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1. Introduction. Assuming the uniqueness of solutions for the initial
value problem, several authors discussed that the existence of a bounded
solution with some stability property implies the existence of almost
periodic solutions (cf. [4], [8], [10], [11], [12]).

Recently, Coppel [3], Yoshizawa [13, 14, 15] and Kato [7] have shown
the existence of an almost periodic solution for ordinary differential
equations and for functional differential equations without the assumption
that the solution is unique. All of them required the existence of a
bounded solution which is uniformly stable. Clearly, uniform stability
implies the uniqueness of the bounded solution for initial value problem.

In this paper, more generally, we shall discuss functional differential
equations with infinite retardation and the existence theorem for almost
periodic solutions by assuming the existence of a bounded solution with
some stability property which does not imply the uniqueness for initial
value problem.

2. Hale’s space and some lemmas. First, we shall give a class of
Banach spaces considered by Hale [5]. Let z = (2!, 2% ---, 2") be any
vector in R" and let |||z = max,<,<,|2°| be norm of x. Let B =
B((— <, 0], R") be a Banach space of functions mapping (— <o, 0] into R
with norm ||-||;. For any ¢ in B and any ¢ in [0, ), let ¢° be the
restriction of ¢ to the interval (— oo, —¢]. This is a function mapping
(— o0, —o] into R*. We shall denote by B’ the space of such functions ¢°.
For any 7 e B°, we define the semi-norm ||7]|z- of 7 by

171l5e = inf {[[g]la: 9 = 7} .

Then we can regard the space B’ as a Banach space with norm || -||z.
If x is a function defined on (— <, @), @ > 0, then for each ¢ in [0, @) we
define the function z, by the relation x,(s) = 2(t + s), —c <s=0. For
numbers @ and 7, @ > 7, we denote by A.° the class of function x mapping
(— o, a) into R" such that z is a continuous function on [z, @) and 2. € B.
The space B is assumed to have the following properties:
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(I) If xis in A then z, is in B for all ¢ in [z, @) and z, is a con-
tinuous function of ¢, where @ and 7 are constants such that 7 < @ < .

(II) All bounded continuous functions mapping (— o, 0] into R" are
in B.

(III) If a sequence {4.}, ¢, € B, is uniformly bounded on (— <, 0] with
respect to norm ||-|[zp» and converges to ¢ uniformly on any compact
subset of (—co, 0], then g€ B and ||¢, — #|[z— 0 as k— .

(IV) There are continuous, increasing and nonnegative functions
b(7), e(r) defined on [0, =), b(0) = ¢(0) = 0, such that

1915 = b(sup [16(s) 1s») + (113 1)

for any ¢ in B and any o = 0.

(V) If o is a nonnegative number and ¢ is an element in B, then
T, defined by T,é(s) = é(s + 0), s€(— o, —o], is an element in B° and
[|T,¢llzo— 0 as 0 — .

(VD) 1l¢(0)||zr = M,||8||z for M, > 0.

(VII) B is separable.

(VIII)  If ¢ and + are in B and ||#(6) ||z» < ||4(6) ||z for all 8 € (— <, 0],
then || Tyg|lss < || Tovr||zs for all s = 0.

REMARK 1. We can easily show that the class of phase spaces con-
sidered by Coleman and Mizel [2] has the properties (I)-(VIII).

For an element » in B and for positive numbers N and L, define
S*(n, N, L) by

S*(), N, L) = {¢€ AT; ¢y = 1, [|¢(t)||;» = N for all ¢=0 and
1¢(0) — ¢(6')||zn < L|6 — 0’| for any 6,6 = 0}.

LEMMA 1. Let {t,}, t,—  as m — o, and {¢™}, ™€ S*(n, N, L), be
sequences. Then {¢™(t + t,)} has a subsequence {¢™«(t + t,,)} such that
¢™k(t -+ tn,) converges to a function y(t) uniformly on any compact interval
wn R'. Furthermore, H¢"‘k,mk+,—~yt||3~—>0 as k—co uniformly on compact
subset of R.

ProOF. Take any compact interval K, =[—mn, n]. We can assume
that n < ¢, and ¢, < t,y, for m=1,2, ---. Since {g™(¢t + t,.), t€ K,} is
uniformly bounded and equicontinuous, there exists a subsequence of
{¢™(t + t,)} which converges uniformly on K, by Ascoli-Arzela’s Theorem.
Letting » = 1, 2, - - - and using the familiar diagonalization procedure, we
can get a subsequence {¢"(t + ¢,,)} of {¢"(t+¢t,)} that will be uniformly
convergent to a function ¥ on any compact subset of R'. The limit
function ¥ is in B by (II). Define ¢™+*(d) and 7™+*@d) by
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gmet(0) = {W(t ttn, +0)  for —(t+1,)=60=0,
— {9(0) for —oo <0< —(t+tn,),
and
0 —(t =60,
() = { for =t +tm)=0=0
T, +70) — 7(0)  for —oo <0< —(t+tn,),

respectively. Clearly, ¢™=* and 7™t are in B by (I) and (II). Hypothesis
(IV) implies

||¢mktmk+t = Yells = llg™* + 9™ — 4,5
< 1™ = willy + 177,
< llg™t = illp + 5(__sup__[17750) )

~(t+tm) SO0
+ 0(“(ka't)tﬂmklls‘“"‘k) .
Hence we have
(1) ”¢mkt+tmk = Yells = llg"™" — ¥ellz + el Tt+tmk(77 — O |5 +tmi)

where (7(0)) is the constant function B e B such that B(s) = 7(0) for all
s€(—o,0]. Since ¢™»*) — y(f) uniformly on any compact set, the right
hand side of (1) tends to zero as m — o by (III) and (V). This proves
Lemma 1.

LEMMA 2. The set
S(’]’ N’ L) = {¢t; t= 0, ¢ E S*("?’ N’ L)}
18 relatively compact in B.

