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1. Introduction. Assuming the uniqueness of solutions for the initial
value problem, several authors discussed that the existence of a bounded
solution with some stability property implies the existence of almost
periodic solutions (cf. [4], [8], [10], [11], [12]).

Recently, Coppel [3], Yoshizawa [13, 14, 15] and Kato [7] have shown
the existence of an almost periodic solution for ordinary differential
equations and for functional differential equations without the assumption
that the solution is unique. All of them required the existence of a
bounded solution which is uniformly stable. Clearly, uniform stability
implies the uniqueness of the bounded solution for initial value problem.

In this paper, more generally, we shall discuss functional differential
equations with infinite retardation and the existence theorem for almost
periodic solutions by assuming the existence of a bounded solution with
some stability property which does not imply the uniqueness for initial
value problem.

2. Hale's space and some lemmas. First, we shall give a class of
Banach spaces considered by Hale [5]. Let x = {x\ x2, ••-,£") be any
vector in En and let \\x\\Rn = m a x l g ^ n \xi| be norm of x. Let B =
B((—°°> 0]> Rn) be a Banach space of functions mapping (—<*>, 0] into Rn

with norm || |U F ° r a n y Φ m B a n d any σ in [0, oo), let φ° be the
restriction of φ to the interval (-oo, — σ\. This is a function mapping
(— oo, — a] into Rn. We shall denote by B° the space of such functions φσ.
For any ηeBσ, we define the semi-norm | |^ | | B α of ΎJ by

Then we can regard the space Bσ as a Banach space with norm || \\Bσ.
If x is a function defined on (— ^ , a), a > 0, then for each t in [0, a) we
define the function xt by the relation xt(s) = x(t + s), — oo < s <̂  0. For
numbers a and τ, a > τ, we denote by Aτ

a the class of function x mapping
(— oo 9 a) into Rn such that x is a continuous function on [τ, a) and xτ e B.
The space B is assumed to have the following properties:
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( I ) If x is in Aτ

a, then xt is in B for all t in [τ, a) and xt is a con-
tinuous function of t, where a and τ are constants such that τ < a ^ oo.

( I I ) All bounded continuous functions mapping (— oo , 0] into 22* are
in £ .

(III) If a sequence {̂ }, φk e 5, is uniformly bounded on (— oo , 0] with
respect to norm || ||Λn and converges to φ uniformly on any compact
subset of (-co, 0], then φsB and \\φk — φ\\B —*0 as k—> oo.

(IV) There are continuous, increasing and nonnegative functions
δ(r), c(r) defined on [0, oo), 6(0) = c(0) = 0, such that

for any φ in B and any σ }> 0.
( V ) If tf is a nonnegative number and φ is an element in B, then

Tσ0 defined by Taφ(s) = φ(s + σ), s e(- oo9 —σ], i s an element in Bσ and
I I T ^ I U . ^ 0 as <τ~>oo.

(VI) \\Φ(0)\\Rn ̂  MMB for Mx > 0.
(VII) 5 is separable.
(VIII) If φ and ψ are in B and \\Φ{θ)\\Rn ^ || tWIU- for all 0 e ( - <x>, 0],

then | | 2 > | L . ^ | | Γ . ^ | | B . for all s ^ 0.

REMARK 1. We can easily show that the class of phase spaces con-
sidered by Coleman and Mizel [2] has the properties (I)-(VIΠ).

For an element ΎJ in B and for positive numbers N and L, define

S*(>7, N, L) by

S*(η, N, L) = {φe Ao°°; φQ = η, \\φ(t)\\Bn ^ N for all t ^ 0 and

110(0) - φ{θ')\\Rn ^ L\θ - θ'\ for any θ, θ' ^ 0} .

L E M M A 1. L e i {£m}, tm —> oo a s m —> oo, a^cί {φm}, φm e S*(^, iSΓ, L ) , 6e

sequences. Then {φm(t + £m)} feas a subsequence {φmk(t + £Wfc)} ŝ 6c/̂ , ίftaί
φmk(t + tm]e) converges to a function y(t) uniformly on any compact interval
in R1. Furthermore, \\Φmk

tm +t — 1/JU— Ό a>s fc^^00 uniformly on compact
subset of R1.

PROOF. Take any compact interval Kn = [ — n, n]. We can assume
that n < tγ and tm < tm+1, for m = 1, 2, . Since {φm(t + ίm), ί e Kn) is
uniformly bounded and equicontinuous, there exists a subsequence of
{φm(t + ίTO)} which converges uniformly on Kn by Ascoli-Arzela's Theorem.
Letting n = 1, 2, and using the familiar diagonalization procedure, we
can get a subsequence {φmk(t + ίmfc)} of {φm(t + tm)} that will be uniformly
convergent to a function # on any compact subset of R\ The limit
function y is in B by (II). Define φm^{θ) and 3?m*'*(0) by
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Φ " ~~ 1^(0) for - oo < θ < ~{t + tmk) ,

and

-•^ = ί° f o r - ( * + *«*) ̂  * ̂  ° >
(Ttmk+tΎ]{θ) - η(0) for - oo < Θ < - (t + ίmfc) ,

respectively. Clearly, φmkΛ and )7WA;f are in B by (I) and (II). Hypothesis
(IV) implies

sup- yt\\B + b( su
\-lt + tmk

Hence we have

( 1 ) \\φmkt+tmk — VtWϋ ^ \\φmk>t -

where < (̂0)> is the constant function β e B such that β(s) = 7){ϋ) for all
se(— oo, 0], Since φmkyt(θ)-^y(θ) uniformly on any compact set, the right
hand side of (1) tends to zero a s m ^ o o by (III) and (V). This proves
Lemma 1.

LEMMA 2. The set

S(y, N, L) = {φt; t^O,φe S*(η, N, L)}

is relatively compact in B.

PROOF. For any sequence {ψm}, ψm e S(η, N, L), there are sequences
{φm}, φm e S*(η, N, L) and {tj, tm ^ 0, such that ψm = φm

tm, where we can
assume that tm —> oo or tm —* τ for some constant τ ^ 0, taking subseque-
nces, if necessary. When ίm—• oo as m—> oo, the sequence {ψm} contains
a convergent subsequence by Lemma 1, and hence we consider the case
where tm —+ τ as m —> oo.

