)-c\}^3}} = -\frac{\sqrt{r_1}}{2(1+r_1)} \cdot \frac{dy}{\sqrt{(c+y)^3}} = -\frac{\sqrt{x-2}}{2(x-1)} \cdot \frac{dy}{\sqrt{(c+y)^3}};$$

(ii) along $\sigma_2(y)$

$$rac{(2-z)^{1/2}dz}{\sqrt{\{z(2-z)-c\}^3}} = rac{\sqrt{r_2}}{2(1+r_2)} \cdot rac{dy}{\sqrt{(c+y)^3}} = rac{\sqrt{x-2}}{2(x-1)} \cdot rac{dy}{\sqrt{(c+y)^3}} \, .$$

Hence we obtain

$$I_2(c) = -\int_0^\infty rac{\sqrt[V]{x-2}}{(x-1)} \cdot rac{dy}{\sqrt[V]{(c+y)^3}} = - 2\int_2^\infty rac{\sqrt[V]{x-2}dx}{\sqrt{\{c+x(x-2)\}^3}} < 0 \; .$$

q.e.d.

424

q.e.d.

5. Proof of $I_n(c) < 0$, when 1 < n < 2. In this section, we shall prove indirectly the inequality $I_n(c) < 0$ for $0 < c < (n-1)^{n-1}$, when 1 < n < 2.

Replacing nx^2 and nC by x and C respectively, the period T given by (0.2) can be written as:

(5.1)
$$T_n(x_0):=\int_{x_0}^{x_1}\frac{dx}{\sqrt{x(n-x)-Cx^{1-\alpha}(n-x)^{\alpha}}},$$

where

(5.2)
$$C = x_0^{\alpha} (n - x_0)^{1-\alpha} = x_1^{\alpha} (n - x_1)^{1-\alpha}, \quad \alpha = 1/n$$

and

$$(5.3) 0 < x_{\scriptscriptstyle 0} < 1 < x_{\scriptscriptstyle 1} < n .$$

We shall denote anew the period given by (1.2) as

(5.4)
$$\Theta_n(c):=\sqrt{nc}\int_{x_0}^{x_1}\frac{dx}{x\sqrt{(n-x)\{x(n-x)^{n-1}-c\}}},$$

where

(5.5)
$$c = C^n = x_0(n - x_0)^{n-1}$$
.

As is stated in $\S1$, we have the equality [6]

$$T_n(x_0) = \Theta_n(c)$$
.

The following was proved in [9].

LEMMA 7. $T_n(x_0) = T_m(y_0)$, where m = n/(n-1), $y_0 = m - (m-1)x_1$. PROPOSITION 3. When 1 < n < 2, we have $I_n(c) < 0$ for $0 < c < (n-1)^{n-1}$.

PROOF. By the above change of notation and (1.7), (1.8) and Lemma 7, we obtain

$$egin{aligned} I_n(c) &= - \; 4 \; \sqrt{rac{c}{n}} rac{d}{dc} \Theta_n(c) = - \; 4 \; \sqrt{rac{c}{n}} rac{d}{dc} T_n(x_0) = - \; 4 \; \sqrt{rac{c}{n}} rac{d}{dc} T_m(y_0) \ &= - \; 4 \; \sqrt{rac{c}{n}} rac{d}{dc} \Theta_m(h) \; , \end{aligned}$$

where $h = y_0(m - y_0)^{m-1}$ by (5.5) replaced n, x_0 by m, y_0 . Hence, we have

(5.6)
$$I_n(c) = -4 \sqrt{\frac{c}{n} \cdot \frac{dh}{dc}} \cdot \frac{d}{dh} \Theta_m(h)$$