Proor. For any sequence {y™}, +™ € S(», N, L), there are sequences
{¢™}, o™ € S*(y, N, L) and {t,}, t,, = 0, such that y™ = ¢™, , where we can
assume that ¢, — <« or t,— 7 for some constant = = 0, taking subseque-
nces, if necessary. When ¢, — o as m — o, the sequence {+™} contains
a convergent subsequence by Lemma 1, and hence we consider the case
where t,— 7 as m — oo,

We can assume that ¢, < 7, for all m and for some positive constant
7, T, > 7. Since {g™(t)} is uniformly bounded and equicontinuous on [0, <),
there exists a subsequence of {4™(¢)} which converges to a function y*
uniformly on any compact set of [0, ). We shall denote it by {¢™(¢)}
again. The limit function y* is continuous and bounded on [0, ). Define
y(t) by
_ () for te(0, =),

VO= 10ty  for te(—o,0].
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Then y€ A7 and y, = 7. We have
6™ — Yells = 116™0 — Ve lls + 1 ¥e,, — Y:lls
< b(_sup 18765 + t) = (s + t) )
+e(ll(g™:,)™ — y'me, ll5tm) + (192, — Yl
< b(_sup Jlg"(s +7) = 45 + ©)llas)

+ eI Te,n — To, 7 lstw) + 119, — ¥ells

Hence we have
(2) 116" = vello < b sup [167s + ) = ¥(s + )llwr) + 19 — v:ls -

Since ¢™(t) — y(t) as m — « uniformly on [0, 7,] and y e A7, the right
hand side of (2) tends to zero as m — oo.

Thus we can see that any sequence {y¥™}, v+™ € S(», N, L), contains a
convergent subsequence, and hence S(7, N, L) is relatively compact in B.

3. Asymptotically almost periodic function and definitions of sta-
bilities and separations. Let f(t) be a continuous function defined on
a<t<o. f(t)is said to be asymptotically almost periodic if it is a sum
of a continuous almost periodic function p(f) and a continuous function
q(t) defined on ¢ <t < - which tends to zero as t— <, that is

(3) f(@t) = () + q(®) .

It is well known that f(t) is asymptotic almost periodic if and only if
for any sequence {7,} such that 7, — o as k— oo there exists a subsequence
{z:,;} for which f(¢ + 7,,;) converges uniformly on a < ¢ < co.

Consider an almost periodic system

(4) &(t) = F(t, x,) ;

where F(t, ¢) is continuous on R' X By, By = {4 € B; ||¢||z < M}, and almost
periodic in ¢ uniformly for ¢ ¢ B,. We assume that there exists an L > 0
such that || F'(¢, ¢)||zn<L on R*x B,. A function &(¢) is said to be a solution
of (4) defined on [0, 6 + 7), where o c R' and = > 0, if £€ A,°*7, & ¢ B, for
telo, o0 + 7) and &(t) satisfies (4) for tefo, 0 + 7). In particular, if &(t)
is continuous on R' and &, ¢ B, for all te R and if &(¢) satisfies (4) for
te R', we say &(t) is a solution of (4) defined on R'.

Let &(t) be a solution of (4) defined on I, I = [0, ), which satisfies
&)z =B, 0< B < M, for all t€l. Then, clearly, & e S*(&, M,8, L). Let
H(), H(F) and H(&, F) be the hulls of &(t), F'(t, ¢) and (&(¢), F'(¢, ¢)),
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respectively. For the definitions of hulls, see [7]. Let H*(£), H*(F') and
H*(¢, F') be the subsets of H(¢), H(F) and H(¢, F') whose elements are
x(t), G(t, ) and (x(t), G(t, ¢)) such that there exists a sequence {t.}, {, — o
as k— o such that &(¢ + t,) — x(t) as k— - uniformly on any compact
interval in R' and F'(t + &, ¢) — G(t, ) as k— o uniformly on R' X
S(&,, M.B, L), respectively, where S(¢,, M,B3, L) is the closure of S(&, M,5, L).
We shall define Hy(§) and H{(E) by

H(8) = {x(t); (x(t), G(¢, ¢)) € H(§, F')}

and
H; (&) = {a(t); (=(t), G(¢, ¢)) € H' (¢, F)},

respectively.
The following lemma is one of the conclusions of Theorem 1 in [6].

LeEMMA 3. For any x € Hy &), x(t) is a solution of
(5) i) = G(¢, @)
defined on I and G(t, ¢) is almost periodic in t uniformly for ¢¢c B,.
In particular, x(t), x(t) € H;(£), ts a solution of (5) defined on R'.
REMARK 2. We can easily show that if F'(¢, ¢) is periodic in ¢, then
Lemma 3 holds without separability of the space B.
THEOREM 1. If the solution &(t) of (4) is asymptotically almost

periodic, then for any G e H(F'), there exists a sequence {t,} such that
&(t + 7) tends to an almost periodic solution of the system (5) uniformly

on R' as k— oo,

ProoF. Since &(t) is asymptotically almost periodie, it has the decom-
position &(t) = p(t) + q(t), where p(t) is almost periodic and q(t)— 0 as
t— . Since G € H*(F'), there exist a sequence {r,} and a function p*(¢)
such that 7,— « as k— o« and F(t + 7, ¢) — G(¢, ¢) uniformly on R' X
S(é, M8, L) as k— o and that p(t + 7,) — p*(t) as k— oo uniformly on
R!. Then p*(?) is almost periodic and (p*(¢), G(¢, ¢)) € H*(&, F'). By Lemma
3, p*(t) is an almost periodic solution of (5).

Now we shall give definitions of stabilities and separations.

DEFINITION 1. The solution &(¢) is uniformly stable with respect to
H7i(&) (in short, u.s. Hi(E)), if for any € > 0 there exists a d(¢) > 0
such that ||& — ,||z < ¢ for all ¢t = t, whenever t,cI, xc H:(£) and
”Eto - mtOHB < 6(5)-

DEFINITION 2. The solution &(t) is quasi uniformly asymptotically
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stable with respect to Hi(¢) (in short, q.u.a.s. H5(&)), if there exists a
0, > 0 and for any ¢ > 0 there exists a T(¢) > 0 such that ||&, — x|z < ¢
for t = ¢, 4+ T(¢), whenever xe Hi(¢) and [|&, — 2,z < d, for some
t, el

DEFINITION 3. The solution &(f) is uniformly asymptotically stable
with respect to H}(&) (in short, u.a.s. Hi(g)), if it is u.s. Hy(&) and
q.u.a.s. Hi(8).