We can assume that tm ^ τ1 for all m and for some positive constant
ŵ τi > τ Since {φm(t)} is uniformly bounded and equicontinuous on [0, oo),

there exists a subsequence of {φm(t)} which converges to a function y*
uniformly on any compact set of [0, oo). We shall denote it by {φm(t)}
again. The limit function y* is continuous and bounded on [0, oo). Define
V(t) by

[y*(t) for ί e ( 0 , oo),

for £ e ( - o o , 0 ] .
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Then j/eΛ" and y0 = η. We have

110" , - VΛ\B ^ \\φmtn - VtJΪB + \\Vtm - VrWa

^ b( sup ||^-(β + ί j - y(s +

+c(\\(Φm

tJ« - i / S . | | s «) + \\ytm - yτ\\B

^ b( sup ||0-(β + τt) - y(s + τ,)^)

+ c(||T(j? - Γ.J7IU'.) + Hi/,. - VrlU .

Hence we have

(2) H*-,. - 2/r||£ ^ &( sup |^"(e + τt) - 2/(s + Γji

Since ^m(ί) —>y(t) a s m ^ o o uniformly on [0, τλ] and 1/ e AS0, the right
hand side of (2) tends to zero as m —> °o.

Thus we can see that any sequence {ψw}, i/rw e S(>7, N, L), contains a
convergent subsequence, and hence S(η, N, L) is relatively compact in B.

3. Asymptotically almost periodic function and definitions of sta-
bilities and separations. Let f(t) be a continuous function defined on
α ^ t < oo. f(t) is said to be asymptotically almost periodic if it is a sum
of a continuous almost periodic function p(t) and a continuous function
q(t) defined on α ^t < co which tends to zero as t—> oo , that is

It is well known that f(t) is asymptotic almost periodic if and only if
for any sequence {rj such that τk —> oo as k —> °o there exists a subsequence
{τfci} for which f(t + rfci) converges uniformly on α ^ t < oo.

Consider an almost periodic system

(4) *(t)

where F(t, φ) is continuous on R1 x Bm BM = {φ e B; \\φ\\B ̂  M}, and almost
periodic in t uniformly for φ e BM. We assume that there exists an L > 0
such that \\F(t, φ)\\Rn<^L on R^XBM. A function f(£) is said to be a solution
of (4) defined on [σ, σ + r), where σ e R1 and τ > 0, if ζ e Aσ

σ+% ζt e BM for
t e [σ, σ + τ) and £(ί) satisfies (4) for £ e [σ, σ + τ). In particular, if ξ(t)
is continuous on R1 and ff e S^ for all t e Rx and if ξ(t) satisfies (4) for
teR1, we say ζ(t) is a solution of (4) defined on JS1.

Let ξ(t) be a solution of (4) defined on I, I — [0, co), which satisfies
\\ξt\\B£β,0<β<Mf for all t e I. Then, clearly, ξ e S*(ξ09 Mβ, L). Let
H(ξ), H(F) and ίί(f, F) be the hulls of £(t), F(ί, ^) and (£(ί),
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respectively. For the definitions of hulls, see [7]. Let H+(ζ), H+(F) and
H+(ξ, F) be the subsets of H(ξ), H(F) and H(ξ, F) whose elements are
x(t), G(t, φ) and (x(t), G(t, φ)) such that there exists a sequence {tk}, tk~+oo
as k —> oo such that ί(£ + tk) —> #(£) as fc —» oo uniformly on any compact
interval in R1 and F(t + £*., φ) —> (?(£, ̂ ) as k—>oo uniformly on R1 x
S(ζQ, Mβ, L), respectively, where S(ξ0, Mβ, L) is the closure of S{ξ0, Mβ, L).
We shall define HG(ξ) and Hϊ(ξ) by

HG(ξ) = {x(t); (x(t), G(t, φ)) e H(ζ, F)}

and

H+

G(ζ) - {x(t); (x(t), G(t, φ)) e iT(f, F)} ,

respectively.

The following lemma is one of the conclusions of Theorem 1 in [6].

LEMMA 3. For any x e HG(ξ), x(t) is a solution of

( 5 ) x{t) = G(t, xt)

defined on I and G(t, φ) is almost periodic in t uniformly for φ e BM.
In particular, x(t), x(t) e Ho(ξ), is a solution of (5) defined on R1.

REMARK 2. We can easily show that if F{t, φ) is periodic in t, then
Lemma 3 holds without separability of the space B.

THEOREM 1. // the solution ζ(t) of (4) is asymptotically almost
periodic, then for any G e H+(F), there exists a sequence {τk} such that
ζ(t + τk) tends to an almost periodic solution of the system (5) uniformly
on R1 as k—+ oo.

PROOF. Since ξ(t) is asymptotically almost periodic, it has the decom-
position ζ(t) = p(t) + q(t), where p(t) is almost periodic and q(t) —> 0 as
ί—>oo. Since G eH+(F), there exist a sequence {τk} and a function p*(t)
such that τk —> oo as k —> oo and F(t + τk, φ) -+ G(t, φ) uniformly on Rι x

0, Mβ, L) as k —> oo and that p(t + τfc) —> p*(t) as k —> oo uniformly on
R1. Then p*(t) is almost periodic and (j>*(ί), G(t, φ)) e H+(ξ, F). By Lemma
3, p*(t) is an almost periodic solution of (5).

Now we shall give definitions of stabilities and separations.

DEFINITION 1. The solution ξ(t) is uniformly stable with respect to
H$(ξ) (in short, u.s. H$(ζ)), if for any ε > 0 there exists a δ(ε) > 0
such that II& — xt\\B < ε for all t :> tQ, whenever toel, xeHi(ξ) and

l l f t o - a * II* <*(*)•

DEFINITION 2. The solution ξ(t) is quasi uniformly asymptotically
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stable with respect to Hi(ζ) (in short, q.u.a.s. H$(ξ))> if there exists a
δ0 > 0 and for any ε > 0 there exists a Γ(ε) > 0 such that \\ζt — xt\\B < ε
for £ ̂  ί0 + Γ(ε), whenever xeH$(ξ) and | |£ ί o — α t o | |B < δ0 for some
ί o e J .

