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Introduction. This paper consists of three independent parts. In
the first part the main result is Theorem 3 which gives a thorough de-
scription of the closure of an analytic subgroup of a real Lie group.
In the second part we determine the Lie algebra of the "commutator
group" (A, B) of two subgroups A and B of a real Lie group, where A
or B is an analytic subgroup. In the third part we show that the ex-
ponential map of a simply connected solvable real Lie group G is an
isomorphism of analytic manifolds if G is the topological component of
identity of a real algebraic group.

By L we denote the Lie algebra functor. Thus if /: Gt —+ G2 is a
morphism of Lie groups then L(f): L{G^ —> L(G2) is the differential of /.
If G and H are Lie groups and a continuous homomorphism H-+Aut(G)
is given then we denote by G K H the corresponding semi-direct product.

1. Closure of an analytic subgroup. Let G be a real Lie group
and A an analytic subgroup of G. Our objective is to describe the
closure B = A of A in G. The basic results are due to Malcev [6]. For
a concise exposition of Malcev's results we refer to Hochschild's book [5],
p. 190-193. The case when G = GLn(R) has been considered recently by
M. Goto [4].

For any group G we denote by Gf its commutator subgroup, i.e.,
the subgroup of G generated by all the commutators (x, y) = xyx~ιy~γ

with x, y eG. A vector group is by definition a simply connected abelian
analytic group. If V is such a group then exp:L(F)—>V is an isomor-
phism of analytic groups. This enables us to consider F a s a real vector
space.

THEOREM 1. Let G be a real Lie group and A an analytic subgroup
of G. We shall use ~ for the closure operator in G. Let Ad be the
adjoint representation of B = A in L(B). Then

( i ) If a subspace of L(B) is stable under Ad (A) then it is also
stable under Ad(J5). Hence, every analytic subgroup of B which is
normalized by A is in fact normal in B;

(ii) B'= A';
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(iii) There exists a vector subgroup V a A such that V is a torus,
B = AV and Af]V= V.

PROOF. ( i ) This follows from the fact that Ad (A) is dense in Ad(B).
(ii) We present here the proof from [5] because we need the details

of it for the proof of (iii).
Let f: B* -+ B be the universal group covering and identify L(B*)

with L(B) via L(f). Let A* be the analytic subgroup of B* such that
L(A*) = L(A). By (i) A* and (A*)' are normal analytic subgroups of B*
and consequently they are closed in i?* by [5], Theorem 1.2, p. 135.
From now on we shall use ~ to denote closure of subsets in both G and
£*. Since A = B we must have A*F = £* where F = Kerf. Thus
(£*)' = (A*Fy c (A*F)' = (A*Ϋ = (A*)'. Hence (£*)' - (A*)' and conse-
quently (ii) holds.

(iii) By [5], Theorem 1.2, p. 135 B*/A* is simply connected and since
(£*)' = (A*)' it follows that B*/A* is a vector group. By [5], Theorem
1.2, p. 189 there is an abelian analytic subgroup X of I?* containing the
center Z of #*. Since FcZaX and F is discrete it follows that F is
finitely generated. F/(A* Π F) is torsion-free because it is isomorphic
to a subgroup of B*/A*. Hence we have a direct product decomposition
F = (A* Πί7) x ί7! where Fx is a free abelian subgroup of F of rank n,
say. Let F be an analytic subgroup of X of minimal dimension such
that Yz) F19 Since F1 is free abelian it is clear that Y must be a vector
group and dim Y — n. We have Ϋ = Y because F1 = Ft and Y/Ft is a
compact subgroup of B*/Fλ.

By (ii) A*F is a normal analytic subgroup of 5*. By [5], Theorem
1.2, p. 135 A^Y = A* Y. Therefore, from A* FID A * ^ = A*F and AΛF =
£* it follows now that £* = A* Γ. From here we find that Y/(A* ΠY) =
£*/A* i s a vector group and consequently A* Π Y is also a vector group.
Let T7 be a vector space complement of A* Π F in F. Since F = F we
also have A ^ T T F = A* Π F and W= W. We have J5* = A*Y = A*W
and A* Π TF - (A* n F) Π TF = 1 so that

(1) B* = A*\XW .