DEFINITION 4. The solution &(¢) is uniformly asymptotically stable
in the large with respect to H3(£) (in short, u.a.s.l. H#(¢)), if it is
u.s. H#(¢) and for any a > 0 and ¢ > 0, there exists a T(«, €) > 0 such
that ||& — x|z <e¢ for t=t, + T(a, €), whenever t,el, xc Hi(f) and
”Eto - xto”B <a.

DEFINITION 5. The solution &(t) is stable under disturbances from
H*(&, F) (in short, s.d. H*(¢, F)), if for any & > 0, there exists a d(¢) > 0
such that ||&,.. — .||z <& for t =0, whenever (z, G)c H*(, F), ||& — 2,/|s <
d(¢) and o(F*, G) =sup{|| F(t + 7, ¢) — G(¢, 6) |[an, ¢ € R', ¢ € S(&y, M., L)} <d(e)
for some ¢ = 0.

DEFINITION 6. The solutions in H'(£) are quasi uniformly asympto-
tically stable with respect to H*(¢) with a common pair (9, T(:)) (in
short, q.u.a.s. H*(&)-(d,, T(-))), if for any € >0, any t,€ R' and G € H"(F'),
||,y — ¥s,lls < 9, implies |2, — v,|/, <& for t =t, + T(c), whenever x(t),
y(t) € HE(E).

DEFINITION 7. The solutions in H'(£) are uniformly asymptotical-
ly stable with respect to H*(£) with a common triple (d, d(:), T(+))
(in short, u.a.s. H*(&):(0, 0(+), T(+))), if the solutions in HT(£) are
q.u.a.s. H*(&)-(6,, T(-)) and for any € >0, any t, =0 and Ge H'(F),
[ @ — Yeollz < 0(¢) implies ||@, — y.|lz <& for all ¢ = ¢, whenever
a(t), y(t) € Hi(§).

DEFINITION 8. The solutions in H*(£) are uniformly asymptotically
stable with a common triple (d,, o(-), T(-)) (in short, u.a.s. (d,, 6(+), T(-))),
if for any € > 0, any ¢, = 0 and any G € H*(F), ||x,, — ¥, |ls < (¢) implies
[[w; — .l < ¢ for all ¢ =1¢, and tho = Ypollz < 0, implies |[x, — ¥.|[z <€
for t = t, + T(¢), whenever y(t) is a solution of (5) and x(t) € H{(g).

REMARK 3. The definitions of stabilities with respect to hull are
weaker definitions than the usual ones, respectively, because &(t) is not
necessarily unique for initial value problem. For example, the solution
2(t) =0 of #({) = xY® is not uniformly stable for ¢ =0, but u.a.s.
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H*,,5(x(t) = 0), s.d. H*(x(t) = 0, 2”°) and u.a.s. H*(x(t) = 0)-(d,, 6(-), T(+)).

DEFINITION 9. H7(§ F') is said to satisfy a separation condition if
for any G e H*(F'), Hj(é) is a finite set and if ¢ and +, ¢, v € H(E), are
distinct solutions of (5), then there exists a MG, ¢, v) > 0 such that
lg. — ¥:lls = MG, ¢, ¥) for all teR"

If the solution &(t) is defined on R!, then the following separation
condition is stronger than the separation condition given in Defini-
tion 9.

DEFINITION 10. H(¢, F') is said to satisfy a separation condition if
for any G € H(F'), Hy(¢) is a finite set and if ¢ and +, ¢, 4 € Hy(£), are
distinct solutions of (5) defined on R', then there exists a MG, ¢, ¥) > 0
such that ||¢, — |z = MG, ¢, v) for all te R

REMARK 4. The separation conditions on H*(&, F') and H(&, F') are
weaker conditions than Amerio’s condition [1].

4. Periodic system. In this section, we assume that the space B
has the properties (I)~(VI) and (VIII). Consider the system

(6) &(t) = F(t, x) ,

where F(t, ¢) is continuous on R' x B, and F(t, ¢) = F(t + w, ¢), ® > 0.
We assume that there exists an L > 0 such that ||F(¢, ¢)|lz» =< L on
R' x B,. Moreover, we assume that the system (6) has a solution &(¢)
defined on I such that ||&]|; <8, 0< B8 < M, for t = 0.

THEOREM 2. If the solution &(t) is u.s. Hi(§), then &(t) is an asym-
ptotically almost periodic solution of (6). Consequently, the system (6)
has an almost periodic solution.

Proor. Let {r,} be a sequence such that 7, = w and 7,— ~ as k—
o, For each 7,, there exists a positive integer N, such that Nw =
7, < (N, + Dw. If we set 7, = Ny,w + oy, then 0 < 0, < w. There exists
a0,0=<o0 =< o, and a function 7(¢t) such that ¢, — o as k — o, &t + 7,)—
7(t) as k—  uniformly on any compact interval in R' and F'(t + 74, ¢) —
F(t + o, ¢) as k — <o uniformly on R' x S(&, M,8, L), taking a subsequence,
if necessarily. Therefore for a given ¢ > 0, there is a positive integer
no(¢) such that if & = n. (), then

(7) €0 — Dolls < 9(e)/2

by Lemma 1, where 6(-) is the one for u.s. Hi(€) of &(¢t). Since ||9(t,) —
N(t) ||lzn < L|t, — t,] for t,t,e R* and |[9(t)||zn = M,8 for all teR', we



396 Y. HINO

have for any v=0
17 = 70 lls = & 89D (1966, + 8) = 7t + 8)llan) + (17, = 7. 11)

= b(L[t, — t]) + (|| T.CZM.B) ||

by (IV) and (VIII), and hence 7, is uniformly continuous by (V). Thus
we may assume that for k = m,(¢) and for all ¢ e R

(8) 1% = No-osells < 0(€)/2 .