DEFINITION 3. The solution ξ(t) is uniformly asymptotically stable
with respect to Ht(ξ) (in short, u.a.s. i?ΐ(f)), if it is u.s. Hi(ξ) and
q.u.a.s. Ht(ξ).

DEFINITION 4. The solution ξ(t) is uniformly asymptotically stable
in the large with respect to H$(ζ) (in short, u.a.s.l. H$(ξ))> if it is
u.s. H$(ξ) and for any a > 0 and ε > 0, there exists a T(a, ε) > 0 such
that ||£, - α, IU < s for ί ^ ί0 + T(α, ε), whenever tQeI,xe H$(ξ) and

l l A o - ^ o l ^ < α

DEFINITION 5. The solution ξ(t) is stable under disturbances from
H+(ζ, F) (in short, s.d. H+{ξy F)), if for any ε > 0, there exists a δ(ε) > 0
such that 11 ξt+r - xt \\B < ε ΐor t ̂  0, whenever (a?, G) e iP(f, JP), 11 ξv - a?0|\B <

δ(ε) and ^(F% G) = sup {|| F(ί + r, ̂ ) - G(ί, ̂ ) | | Λ , teR\φe S(ξo,Mβ,L)}<δ(ε)
for some τ ^ 0.

DEFINITION 6. The solutions in ίf+(f) are quasi uniformly asympto-
tically stable with respect to H+(ξ) with a common pair (<50, Γ( )) (in
short, q.u.a.s. ί ί + (ί) (δ0, T( ))), if for any ε > 0, any toeRι and GeH+(F),
\\%t0 - VtoWβ < ô implies \\xt - yt\\B < ε for t ^ ί0 + Γ(ε), whenever

DEFINITION 7. The solutions in if+(f) are uniformly asymptotical-
ly stable with respect to H+(ξ) with a common triple (δ0, δ( ), Γ( ))
(in short, u.a.s. H+(ζ) (δQ, δ( ), Γ( ))), if the solutions in iϊ+(f) are
q.u.a.s. H+(ζ)-(δQ, Γ( )) and for any ε > 0, any ί0 ^ 0 and GeH+(F),

\\%t0 — Vto\\s < δ(ε) implies \\xt — yt\\B < ε for all t ^ έ0> whenever
x(t\y{t)eHi{ξ).

DEFINITION 8. The solutions in H+(ζ) are uniformly asymptotically
stable with a common triple (<50, δ( ), Γ( )) (in short, u.a.s. (δOf δ( ), T(-))),
if for any ε > 0, any tQ ̂  0 and any GeH+(F), \\xtQ — ytQ\\B < δ(ε) implies
IIxt — VA\B < ε f o r all < ̂  *o and ||a?to — ytQ\\B < δQ implies H^ — yt\\B < ε
for t ^ tQ + Γ(ε), whenever ?/(£) is a solution of (5) and x(t) e H£(ξ).

REMARK 3. The definitions of stabilities with respect to hull are
weaker definitions than the usual ones, respectively, because ζ(t) is not
necessarily unique for initial value problem. For example, the solution
x(t) = 0 of x(t) = x1/3 is not uniformly stable for t ;> 0, but u.a.s.
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H+

xllMt) = 0), s.d. H+(x(t) = 0, x1/3) and u.a.s. H+(x(t) = 0)-(δ0, δ( ), Γ(-)).

DEFINITION 9. H+(ζ, F) is said to satisfy a separation condition if
for any G e H+(F), H£(ξ) is a finite set and if φ and ψ,φ,ψe iϊ£(£), are
distinct solutions of (5), then there exists a λ(G, φ, ψ) > 0 such that
\\φt - ψt\\B ^ λ(G, φ, ψ) for all teR1.

If the solution ζ(t) is defined on i?1, then the following separation
condition is stronger than the separation condition given in Defini-
tion 9.

DEFINITION 10. H{ξ, F) is said to satisfy a separation condition if
for any G e H(F), HG(ζ) is a finite set and if φ and ψ, φ, ψ e HG(ξ), are
distinct solutions of (5) defined on R\ then there exists a λ(G, φ, ψ) > 0
such that \\φt - ψt\\B ^ λ(G, 0, α/r) for all teR1.

REMARK 4. The separation conditions on H+(ξ, F) and H{ζ, F) are
weaker conditions than Amerio's condition [1].

4. Periodic system. In this section, we assume that the space B
has the properties (I)~(VΊ) and (VIII). Consider the system

(6) ±{t) = F{t, x t ) ,

where F(t, φ) is continuous on JB1 X BM and F(t, φ) = F(t + ω, φ), ω > 0.
We assume that there exists an L > 0 such that \\F(t, φ)\\Rn ̂  L on
R1 x BM. Moreover, we assume that the system (6) has a solution ζ(t)
defined on / such that \\ξt\\B ^ β, 0 < β < M, for t ^ 0.

THEOREM 2. // the solution ξ(t) is u.s. Hi(ξ), then ξ(t) is an asym-
ptotically almost periodic solution of (6). Consequently, the system (6)
has an almost periodic solution.

PROOF. Let {rj be a sequence such that τk ;> ω and τA —• oo as k —>
oo. For each τk, there exists a positive integer Nk such that Nkω ^
τk < (Nk + l)ω. If we set τk = Nkω + σk, then 0 ^ (7fc < ω. There exists
a σ, 0 ^ σ ^ α>, and a function )y(ί) such that σfc —* σ as A: —> oo, ξ(t + r̂ .)—>
Ύ]{t) as fc —> co uniformly on any compact interval in R1 and F(t + τfc, ^) —>
F(t + σ, ^) as k —> co uniformly on iZ1 x S(ίo> Mβ, L), taking a subsequence,
if necessarily. Therefore for a given ε > 0, there is a positive integer
no(ε) such that if k ^ wo(

ε)> then

( 7 ) l l ^ + ω - ^ I U < δ ( ε ) / 2

by Lemma 1, where <?(•) is the one for u.s. if£(f) of f(ί). Since 11 7̂(*i) —
V(t2)\\Bn ̂  L\t, - t2\ for tlft2eR' and ||^(ί)IU» ^ ^ i/ 3 for all ίe i? 1 , we
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have for any v ^ 0

ϊlftx - VHWB ^

by (IV) and (VIII), and hence rjt is uniformly continuous by (V). Thus
we may assume that for k ^ nQ(ε) and for all t e R1

( 8 ) \\Vt ~ Vok-o+t\\B < δ(e)/2 .