Since 1 < n < 2, we see easily that 2 < m. Hence, by Proposition 1 and

(1.7) we have

$$(5.7) \qquad \qquad \frac{d}{dh}\Theta_m(h) > 0 \; .$$

On the other hand, from the equalities:

$$c = x_{\scriptscriptstyle 0}(n-x_{\scriptscriptstyle 0})^{n-1} = x_{\scriptscriptstyle 1}(n-x_{\scriptscriptstyle 1})^{n-1}$$
 , $y_{\scriptscriptstyle 0} = m-(m-1)x_{\scriptscriptstyle 1}$,

we get

$$egin{aligned} rac{dh}{dc} &= rac{dh}{dy_{\scriptscriptstyle 0}} \cdot rac{dy_{\scriptscriptstyle 0}}{dx_{\scriptscriptstyle 1}} \cdot rac{dx_{\scriptscriptstyle 1}}{dc} = - \ (m-1) rac{dh}{dy_{\scriptscriptstyle 0}} \Big/ rac{dc}{dx_{\scriptscriptstyle 1}} \ &= -rac{(m-1)m(1-y_{\scriptscriptstyle 0})(m-y_{\scriptscriptstyle 0})^{m-2}}{n(1-x_{\scriptscriptstyle 1})(n-x_{\scriptscriptstyle 1})^{n-2}} \,, \end{aligned}$$

hence by $1 < x_{\scriptscriptstyle 1} < n$ and $0 < y_{\scriptscriptstyle 0} < 1$ we obtain (5.8) dh/dc > 0 .

Thus (5.6), (5.7) and (5.8) imply $I_n(c) < 0$. q.e.d.

Finally, from (1.7), (1.8) and Propositions 1, 2 and 3, we obtain our main theorem.

THEOREM. For any real constant n > 1, the period T of the nonlinear differential equation (E) given by

$$T=2{\int_{a_0}^{a_1}}{\left\{1-x^2-C{\left(rac{1}{x^2}-1
ight)^{{}^{1/n}}}
ight\}^{-{}^{-1/2}}}dx$$
 ,

where $C = (a_0^2)^{1/n} (1 - a_0^2)^{1-1/n} = (a_1^2)^{1/n} (1 - a_1^2)^{1-1/n}$ ($0 < a_0 < \sqrt{1/n} < a_1 < 1$), is increasing as function of the integral constant C ($0 < C < A = (1/n)^{1/n} (1 - 1/n)^{1-1/n}$).

References

- S. S. CHERN, M. DO CARMO AND S. KOBAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, 60-75.
- [2] S. FURUYA, On periods of periodic solutions of a certain nonlinear differential equation, Japan-United States Seminar on Ordinary Differential and Functional Equations, Lecture Notes in Mathematics, Springer-Verlag, 243 (1971), 320-323.
- [3] WU-YI HSIANG AND H. B. LAWSON, JR., Minimal submanifolds of low cohomogeneity, J. Differ. Geometry, 5 (1970), 1-38.
- [4] T. OTSUKI, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math., 92 (1970), 145-173.
- [5] T. OTSUKI, On integral inequalities related with a certain nonlinear differential equation, Proc. Japan Acad., 48 (1972), 9-12.
- [6] T. OTSUKI, On a 2-dimensional Riemannian manifold, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 401-414.

- [7] T. OTSUKI, On a family of Riemannian manifolds defined on an m-disk, Math. J. Okayama Univ., 16 (1973), 85-97.
- [8] T. OTSUKI, On a bound for periods of solutions of a certain nonlinear differential equation (I), J. Math. Soc. Japan, 26 (1974), 206-233.
- [9] T. OTSUKI, On a bound for periods of solutions of a certain nonlinear differential equation (II), Funkcialaj Ekvacioj, 17 (1974), 193-205.
- [10] M. MAEDA AND T. OTSUKI, Models of the Riemannian manifolds O_n^2 in the Lorentzian 4-space, J. Differ. Geometry, 9 (1974), 97-108.
- [11] M. URABE, Computations of periods of a certain nonlinear autonomous oscilations, Study of algorithms of numerical computations, Sûrikaiseki Kenkyûsho Kôkyû-roku, 149 (1972), 111-129 (Japanese).

DEPARTMENT OF MATHEMATICS Tokyo Institute of Technology Tokyo 152, Japan