By Lemma 3, 7(t) is a solution of #(t) = F(t + o, x,) defined on R', and
hence 7%(t) = 9(t — N, — o) is a solution of (6) defined on R'. Clearly,

we have 7*(t) € H;(§). Since
ngk-i-w - vk7k+w'|3 = ”Er;ﬁw - 77w+ak~a”B
é Hsrk-{—w - anB + H’?w - 77tu+ak—a“B ’
we have by (7) and (8)
ngk-}-w - 77,‘1/,4-«1“3 < 6(s) ’
if k = my(€), which implies
(9) Hs:-;ﬁ-t - 77kz'k<)—t||B < e,
because &(t) is u.s. H#(§). Furthermore, since we have
”Erk+t - Erm+t||B = ||5rk+t - 77krk+t”B =+ ”77krk+t - nmr,,,,,+t”8
+ H’?kz‘m-%t - Srm+tHB
= “Erk+t - vkrk+tHB + Hy]ak—a+t - 770,,,-0+¢HB
+ ll’?mrm+t - Srm+tHB
= ||5rk+t - 77krk+tHB + “vok—o+t - 7]tHB
+ ”7713 - 77am—a+t||B + H7]mrm+t - Srm+t“3 ’
(8) and (9) imply
(10) ”Erk+t - Erm-H”B < 3¢
for all ¢t = w and for m = k = nc). It follows from (10) and (VI) that

[1&(t, + t) — &(Tp + t)||zn < 8Me for all ¢ = w and for m =k = nye) .

Thus we see that for any sequence {r,} such that 7, — o as k— oo, there
exists a subsequence {r,;} for which &(t + 7,,) converges uniformly on
[w, ) as j— co. This shows that &(f) is asymptotically almost periodic.
The existence of an almost periodic solution follows immediately from
Theorem 1.
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The following example shows that the converse of Theorem 2 is not
true even for a periodic solution.

ExAMPLE. Consider the differential difference equation

11) #(t) = z(t — 37/2) .

This equation is the special case of the equation (6) (see [5]). Clearly,
&(t) = sin t is a bounded periodic solution of (11), that is, an asymptotically
almost periodic solution of (11). Set ¢, = (2n + 1)z and 7(t) = sin (¢ + =),
then 7(t) is a solution of (11), &(¢ + ¢,) = 7(t), |&(0) — 7(0)| = |sin 0 —sin 7| =
0 and |&(x/2) — N(n/2)| = |sin /2 — sin 3w/2| = 2, and hence &(t) is not
u.8. Hi ae/a(§)-

LEMMA 4. If &(t) is u.a.s. HE(E), then any N(t), n(t) € H(E), is w.a.8.
H(8).

PrOOF. For any 7(t), 7(t) € Hi(€), there exists a sequence {7,}, T, — oo
as k— oo, such that &t + 7,) — 7(t) as k— o« uniformly on any compact
interval in R!' and F(t + 7, ¢) — G(t, ) as k— o uniformly on R' x
S(é,, M.B3, L). Set t, = N,w + o,, where 0 < g, < w. Let {k;} be a sub-
sequence of {k} such that o,,—0c as j— . Then we have 0 =0 = @
and G(t, ¢) = F(t + g, ¢).

First, we shall see that 7n(¢) is u.s. H;+«(§). For any & >0, let d(¢)
be the one for u.s. Hj(&) of &(t), where we can assume that ¢ < (M — B)/2.
Let £(t) be in Hfo(¢) and ¢, € R'. Assume ||, — &, |ls = r < 8(¢) and put
gi(t) = &(t + 7). If j is sufficiently large, we have

18 — 74, |15 < (8(8) — 7)/2
and
||§to+a+1v,,jw - Eto+akj+NkijB = ||§kjto+a—akj - SkthHB < (d(e) — 7)/2

by Lemma 1, and hence

” Eto+u+1v'kjw - Cto HB

é ||Et0+a+Nkjw - Eto+ak_,,-+Nkjw”B + ||5t0+u,,j+1vkjw - 7)t0”3

+ ||7750 - Cto”B
= 6% r0mon; = E9lls + 116 = Maglls + 11 — Lol
< oe) .

Since the solution &(t + ¢ + N,,w) is u.s. Hf«(¢), we have
HEt+a+Nkja) —Cllg<e forall t=t¢,.

On the other hand, for an arbitrary v > 0, if j is sufficiently large,
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[ 7e — §t0+a+Nkjw”B = l|77to - §to+okj+NkjaJHB + HEto+okj+Nkj
—€t0+a+Nkjw“B
= 170 = 9% lls + 1160 — Y4r0ma; 115
< a(7)

by Lemma 1, and hence ||, — §,+.,+Nkj,,,|13 < for all ¢t =¢,. Thus we
have ||, — &l <€ + 7 for all ¢ = ¢, Since 7 is arbitrary, we have

7. = Clls=¢e forall t=¢, if |[9,—C,llz<d().
This proves that 7(t) is u.s. Hf(¢).

Next, we show that 7(f) is u.a.s. H{(£). Let {(¢) be in Hj.«(¢) and
t,eR'. Assume that |7, — (., llz = r <0, where d, is the one for
u.a.s. H(§) of &(t). Clearly &(t + 0 + N,;w) is u.a.s. H;«(§) with the
same ¢, as the one for &(f). We have

HEto+0+Nkjm - CtOHB < 60
and
Etgsormego — Diglls < 3o »
if j is sufficiently large, by using the same arguments as in the proof
of the first part in this lemma. Hence, for sufficiently large 7,
H5t+a+Nkjw - CtHB <é€ fOI‘ t z to + T(e)
and
”Et+a+Nkjw - thB < 5 for t 2 to + T(s) .
Thus
7. — Cells < 2¢ for ¢t =1, + T(e),
if ||7,, — Ciplls < 0. This shows that 7(¢) is u.a.s. H§(£).

COROLLARY 1. If the solution &(t) is w.s. Hi(€), then the system (6)
has an almost periodic solution which s w.s. HH(E).