By Lemma 3, rj{t) is a solution of x(t) = F(έ + σ, a?t) defined on R\ and
hence ^fc(ί) = r](t — ̂ α ) - σ) is a solution of (6) defined on jβ1. Clearly,
we have ηk(t) e H$(ξ). Since

llfr^+ω V τk+ω\\B = \ I ζ τk+ω 7]ω + σ}c-σ \ \β

^ llfr4+<u - vΛs + 11% - %+.»-.IU -

we have by (7) and (8)

if k Ξs ii.o(e), which implies

( 9 ) | | f r 4 + t - ^ r 4 + , I U < β f

because f(ί) is u.s. H%(ξ). Furthermore, since we have

\\ξTk+t - ίΓw+i | |B ^ ||fΓt+t - y\k+t\\B + \\v\k+t - VMrm+t\\B

+ \\η\m+t - ξτm+t\\B

= \\ζτk+t "~ V τk+t\\B + ll^σfc-σ + ί ~~ Vσm-σ+t\\B

+ \\Vmrm+t ~ ξrm + t\\B

^ ||fΓJb+t - v\k+t\\B + ||^_σ + t - %IU
+ lift - ft,w-,+t|U + Il7mrw+* - frw+l|U r

(8) and (9) imply

(10) | | f r f c + ί - ί Γ m + ί | U < 3 ε

for all t ^ ω and for m ^ i; ^ no(ε). It follows from (10) and (VI) that

\\ξ(?k + t) - ί(̂ m + t)\\Rn < SM,e for all t ^ ω and for m^k> no(e) .

Thus we see that for any sequence {τk} such that τk —> oo as A; —>• °o, there
exists a subsequence {τk.} for which f(έ + τkj) converges uniformly on
[ω, oo) as j —• oo. This shows that f(£) is asymptotically almost periodic.
The existence of an almost periodic solution follows immediately from
Theorem 1.
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The following example shows that the converse of Theorem 2 is not
true even for a periodic solution.

EXAMPLE. Consider the differential difference equation

(11) x(t) = x(t - 3ττ/2) .

This equation is the special case of the equation (6) (see [5]). Clearly,
ζ(t) = sin t is a bounded periodic solution of (11), that is, an asymptotically
almost periodic solution of (11). Set tn = (2n + l)π and η{t) = sin (t + TΓ),
then η(t) is a solution of (11), f(ί + tn) = η{b), |f(0) - η(0) \ = | sin 0 - sin π | =•
0 and \ζ(π/2) - η(π/2)\ = |sin;r/2 - sin3ττ/2| = 2, and hence ξ(t) is not
u.s. Hiit_3π/2)(ξ).

LEMMA 4. // ξ(t) is u.a.s. Hi(ξ), then any η{t\ η{t)eHi{ξ), is u.a.s.

PROOF. For any rj(t), η(t) e i ί ί ( ί ) , there exists a sequence {τj, τk —> oo
as k—>°°, such that ζ(t + τk) —>Ύ){t) as A; —> oo uniformly on any compact
interval in R1 and F(t + τfc, ^) —* G(t, φ) as Λ —> oo uniformly on R1 x

jS(f0, -MiiS, L). Set τfc = JVfcα) + σk, where 0 ̂  σfc < ω. Let {&,} be a sub-
sequence of {&} such that σkj —+σ as j —> oo. Then we have 0 ̂  σ ̂  α>
and G(ί, φ) = F(ί + σ, 0).

First, we shall see that η(t) is u.s. Hfσ(ξ). For any ε > 0, let <5(ε)
be the one for u.s. Hϊ>(ξ) of f(£), where we can assume that e < (M — β)/2.
Let ζ(ί) be in Hp(£) and ί o e JB1. Assume \\ηh - ζh\\B = r < <5(ε) and put
ξki(t) = f(t + τfcy). If i is sufficiently large, we have

and

||ff0+(7+^.ω - ξt0+σkj+Nkj«\\B = l l ί \ + σ - ^ . - f \ l U < («(e) - r)/2

by Lemma 1, and hence

ω\\B + \\ ζto+

\\ξ\ - J?»0IU + ll^o - Cί0IU

Since the solution ί(ί + σ + Nkjω) is u.s. Hϊ<,(ξ), we have

llίί+.+ΛΓî  - CίlU < s for all ί ^ ί 0 .

On the other hand, for an arbitrary 7 > 0, if j is sufficiently large,
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4 . I U ^ l i f t , - £ « . + .

11 ^7*0 ^ ^

jω \\B

by Lemma 1, and hence \\ηt — £*+,+**.» 11* < 7 for all t ^ t0. Thus we
have \\ηt — ζt\\B < s + 7 for all t :> t0. Since 7 is arbitrary, we have

H f t - C I U ^ e for all ί ^ ί0 , if \\ηH - ζh\\B < δ(e) .

This proves that η{t) is u.s. H£(ζ).
Next, we show that η{t) is u.a.s. i?J(f) Let ζ(ί) be in Hp(ξ) and

ίo^JK1. Assume that | |^ ί o — ζ ί o | | 5 = r < δOf where δ0 is the one for
u.a.s. Hi(ζ) of f(ί). Clearly f(ί + σ + i\Γfcj.ω) is u.a.s. Hp(ξ) with the
same δ0 as the one for ξ(t). We have

and

if i is sufficiently large, by using the same arguments as in the proof
of the first part in this lemma. Hence, for sufficiently large j ,

\ \ ξ t + σ + N k j » - ζt\\B < e f o r t ^ t o

and

llf*+σ+^i - % l l n < e for t^to

Thus

| | ^ « C , I U < 2 e for t ^ t0 + T(ε) ,

if \\ηtQ - Cto||B < *o This shows that i?(ί) is u.a.s. m(ξ).

COROLLARY 1. If the solution ζ(t) is u.s. Ht(ζ), then the system (6)
has an almost periodic solution which is u.s. iϊ£(ί).