Proor. By Theorem 2, &(t) is asymptotically almost periodic, and
hence £(t) = p(t) + q(t), where p(t) is almost periodic and ¢q(t) — 0 as t—
. Let 7,; = kjow such that p(t + 7,;) — p*(¢) uniformly on R, where
k; is a positive integer. Then p*(¢f) is almost periodic and &(¢t + 7;,) —
p*(t) as j— o uniformly on any compact interval in R'. By Lemmas
3 and 4, p*(¢t) is an almost periodic solution of (6) which is u.s. H}(&).

THEOREM 3. If the solution &(t) is w.a.s. HE(E), then the system (6)
has a periodic solution of period mw for some integer m = 1.
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ProOF. There exist a sequence {k;}, where k; is a positive integer
and k;— o as j— o, and an ne H;(£) such that &(¢ + k;w) — n(t) uni-
formly on any compact interval in R' as j — oo, because F'(¢, ¢) is periodic
of period w. There are integers k, and k,,, such that ||& . — 7ulls <&
and |[&,,,0 — %llz < 9, by Lemma 1, where J, is the one for u.a.s. Hi(¢)
of &(t). Set m = kyy, — ky, £"(t) = &(t + mw) and 7*2(¢) = (¢ — k,0).
Clearly, 7*»(t) € H}(¢) and &™(¢) is the solution of (6). Thus we have

”Emkpw - Y]kpkpwHB = ”Ekp._;.lw - 770”3 < 9,

and
10,0 — 7" %,0lls = [1&0 — Nolls < 85
and hence
6™ pore — Nellz—0  as t— oo
and

|€ipore — Dellz—0 a8 t— oo .
Thus we have
(12) g™ — &lls—0 as t— 0.
On the other hand, by Theorem 2, &(t) is asymptotically almost per-
iodic, and hence
(13) &) = p(t) + q(t),
where p(t) is almost periodic and ¢q(f) — 0 as ¢ — . From (12) and (13),
it follows that
Ip(t) — p(t + mw)||zn = 116(E) — a(¢) — 6@ + m@) + q(t + MW)|[zn
= &) — &G + m@) |z + |[q(¢) — a(t + M) ||zn
= Mg — &™lls + lla®) — ¢t + mw)||zg— 0
as t— oco. Therefore p(t) = p(t + mw) for all t € R', because p(t) is almost
periodic. If we consider a sequence {kmw}, we have
&t + kmw) = p(t) + q(t + kmo) ,

and hence p(t) e Hi(£). This shows that the system (6) has a periodic
solution p(t) of period mw, because p(t) also is a solution of (6) by
Lemma 3.

REMARK 5. In Theorem 3, if &(¢) is u.a.s.l. H§(¢), we have ||&,,o—&:||lz—
0 as t— oo, and hence, clearly p(t) = p(t + ).

COROLLARY 2. If &(t) is u.a.s. H:(£), then the system (6) has a per-
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todic solution of period mw for some integer m = 1 which is w.a.s. HF(£).

ProoF. By Theorem 3, the system (6) has a periodic solution p(%)
of period mw for integer m =1 which is in H#(£¢). And p(t) is u.a.s. H(&)
by Lemma 4.

5. Almost periodic system. In this section, we assume that the
space B has the properties (I)~(VII). We shall discuss the existence of
an asymptotically almost periodic solution of an almost periodic system

(14) ©(t) = F(¢, ».) ,

where F'(t, ¢) is continuous on R' x B, and almost periodic in ¢ uniformly
for g B,. We assume that there exists an L > 0 such that || F (¢, ¢)||z» <
L on R' x B,. Moreover, we assume that the system (14) has a bounded
solution &(t) defined on I such that ||&]; =< B8,0< B8 < M, for t = 0.

THEOREM 4. If the solution &(t) is s.d. H*(&, F'), then &(t) is an
asymptotically almost periodic solution. Consequently, (14) has an almost
periodic solution.

Proor. Let {r,} be any sequence such that 7z, >0 and 7,— o as
k— . Since F(t, ¢) is almost periodic in ¢ uniformly for ¢e B,, we
may assume the existence of an (2(t), G(¢, ¢)) € H'(§, F') such that &t + 7,)—
x(t) as k— o uniformly on any compact interval in R' and F(t + 7, ¢) —
G(t, ) as k — o uniformly on R' x S(¢&, M,8, L). For any ¢ > 0 there
exists a k,(¢) > 0 such that if & = k,(¢), then |[|&, — x.|[z < 0(¢) and
Oo(F°k, G) < d(¢), where d(¢) is the one for s.d. H*(§, F') of &(t), which
implies that

”Erk+t—mt(l3<5 for t=0,

because x, € S(&, M,8, L) for all te€ R* by Lemmas 1 and 2. Therefore
[&ep4e — &cprells < 26 for all £ =0, if m =k = k(¢). Thus we see that
&(t) is asymptotically almost periodic. The existence of an almost periodic
solution follows immediately from Theorem 1.

LEMMA 5. Let {2*(t), G*(¢, ¢)}, (x*, G¥)e H*(&, F'), and {s.}, s,€ R', be
any sequences. Then {x*(t + s,), G*(t + si, )} has a subsequence {x*i(t+s,,),
G*i(t + si;, )} such that for some (y, G)e H*(§, F), 2*i(t + s,;) — y(t) uni-
Sformly on any compact interval in R' as j— o and G*(t + s, ¢) —
G(t, ¢) uniformly on R' X S(&, M,8, L) as j— o.

Proor. Put y*(t) = z*( + s,), then y*(t) is uniformly bounded and
equicontinuous on R', and hence y*(f) has a subsequence which tends to
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a function y(¢) uniformly on any compact interval in R'. Since H(F') is
compact (cf. see [7]), G¥(t + s:, ¢) has a subsequence which tends to an
almost periodic function G(¢, ¢) uniformly on R' x S(&, M., L). By
Lemma 3, y(¢) is a solution of (5). Hence we have the conclusion if we
can show that y(¢) is in H*(&).

For a positive integer m, let K, be a compact interval [—m, m].
There exists an N(m) > 0 such that [|x*(t + s,) — y(t)||z» < 1/2m for te
K,, if k= N(m). Since z¥™ e H*(¢), there exists a sequence {7,}, T, =
m, such that |[&(¢ + T,.) — "™ + Syw)llzn < 1/2m for te K,. Thus
[|E( + 7,) — Y(t)||zn < 1/m for te K,. This implies that %(¢) is in H*(&),
because 7, — o as m — oo,

To make expressions simple, we shall use the following notations.
For a sequence {«,}, we shall denote it by & and 8 C @ means that B is
a subsequence of a. For a = {a} and B = {8}, « + B will denote the
séquence {a, + Bi}. Moreover L,r will denote lim,.. x(¢t + «,), where
a = {a,} and the limit exists for each ¢. '

LEMMA 6. Suppose that H*(&, F') satisfies the separation condition.
Then MG, ¢, ¥) does not depend on G, ¢ and .

Proor. It is clear that MG, 4, ¥) does not depend on ¢ and +. Let
G, and G, be in H*(F). Then there exists a sequence {r;} such that

Gu(t, ¢) = lim Go(¢ + 74, 9)

uniformly on R' x S(&, M8, L), that is, L,G, = G, uniformly on R' X
S, M8, L). Let x'(t) and «*(t) be solutions in H{ (£). Then there exists
a subsequence rc ' for which L,x' = y', L.x* = %* uniformly on any
compact interval in R'. By Lemma 3, %'(t) and ¥*(t) are solutions of

(15) i(t) = Gut, )
defined on R' and by Lemm 5, %'(¢t) and y*(t) are in H*(§). If 2'(¢) and
2*(t) are distinct solutions, we have

in Hle_,k - x2t+rkHB =inf||a', — 24|z =@, > 0,
teR teR

and hence
(16) :?}f ||ylt - yzt”B = :812 = &, >0 y

which means that y'(¢) and y*(¢) are distinct solutions of (15). Let », =1
and p, =1 be the numbers of distinct solutions of #(t) = G,(¢, x,) and

(15), respectively. Clearly, p, < p,. In the same way, we have p, < p..
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Therefore p, = p, = p.

Now, let @« = min{a;, 1, k=1,2, ---, p, v # k} and 8 = min {B;,, J, m =
1,2 ---,p, 7 #*m}. Then by (16), we have @ < 8. In the same way,
we have a = 8. Therefore a = 8 = \,.

By Lemma 6, if H(§ F') satisfies the separation condition, we can
choose a positive constant ), independent of G, ¢ and + for which
l|¢e — Arells = N for all te R'. We shall call A\, the separation constant
for H*(¢, F).

THEOREM 5. Suppose that H (&, F') satisfies the separation condition.
Then &(t) is an asymptotically almost periodic solution. Consequently,
(14) has an almost periodic solution.

Proor. For any sequence {z;} such that 7, — o as k— oo, there is
a subsequence {z,} of {z;} and an (%, G) e H*(&, F') such that &t + 7,)—
7(t) as k— oo uniformly on any compact interval in R' and F'(¢ + 74, ¢) —
~ G(t, ¢) as k— oo uniformly on R' x S(&, M8, L).

Suppose that &(t + 7,) is not convergent uniformly on I. Then for
some ¢ > 0 such that ¢ < )\,/2, where ), is the separation constant, there
are sequence {tj}, {k¥;} and {m;} such that k; — co, m; — « as j— « and

HE(t; + Tkj) - E(t; + ij)HR” = Mls ’
that is,
”Etj'-+rkj - Et;-+rm].“3 =€,

Since ¢., is convergent by Lemma 1, we have ||&, — &, Ils < NM/2, if J
is sufficiently large. Set () = &(t + 74;) — &(t + Tp;). Then [[yfls < /2
and ||v¥i;llz = ¢ for all large j. Since & < \/2, there exists a ¢; such

that & < [|¥/,|l» < M/2. Thus we have sequences {t;}, {r,;} and {z,;} for
which

(17) € é H‘Etj+z'kj - Etj+z'mj”B < )’0/2 .

Now we shall denote by r the sequence {r,}. Then #' = {r,;}Cr and
r" ={r,;}Cr. Let @ ={t;}. For the sequences «, »" and ", there exists
o ca, Bcr and B Cr” such that

Ly F=L,L,F, L, sF=L,LF exist uniformly on R'x S(&, M,53, L)
and
Ly & = @, Ly, p& = y exist uniformly on any compact interval in R'.

Since L,F = LyF = G, we have L, ;F =L, F=L,G=H. By Lemma
5, x(t) and y(t) are in H7(&).
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On the other hand, we have by (17) and Lemma 1
e =@ — Yollz = Mo/2,

which shows that x(¢) and y(t) are distinct solutions of #(t) = H(¢, x,), and
hence

2 — Yollz = N -

Thus there arises a contradiction. Therefore &(t + 7,) converges uniformly
on I, consequently £(¢) is an asymptotically almost periodic solution. By
Theorem 1, system (14) has an almost periodic solution.

REMARK 6. For ordinary differential equations, Nakajima [9] has
shown that the separation condition on H*(§, F') implies the existence of
an almost periodic solution.

6. Stability properties and separation conditions. In this section,
we are not required the property (VIII) of the space B except for the
last theorem. We shall discuss separation conditions and stability pro-
perties in almost periodic systems. Let F'(¢, ¢) and &(¢) be the ones given
in Section 5, respectively.

We shall say that the solution £(t) is unique for initial value problem
with respect to H$(¢) when & = x, for all ¢t = ¢, whenever x e H%(&), if
&, = x,, for some ¢, = 0.

THEOREM 6. Suppose that &(t) is unique for initial value problem
with respect to H#(E) and H*' (&, F) satisfies the separation condition.
Then &(t) 1is s.d. H'(¢, F').

ProOF. Suppose that &(t) is not s.d. H*(¢, F'). Then there exist an
€ > 0 and sequences («*, G,)e H™(§, F'), 7, = 0 and ¢, > 0 such that

(18) [€re, — @ 1l = 6(<N/2)
(19) 1€, — a%lls < 1/k
and

(20) Oo(F, Gy) < 1/k .

First, we shall show that ¢, + 7, — < as k— . Suppose not. Then
there exists a subsequence of {z,}, which we shall denote by {z,} again,
and a constant = = 0 such that 7,— ¢ as k— o, because 0 =7, <7, +
t, < . Since

IO(Fry Glc) g (O(Ft; ka) + P(Fr", Gk) ’
we have by (20)
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(21) O(F%, G)—0 as k— oo .