PROOF. By Theorem 2, ξ(t) is asymptotically almost periodic, and
hence ξ(t) = p(t) + q(t), where p(t) is almost periodic and q(t)—»0 as ί—>
oo. Let τkj = kάω such that p(£ + τfcy) —> p*(ί) uniformly on i?1, where
kj is a positive integer. Then p*(t) is almost periodic and ζ(t + τkj) —•
ί?*(έ) as j —> oo uniformly on any compact interval in JS1. By Lemmas
3 and 4, p*(t) is an almost periodic solution of (6) which is u.s. Ht(ζ).

THEOREM 3. If the solution ξ(t) is u.a.s. Hiiξ), then the system (6)
has a periodic solution of period ma) for some integer m ^ 1.
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PROOF. There exist a sequence {kό}, where kό is a positive integer
and kj —> oo as j —> oo, and an η e H$(ζ) such that ζ(t + k3ω) —> 57(0 uni-
formly on any compact interval in R1 as j —• co, because F(£, 0) is periodic
of period ω. There are integers kp and fcp+1 such that \\ξkpω — VOWB < <>0

and ||£fcj+1« — %IU < <50 by Lemma 1, where δ0 is the one for u.a.s. Hi(ξ)
of ξ (t). Set m = kp+1 - kp, ζm(t) = ζ(t + mω) and ί?*p(t) = η(t - fcpω).
Clearly, ^ ( £ ) e ffJίί) and ίm(0 is the solution of (6). Thus we have

and

and hence

II£%.+*-?*II*-*0 as ί— -

and

11 £*,«+« - ^IU-^0 as ί ^ o o ,

Thus we have

(12) HΓt-felL —0 as t-+ - .

On the other hand, by Theorem 2, f(£) is asymptotically almost per-

iodic, and hence

(13) ξ(t) = p(ί) + q(t) ,

where p(ί) is almost periodic and q(t)~>0 as £—> 00. From (12) and (13),

it follows that

- ξ(t + mω) + g(t + mω)\\Rn

- q(t +

as t —> co. Therefore p(ί) = p(ί + mω) for all t e R\ because p(t) is almost
periodic. If we consider a sequence {kmω}, we have

ζ(t + kmω) = p(t) + g(t + kmω) ,

and hence p(t) e Hp(ξ). This shows that the system (6) has a periodic
solution p(£) of period mω, because p(t) also is a solution of (6) by
Lemma 3.

REMARK 5. In Theorem 3, if ζ(t) is u.a.s.1. Hi(ξ), we have ||fί+ω — & IU—>
0 as ί—> co, and hence, clearly p(t) = p(t + ω).

COROLLARY 2. // f(£) is u.a.s. Ht(ζ), then the system (6) has a per-
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iodic solution of period mω for some integer m Ξ> 1 which is u.a.s. ffp(f).

PROOF. By Theorem 3, the system (6) has a periodic solution p(t)

of period mω for integer m ^ l which is in Hi (ξ). And p(t) is u.a.s. iϊi(f)
by Lemma 4.

5. Almost periodic system. In this section, we assume that the
space B has the properties (I)~(VΠ). We shall discuss the existence of
an asymptotically almost periodic solution of an almost periodic system

(14) x(t) = F(t, xt) ,

where F(t, φ) is continuous on Rι x BM and almost periodic in t uniformly
for φ G BM. We assume that there exists an L > 0 such that \\F(t, φ)\\Rn ^
L on R1 x BM. Moreover, we assume that the system (14) has a bounded
solution ζ(t) defined on I such that \\ζt\\B ^ β, 0 < β < ikf, for t ^ 0.

THEOREM 4. // ίλβ solution ξ(t) is s.d. H+(ξ, F), then ζ(t) is an
asymptotically almost periodic solution* Consequently, (14) has an almost
periodic solution.

PROOF. Let {τk} be any sequence such that τk > 0 and τk —* oo as
k —> °o. Since -P(ί, ^) is almost periodic in £ uniformly for φ e 5^, we
may assume the existence of an (x(t), G{t, φ)) e H+(ζ, F) such that ζ{t + τk)—>

as & —> oo uniformly on any compact interval in R1 and F(t + τk, φ) —>

G(ί, ^) as k -> oo uniformly on i?1 x S(f0, -Miiβ, L). For any ε > 0 there
exists a /bo(ε) > 0 such that if k ^ &0(ε), then ]|fΓJfe — a?0HJB < ^( ε) and
|O(FΓS G) < δ(ε), where 5(ε) is the one for s.d. H+(ξ, F) of ξ(t), which
implies that

\\ξrk+t - XIWB < * f o r t ^ O ,

because xt e S(ξQ, Mβ, L) for all teR1 by Lemmas 1 and 2. Therefore
\\ξTk+t - ίrm+«IU < 2 ε for all ί ^ 0, if m ^ A; ̂  &0(ε). Thus we see that
ξ(t) is asymptotically almost periodic. The existence of an almost periodic
solution follows immediately from Theorem 1.

LEMMA 5. Let {x\t\ Gk(t, φ)}, (xk, Gk) e H+(ξ, F), and {sk}, sk e R\ be

any sequences. Then {xk(t + sk), Gk(t + sk, φ)} has a subsequence {xkj(t+skj),
Gkί{t + skp φ)} such that for some (y, G) e H+(ξ, F), xkί(t + skj) —> y(t) uni-
formly on any compact interval in R1 as j —•> oo and Gki{t + skp φ) —•
G(t, φ) uniformly on R1 x S(ζ0, ikίi/5, L) as j —• co.

PROOF. Put 2/fc(£) = ίcfc(ί + sk), then 2/fc(ί) is uniformly bounded and
equicontinuous on R\ and hence yk(t) has a subsequence which tends to
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a function y{t) uniformly on any compact interval in R1. Since H(F) is
compact (cf. see [7]), Gk(t + sk, φ) has a subsequence which tends to an
almost periodic function G(t, φ) uniformly on R1 x S(ξ0, Mβ, L). By
Lemma 3, y(t) is a solution of (5). Hence we have the conclusion if we
can show that y(t) is in H+(ζ).