By (21) and Lemmas 3 and 5, F*e H*(F') and «*(f) can be assumed to
tend to a solution y(t) of

#(t) = F(t + 7, x)

uniformly on any compact interval of R' as k— . It follows from
(@), (19) and Lemma 1 that

[16: — Yollz = 1|&: — Srk”B + HErk - xko“B + [a* — Yollz—0 as k— oo,
Since
|,5tk+rk - ytkHB = ”Etk+z‘k - xktk”B - katk - ytkHB
and ¢, is bounded, (18) and Lemma 1 imply that ||&,,.., — ¥, |ls = €/2 for
a sufficiently large %k, which contradicts the uniqueness of &(¢) with respect
to Hy(&). Thus ¢, + 7,— o as k— oo,

Set q, = t, + 7, and x*(¢t + ) = v*(¢). Then &t + q,) and () are
solutions of &(t) = F(t + q;, x,) and #(t) = G,(t + t;, x.), respectively. There
exists an (9(t), P(¢, ¢)) € H*(§, F'), such that &(t + ¢,) — %(t) uniformly on
any compact interval in R' and F(t + q, ¢) — P(¢, ) uniformly on R' x

S, M8, L) as k — o, taking a subsequence of {g,}, if necessarily,
because ¢, — « as k— . By (20), we have

(O(P’ thk) é lo(Pr Fqk) + (O(Fqkr thk)
< 0(P, Fo) + o(F%, Gy) — 0 as k— oo,

and hence, by Lemma 5, there exist a subsequence {v*i(¢t)} of {v*(¢)} and
a 2(t) € H:(&) such that v*i(t) — 2(t) uniformly on any compact interval
of R' as j— o. Since we have

llm {Hftkj+rkj - Jekj”B - ”’Uk]o - zo”B - |[770 - Eqkj“B}
]—soo

=7 — %lls
= }1&1 {”Et,,ijj - xkjtijB + |04, = 2ollz + 170 — quj”B} ’

it follows from (18) that ||7, — 2,||zs = ¢, which contradicts the separation
condition of H*(&, F').

THEOREM 7. The following thvee propositions are equivalent:
(i) H'(, F) satisfies the separation condition.

(ii) The solutions in H*(¢) are q. w. a. s. H(&)-(d,, T(-)).
(iii) The solutions in H*(§) are w.a.s. H(£)-(d,, o(+), T(-)).
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Proor. It is clear that (iii) implies (ii). It is easily shown that (i)
implies (iii), because for any G € H*(F'), the number of elements of H/(&)
is finite. In fact, we can set 0, = )\, and for any ¢ > 0 we can set d(¢) =
N/2. Thus we shall show that (ii) implies (i).

Assume that the condition (ii) holds. First of all, we shall see that
any distinct solutions x(t), y(t) in H{(€) satisfy

(22) tlj__rrgollxt—ytlleﬁo-

Suppose not. Then for some G € H*(F'), there exist two distinct solutions
x(t) and y(t) in Hj(&) which satisfy

(23) tl_l.Tn}o”x‘ — Yellz < 0, .

Since «(t) and y(t) are distinct solutions, we have ||x,, — ¥,,|ls = ¢ at some
t, and for some ¢ > 0. Then there is a ¢, such that ¢, < ¢, — T(¢/2) and

thl — Y, llz < 0o
by (23). Since x(t) is q.u.a.s. H(&), we have
”xto - yto“B <e¢f2,

which contradicts ||x,, — ¥,,|lz = ¢. Thus we have (22).

Since S(&, M8, L) is a compact set, there are a finite number of
coverings which consist of m, balls with diameter d,/4. We shall show
that the number of solutions in Hf() is at most m,. Suppose not. Then
there are m, + 1 solutions in Hg(8), 2/(t), 5 =1,2, -+, m, + 1, and a %,
such that

(24) 18, — @'y lls = 0/2 for i=#3j,

by (22). Since 2%, j=1,2, -+, m, + 1, are in S(&, M,8, L) by Lemmas
1 and 2, some of these solutions, say x‘(t), x’(¢) (¢ # 7), are in one ball at
time t,, and hence

”xjtz - xitZHB < 0,/4,

which contradicts (24). Therefore the number of solutions in H{(E) is
m < m,. Thus

(25) HE(E) = {xl(t)9 xz(t)y tt xm(t)}
and
(26) tliTIonit—x’tHBg&O, 157 .

Consider a sequence {7} such that 7,— —  as k— — « and G(t+7, ¢)—
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G(t, ) uniformly on R' x S(&, M8, L) as k— . Set v"¥t) = x/(t + 74),
j=12, ---,m. Then v"*(¢t) is equicontinuous and uniformly bounded
on R!, and hence v”*(t) can be assumed to tend to %’(¢) uniformly on any
compact interval in R' as k— o for j=1,2, ---,m. By Lemma 5,
y'e H;(¢) and by Lemmas 1 and 2, ¥/, € S(&, M,S, L) for all te R*. Since

Yy — v lls = }:Horol [oPk, — vo*, |5

for te R', it follows from (26) that
270 v/, — vz =0, for all teR' and 1+ 7.

Since the number of solutions in H{(£) is m, H;(€) consists of y'(¢), ¥*(t),
««+,y™(t) and we have (27), which shows that HT'(§ F') satisfies the

separation condition.
By Theorems 5 and 7, we have the following corollary.

COROLLARY 3. Suppose that the solutions in H(€) are q.u.a.s.
H*(&): (0, T(+)). Then &(t) 18 an asymptotically almost periodic solution.
Consequently, (14) has an almost periodic solution.

REMARK 7. For functional differential equations, it is known by
Kato [7] that if the solutions in H*(§) are u.a.s. (6, o(-), T'(-)), then (14)
has an almost periodic solution, and for ordinary differential equations,
Nakajima [9] has shown that if the solutions in H*(£) are u.a.s. (9, 6(-),
“T(-)), then H*(§, F') satisfies the separation condition.

If &(t) is u.s. Hz(&), then &(t) is unique for initial value problem
with respect to Hj(£). Therefore we have the following corollary by
Theorems 6 and 7.

COROLLARY 4. Suppose that £(t) is u.s. Hy(&) and the solutions in
H*(¢) are q.u.a.s. H*(&)-(0,, T(+)). Then &(t) is s.d. H*(&, F).

In the following lemmas and theorem, we assume that the space B
has the property (VIILI).

LEMMA 7. For any € > 0, there exists a w(e) > N such that for any
¢€S*(7, N, L), || Tup:|lzs < € for all s = and for all ¢t = N/L.
PRrRoOF. Define sgn (%%0)),7=1,2, ---, n, and NeR" by

1 if 7(0)=0,

sgn (7'(0)) = {__1 if 740) <0,
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and
N = (sgn (9(0))N, sgn (P(O)N, - - -, sgn (*(0))N) ,

respectively. There exists a function {(¢), { € A7 such that {(¢) = N for
all ¢t = N/L and [|¢(?)||zn < ||{(t)||z» for any ¢eS*(n, N, L) and te R
We have by (VII) [|T:llss < [|TL:|lse for all £ 20,5=0 and g€
S*(p, N, L). Put {(t) = {(t) — N and
N*(t) = (sgn (7(0)N*(t), sgn (F(O)N*(2), - -+, sgn (7 (O)N*(?)) ,

where

0 for 0<t< oo,

N*(t) = {—t for —-N<t£0,
N for —w <t<—N.

Then we have

ITLellse = IIT.(<£\7>z + Et)HE‘~

TN llze + [ TCellse )
it {ll¥lla; ¥ = TAND + inf {{lvrlls; v = T84}
INEwlls + 11Easells

b(_ sup [1N*(s = N + 0)lle» ) + eI LoV llse-v)

—(8—N)s0=0

ANAY

IA

IA

+ b( sup  ||I8(s + ¢t + a)nm)

~(8+t—NIL)S0S0
+ (|| Tyt t-n/28ns1l|e+e—n/z)
é C(” Tl—NNl;k “B“‘N) + C(“ Ta+t—N/LCN/L”B’+‘_N/L)

for ¢t = N/L and s = N. By (V), for a given ¢ > 0 there exists a 7(¢) > N
such that

(|l Ts—NN:”B’—N) <e¢/2
and
e(ll Tt+t—N/LEN/L”B‘+‘_N/L) < ¢/2
for all s =7 and ¢t = N/L, and hence we have
I Tspellps < 1| TLellse < &/2 + 62 =¢
for all s= 7 and ¢ = N/L.

LEmMmA 8. If feS*(n, N, L) and f(t) is an asymptotically almost
periodic function whose decomposition is given by (3), then
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[fi — pdlz—0 as t— .
ProOOF. Define ¢*(t) by
q(t) for te(0, ),
() — pt)  for te(—eo,0].
Then we can easily show that ¢*, = f, — p, for all £ = 0. Since p(¢) is
almost periodic, there exists a sequence {r,} such that ¢,— « as k— oo
and p(t + 7,) — p(t) as k— . Then we have f(t + 7,) = p(t + 7)) +
q(t + 7,) for t + 7, = 0 by (3). Thus we have p,c S(%, N, L) for all te R
by Lemmas 1 and 2. Consequently, we have ¢* € S*(1, — »,, 2N, 2L). By
Lemma 7, for any € > 0, there exists a z(¢) > 2N such that || T.q7 ||z <

¢ (¢/2) for all t = N/L. We may assume that ||q(¢)|lz» < b7'(¢/2) for
t = 7, because g(t) — 0 as ¢ — . Hence we have

g*(¢) = {

lg*lls = b(_sup [1g°(t + O)llzn) + e(1(a?) 1)

= b( sup ll4(t + O)llan) + (1 Tea* <19

< b(b7'(/2)) + o(cT(e/2))
<e

for t = 27 + N/L. Thus ||¢*||z = ||f: — D:llz— 0 as t — oo.

THEOREM 8. Suppose that &(t) is a solution of (14) defined on R'
and ||&|lz < B for all te R'. If H(E, F) satisfies the separation condition,
then &(t) is an almost periodic solution of (14) which is s.d. H*(¢, F).

Proor. By the same argument as in the proof of Lemma 6, we can
choose a separation constant A, for H(& F'), and hence, by Theorem 5,
&(t) is asymptotic almost periodic. Thus &(¢) has the decomposition &(¢) =
o(t) + q(t), where p(t) is almost periodic and ¢(f) — 0 as ¢ — co.

First, we shall see that p(t) is a solution of (14). Since &, € S(&,, M,5, L)
for t =0 and p,e S(é, M8, L) for teR', we can show that F'(¢, p,) is
almost periodic in ¢ by the same argument as in the proof of Theorem
2.7 in [15]. Since &(¢) is the solution of (14), we have

(28) 1) = F(t, p) + F(t, &) — F(t, )

for t = 0. By Lemma 8, ||&, — p,||[z— 0 as t — . Consequently, uniform
continuity of F(¢, ¢) implies that F(¢, &) — F(¢, p,) —0 as t— . Thus
(28) shows that £(f) also is asymptotically almost periodic, and hence it
follows from Theorem 3.3 in [15] that
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() = F(t, p) for teR'.

Thus p(¢) is a solution of (14) defined on R:.

The property of separation implies ||£, — .|l = 0 for all te¢ R'. Since
&(t) and p(t) are continuous on R!, we have &) = p(t) for all te R".

Let v € Hf(¢) and x,, = &, for some ¢, = 0. Then x(t) = &) for all
te(—oo, t,], because &(t) is continuous on R'. Since x(t) also is a solution
of (14) defined on R' by Lemma 3, ||, — &llz = 0 or ||z, — &llz = N\, for
all te R'. However, ||z, — &,llz = 0 implies ||, — &,/ = 0 for all ¢ = 0.
Hence &(¢) is unique for initial value problem with respect to Hz(£). Thus
Theorem 6 implies that £(¢) is s.d. H*(¢, F).
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