For a positive integer m, let Km be a compact interval [ — m,m].
There exists an N(m) > 0 such that \\x\t + sk) - y{t)\\Bn < l/2m for te
Km> if & ̂  N(m). Since xN{m) e H+(ξ), there exists a sequence {τm}, τm ̂ >
m, such that \\ζ(t + τm) - xN{m)(t + sN{m))\\Rn < l/2m for ί e ί L m . Thus
llf(ί + *"J - i/(t)||Λn < 1/m for έ6ίΓm. This implies that y(t) is in iϊ+(f),
because τm —• oo as m —> co.

To make expressions simple, we shall use the following notations.
For a sequence {ak}, we shall denote it by a and βaa means that β is
a subsequence of a. For a = {ak} and β = {βk}, a + β will denote the
sequence {<xk + βk}. Moreover Lax will denote l iπu^ x(t + cck), where
a = {ak} and the limit exists for each t.

LEMMA 6. Suppose that H+(ξ, F) satisfies the separation condition.
Then X{G, φ, ψ) does not depend on G, φ and ψ.

PROOF. It is clear that λ(G, φ, ψ) does not depend on φ and ψ. Let
Gί and G2 be in H+(F). Then there exists a sequence {rk} such that

G,(ί, φ) = lim G,{t + ri, 0)
A -^oo

uniformly on Rι x S(f0, Mβ, L), that is, L,.^! = G2 uniformly on R1 x
S(ξOf MJ3, L). Let ^(ί) and x\t) be solutions in H^(ζ). Then there exists
a subsequence r c r ' for which Lrx

ι = T/1, I/raj2 = #2 uniformly on any
compact interval in R1. By Lemma 3, yγ(t) and ^/2(t) are solutions of

(15) x(t) = G2(t, xt)

defined on Rι and by Lemm 5, y\t) and y\t) are in H+(f). If ^(ί) and
x\t) are distinct solutions, we have

inf \\x\+rk - x\+rk\\B = inf \\x\ - x2t\\B = ^1 2 > 0 ,
teR κ κ teR

and hence

(16) inf \\y\- y\\\B = βί2 ^ a12 > 0 ,
teR

which means that y\t) and y\t) are distinct solutions of (15). Let p1 2: 1
and p2 ^ 1 be the numbers of distinct solutions of x(t) = Gx(ί, xt) and
(15), respectively. Clearly, pι ^ p2. In the same way, we have p2 fg p^.
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Therefore px = p2 = p.
Now, let a — min {a:ίfe, i, k — 1, 2, , p, ί Φ k) and /3 = min {βjm, j , m =

1, 2, , p, j Φ m). Then by (16), we have a <̂  β. In the same way,
we have a ^> β. Therefore a = /3 = λ0.

By Lemma 6, if iϊ+(f, i*7) satisfies the separation condition, we can
choose a positive constant λ0 independent of G, φ and ψ for which
II& — ΨAIB ^ ô for all t eB\ We shall call λ0 the separation constant
for H+(ξ, F).

THEOREM 5. Suppose that H+(ξ,F) satisfies the separation condition.
Then ζ(t) is an asymptotically almost periodic solution. Consequently'9
(14) has an almost periodic solution.

PROOF. For any sequence {τ'k} such that τ'k —> oo as k —> °o, there is
a subsequence {τk} of {τr

k} and an (η, G) e H+(ζ, F) such that f (t + τfc) —>
as k —> co uniformly on any compact interval in iZ1 and F(ί + τk9 φ) —>

G(ί, ^) as & —> oo uniformly on iϊ1 x S{ξ0, Mβ9 L).
Suppose that ζ(t + τk) is not convergent uniformly on /. Then for

some ε > 0 such that ε < λo/2, where λ0 is the separation constant, there
are sequence {t]}, {kj} and {mό} such that kά—> oo, m3 —> oo as i—> oo and

that is,

Since frjfe is convergent by Lemma 1, we have \\ξTkj — ίrm iIU < W2, if 3
is sufficiently large. Set f 5(t) = ί(ί + rfcj.) - f(ί + rWj

5). Then \\f{\\B < λo/2
and \\ψl'.\\B^e for all large i . Since ε < λo/2, there exists a t5 such
that ε <; HTK ILB < λo/2. Thus we have sequences {tj}, {τkj} and {τmj} for
which

(17)

Now we shall denote by r the sequence {τk}. Then r ' = {τkj} c r and
r" = {rmj.} c r. Let α: = {ίy}. For the sequences α, r' and r", there exists
a! (za, βar' and /3' c r " such that

La,+βF=LaLβF, La,+β,F—La,Lβ,F exist uniformly on R1xS(ξQ, Mλβ, L)

and

La,+βξ = x, La,+β'ξ = 2/ exist uniformly on any compact interval in R1 .

Since LβF = Lβ,F = G, we have La,+βF = La,+β,F = La,G = H. By Lemma
5, &(ί) and y(t) are in
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On the other hand, we have by (17) and Lemma 1

which shows that x(t) and y(t) are distinct solutions of x(t) = H(t, xt), and
hence

II #o - VO\\B ^ ô .

Thus there arises a contradiction. Therefore ζ(t + τk) converges uniformly
on /, consequently ξ(t) is an asymptotically almost periodic solution. By
Theorem 1, system (14) has an almost periodic solution.

REMARK 6. For ordinary differential equations, Nakajima [9] has
shown that the separation condition on H+(ξ, F) implies the existence of
an almost periodic solution.

6. Stability properties and separation conditions. In this section,
we are not required the property (VIII) of the space B except for the
last theorem. We shall discuss separation conditions and stability pro-
perties in almost periodic systems. Let F(t, φ) and ξ{t) be the ones given
in Section 5, respectively.

We shall say that the solution £(ί) is unique for initial value problem
with respect to H$(ξ) when ξt = xt for all t ^ ί0, whenever xeH$(ζ), if
ξtQ = xtQ for some tQ ̂  0.

THEOREM 6. Suppose that ξ(t) is unique for initial value problem
with respect to H^{ξ) and H+(ξ, F) satisfies the separation condition.
Then ζ(t) is s.d. H+(ξ, F).

PROOF. Suppose that ξ(t) is not s.d. H+(ξ, F). Then there exist an
ε > 0 and sequences (xk, Gk) e H+(ξ, F), τk^0 and tk > 0 such that

(18) \\ξtk+Tk-x\k\\B = e«\/2)9

(19) | | e r 4 -a* 0 |U<l/Λ

and

(20) p(F**, Gk) < Ilk .

First, we shall show that ί* + τ* —> ©o as k —> °o. Suppose not. Then
there exists a subsequence of {τk}, which we shall denote by {τk} again,
and a constant τ ^ 0 such that τk—>τ as k —> oo, because 0 5Ξi τk < τk +
tk < co. Since

P(F% Gk) ^ p(F% F**) + p(F**9 Gk) ,

we have by (20)
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(21) fKFTfGk)-*O as

By (21) and Lemmas 3 and 5, FτeH+(F) and x\t) can be assumed to
tend to a solution y(t) of

4(ί) = F(t + τ, x,)

uniformly on any compact interval of B1 as k —> oo. It follows from
(I), (19) and Lemma 1 that

^ H f r - f r J U + 11 fr4 - « M I * + \\x\ ~ Vθ\\B ~+ 0

Since

and ίfc is bounded, (18) and Lemma 1 imply that \\ζtk+τk — V^WB ^ ε/2 for
a sufficiently large &, which contradicts the uniqueness of ζ(t) with respect
to Hi(ζ). Thus tk + τk-> oo as fc—> oo.

Set gfe = ίfc + τk and αfc(£ + ίfc) = vk(t). Then ί(ί + qk) and ^fe(ί) are
solutions of x(t) = 2^(ί + gfc, a?t) and 4(ί) = Gk(t + ίfc> a?*), respectively. There
exists an (η(t), P(t, φ)) e H+(ξ, F), such that ζ(t + qh) —> η(t) uniformly on
any compact interval in Rι and F(t + qk, <£) —* P(t, φ) uniformly on Rι x

MJ3, L) as k —> oo, taking a subsequence of {qk}, if necessarily,
because g f t ^ c o as i ^ o o , By (20), we have

S P(P,
7^, Gk) -> 0 as

and hence, by Lemma 5, there exist a subsequence {v**"(ί)} of {vfc(£)} and
a z(ί) e iϊp(ί) such that vk*'(t) —> s(ί) uniformly on any compact interval
of iϊ1 as i —•• oo. Since we have

Jim {\\ξtkj+τkj - xkjkj\\B - \\v\ - zo\\B -

.+ r - A f c . I U + l|v*Ό - «olln + lift - f,,.IU} ,

it follows from (18) that lift — ̂ 0 |U = e> which contradicts the separation
condition of H+(ξ, F ) .

THEOREM 7. Tfce following three propositions are equivalent:
( i ) JEf+(f, î 7) satisfies the separation condition.
(ii) The solutions in H+(ξ) are q. u. a. s. H+(ξ)-(δ0, T( ))
(iii) T/̂ β solutions in H+(ξ) are u.a.s. H+(ξ) (δ0, δ( ), Γ( ))-
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PROOF. It is clear that (iii) implies (ii). It is easily shown that (i)
implies (iii), because for any G e H+(F), the number of elements of H£(ξ)
is finite. In fact, we can set δ0 = λ0 and for any ε > 0 we can set δ(ε) =
λo/2. Thus we shall show that (ii) implies (i).

Assume that the condition (ii) holds. First of all, we shall see that
any distinct solutions x(t), y(t) in i?ί(ί) satisfy

(22) Kmllα*-V*IU^δ 0 .

Suppose not. Then for some G e H+(F), there exist two distinct solutions
x(t) and y(t) in Hβ(ζ) which satisfy

(23) l im| l«« ~ Vt\\B < δ0 .
t->-oo

Since x(t) and y(t) are distinct solutions, we have ||a?ίo — 2/«JU = s at some
ί0 and for some ε > 0. Then there is a tγ such that tx < t0 — T(ε/2) and

II tLltι Utι \\B ^ ^ o

by (23). Since x(t) is q.u.a.s. H£(ξ), we have

I I /y» nι | | ^ c/P

ll £ < 0 ^ < o II-B ^ £ /^ »

which contradicts ||ίcίo — i/ ίo | |s = ε. Thus we have (22).

Since S(ζQ, Mβ, L) is a compact set, there are a finite number of
coverings which consist of ra0 balls with diameter δo/4. We shall show
that the number of solutions in H£(ξ) is at most m0. Suppose not. Then
there are m0 + 1 solutions in ffί(f), #J'(£), i = 1, 2, , m0 + 1, and a £2

such that

(24) \\x>\2-xχ\\B^δ0/2 f o r i ^ i ,

by (22). Since x*ti, j = 1, 2, , m0 + 1, are in S(ί0, Λfi/S, L) by Lemmas
1 and 2, some of these solutions, say af (£), a ̂ ί) (i Φ j), are in one ball at
time t2, and hence

which contradicts (24). Therefore the number of solutions in iJJ(f) is
m ^ m0. Thus

(25)

and

(26)

Consider a sequence {τfc} such that τk—> — oo as&_>_-oo and G(ί + τfc,
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G(t, φ) uniformly on R1 x S(ζ0, Mβ, L) as fc-> oo. Set vj>k(t) = a'(ί + τk),
j = l ,2, « , m . Then vy'*(i) is equicontinuous and uniformly bounded
on R\ and hence vjtk(t) can be assumed to tend to y\t) uniformly on any
compact interval in R1 as k —* °o for i = l, 2, •• , m . By Lemma 5,
2/J* e H£(ξ) and by Lemmas 1 and 2, ^ 6 S(f0, MJ3, L) for all ί e R\ Since

for teR\ it follows from (26) that

(27) 11 y\ - y\ \ \B ^ δQ for all t e R1 and i Φ j .

Since the number of solutions in Ho(ξ) is m, H£(ζ) consists of y\t\ y2(t),
" ,ym(t) and we have (27), which shows that H+(ξ,F) satisfies the
separation condition.

By Theorems 5 and 7, we have the following corollary.

COROLLARY 3. Suppose that the solutions in H+(ζ) are q.u.a.s.
H+(ζ)-(δQ, T(')). Then ζ(t) is an asymptotically almost periodic solution.
Consequently, (14) has an almost periodic solution.

REMARK 7. For functional differential equations, it is known by
Kato [7] that if the solutions in H+(ξ) are u.a.s. (So, δ( ), T( )), then (14)
has an almost periodic solution, and for ordinary differential equations,
Nakajima [9] has shown that if the solutions in H+(ζ) are u.a.s. (δ0, <5( ),
T( ))> then H+(ξ, F) satisfies the separation condition.

If ξ(t) is u.s. jffί(ί), then ξ(t) is unique for initial value problem
with respect to HF(S). Therefore we have the following corollary by
Theorems 6 and 7.

COROLLARY 4. Suppose that ζ(t) is u.s. iϊί(ί) and the solutions in
H+(ξ) are q.u.a.s. H+(ξ) (δQ, T( )) Then ξ(t) is s.d. H+(ζ, F).

In the following lemmas and theorem, we assume that the space B
has the property (VIII).

LEMMA 7. For any ε > 0, there exists a π(ε) > N such that for any
φ e S*()?, N, L\ || T8φt\\BS < ε for all s ^ π and for all t ^ N/L.

PROOF. Define sgn(^(0)), i = 1, 2, , n, and NeRn by

1 if ^ ( 0 ) ^ 0 ,

-1 if #)<0,
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and

N = (sgn W(0))N, sgn (v\0))N, , sgnft (0))tf),

respectively. There exists a function ζ(t), ζeA™ such that ζ(ί) = R for
all t^N/L and \\φ(t)\\Bn ^ ||ζ(ί)IU« for any φeS*(η,N,L) and teR\
We have by (VIII) | |2>,|U. ^ | |Γ.ζ,| |B. for all t ^ 0, s ^ 0 and {4 e
S*(27, JV, L). Put ζ(ΐ) = ζ(t) - JV and

t)f sgn(^2(0))iV*(ί), • , sgn (r(0))N*(t)) ,

where

0 for 0 < t < oo ,

N (ί) = . -t for -JV ^ ί ^ 0 ,

ΛΓ for -oo < t < -N .

Then we have

ϋ \\T,(N)t\\B.
; V = T,(N)t} + inί{\\ψ\\B; f = T,ζt)

sup

b( sup
\ _ ( 8 + ί_JV/L

^ c(\\T8-NN*\\Bs-«) + ciWT^^rζ^WBS+t-N/L)

for t ^ JY/L and s^ N. By (V), for a given e > 0 there exists a ττ(e) > N
such that

and

c(|| Tt+t_N/^N/L\\B8+t-N/L) < ε/2

for all s ^ TΓ and £ ̂  Ayir, and hence we have

for all s ^ π and ί ^ JV/L.

LEMMA 8. // / eS*(η, N, L) and fit) is an asymptotically almost
periodic function whose decomposition is given by (3), then
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Wft - P«IU->0 as ί ^ oo .

PROOF. Define q*(t) by

for ί e ( 0 , oo) ,

(^(ί) " P(ί) for ί e ( - o o , 0] .

Then we can easily show that q*t — ft — pt for all t ^ 0. Since p(£) is
almost periodic, there exists a sequence {τfc} such that τk —• c>o as fc —* oo
and p(£ + τk)—>p(t) as fc—• oo. Then we have / ( ί + rfc) = p(ί + rfc) +
g(ί + rfc) for ί + τk ^ 0 by (3). Thus we have pt e S(η, N, L) for all t e R1

by Lemmas 1 and 2. Consequently, we have g* e S*(^o — 2>o> 2i\Γ, 2L). By
Lemma 7, for any ε > 0, there exists a τr(e) > 2N such that HΓ^iJIU* <
Cι{εl2) for all t^N/L. We may assume that ||g(i)IU» < δ " " 1 ^ ) for
ί >̂ 7r, because g(t) —• 0 as ί —> co. Hence we have

II«MU ^ δ( sup | |g*(t + θ)\\

^ δ( sup

< e

for t^2π + N/L. Thus | | g M U = | |/ t — 3>«|U — 0

THEOREM 8. Suppose that ξ(t) is a solution of (14) defined on R1

and \\ξt\\B ^ β for all teR1. If H(ξ, F) satisfies the separation condition,
then ξ(t) is an almost periodic solution of (14) which is s.d. H+(ξ, F).

PROOF. By the same argument as in the proof of Lemma 6, we can
choose a separation constant λ0 for H(ζ, F), and hence, by Theorem 5,
ζ(t) is asymptotic almost periodic. Thus ξ(t) has the decomposition ξ(t) =
Ί>{t) + Q{t)> where p{t) is almost periodic and q(t) —> 0 as t —> oo.

First, we shall see that p(t) is a solution of (14). Since ζt e S(ξQ, Mβ, L)
for t ^ 0 and pt e S(ξ0, Mβ, L) for t e R\ we can show that F(t, pt) is
almost periodic in t by the same argument as in the proof of Theorem
2.7 in [15]. Since ξ(t) is the solution of (14), we have

(28) ξ(t) = F(t, pt) + F(t, ξt) - F(t, pt)

for t ^ 0. By Lemma 8, \\ζt — pt\\B —> 0 as t —> oo. Consequently, uniform
continuity of F(t, φ) implies that F(t, ξt) — F(t, pt)—*0 as t —• oo. Thus
(28) shows that ξ(t) also is asymptotically almost periodic, and hence it
follows from Theorem 3.3 in [15] that
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= F(t,pt) for teR1.

Thus p(t) is a solution of (14) defined on R1.

The proper ty of separation implies \\ξt — pt\\B = 0 for all t e Rι. Since

ξ(t) and p(t) are continuous on R\ we have ξ(t) = p(£) for all £ 6 jβ1.

Let x e H$(ζ) and £ ί o = ζh for some ί0 ^ 0. Then α(ί) = f(ί) for all

£e(—©o, ^ because f(ί) is continuous on Rι. Since #(£) also is a solution

of (14) defined on Rι by Lemma 3, \\xt - ξt\\B = 0 or I K - f*|U ^ λ0 for

all ί e i ? 1 . However, ||& ίo - ? J | β = 0 implies \\xt - ξt\\B = 0 for all ί ^ 0.

Hence f (£) is unique for initial value problem with respect to H$>(ξ). Thus

Theorem 6 implies t h a t f(ί) is s.d. H+(ξ, F).
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