Since A*F = A*(A*F Π TΓ) and A*F = 5* it follows from (1) that

(2) A*FΠW= W.

From F = (A* Π î 7) x JPX and Yz)Ft it follows that we have a direct
product decomposition Fn F = 2^ x (A* Π F Π F). Since F f l Γ i s a dis-
crete sebgroup of F of rank n we must have A* ΓΊ F Π J?7 = 1 and Yf]F =
Fγ. Therefore S = f( Y) = F/( Yf] F) = Y/F1 is a torus and V = /(A* n Γ) =



REAL ANALYTIC GROUPS 383

4* Π Γ is a vector group. It follows from (1) that B = /(£*) = Af(W)
and since f(W)aSczB we have B = AS.

Using that Y~DF1 and A*F = A*F1 we get

( 3 ) A*F ΠYF= (A*^ n Y)F = (A* n Y)F .

By applying / to (3) we obtain An S = V.

By (3) we have F(A* f]Y) = A*Ff) YFz>A*Fn W and then using (2)

we get F(A* n Y) => W. Therefore

V = f(F(A* n Y)) => Vf(W) = /((A* ΓίY)W) = f(Y) = S .

Since V c S is clear, we have V = S and the proof is completed.

THEOREM 2. Let G, A and B = A be as in Theorem 1. Then there

exists a 1-parameter group φ\R-+A such that φ(R) = S is a torus and

B = AS.

PROOF. This follows from Theorem 1 (iii) and the next Lemma.

LEMMA. Let S = Rn/Zn be a torus and let V be a vector subgroup
of S such that V = S. Then V contains a generator of S, i.e., an ele-
ment such that the cyclic group generated by it is dense in S.

PROOF. Let U= L(V)aRn where as usual we identify L(S) with
Rn. Then by hypothesis U + Zn is dense in Rn and we have to show
that for suitable a e U the group D = Za + Zn is dense in Rn.

Let alf , am be a basis of U and let PaR be the Q-vector space
generated by the coordinates of all aί9 1 ^ i ^ m. Since Q(P) is a
finitely generated extension of Q, it is clear that we can choose aί9 , am

in R so that the sum of Q-vector subspaces Q, aj?, a2P, , amP of R
is direct. We claim that we can take a — aλaλ H 1- amam.

We shall use the technique of associated subgroups as presented in
Bourbaki [1]. For any subgroup XaRn one defines its associated sub-
group X* c Rn as follows: y e X* if and only if the dot product (x, y) e Z
for all xeX. We need only to show that D* = 0. Since D* = (Za)* Π
(ZnY = (Za)* Π Zn we see that y e 2?* if and only if y e Zn and <α, y) = 0.
By our choice of a19 , αm this implies that (aif y) = 0 for 1 ^ i ^ m.
Thus D* c (U + Z")* and since U + Zw is dense in iT we have (U + Z*)* =
0. Hence D* = 0 and the proof is completed.

Recall the following criterion of Malcev for closedness of an analytic
subgroup A of G: We have A = A if and only if for every 1-dimensional
analytic subgroup P of A its closure in G is contained in A. Our Theorem
2 gives an explanation for the validity of that criterion.
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Now we can state our main result.

THEOREM 3. Let G, A and B = A be as in Theorem 1. Then B =
(A K S)/N as an analytic group, where

( i ) S is a torus acting on A via a morphism φ\ S —• Aut (A);
(ii) There is a closed vector subgroup V of A and an injective mor-

phism g: V—+S such that g(V) is dense in S and N is the graph of g;
(iii) N is contained in the center of A\K S or, equivalently, φ(s)(v) —

v and φ(g(v))(a) = v~ιav for all se S, v e V, a e A.
Conversely, if A is an analytic group and φ, g, V satisfy (i), (ii)

and (iii) then the canonical image of A is dense in (A K S)/N.

PROOF. Let V be as in Theorem 1 (iii) and let S = V (as in the
proof of that theorem). Since S is a torus and V = A Π S it is clear
that V is closed in A. We let S act on A by conjugation, i.e., φ(s)(a) =
sas'1 for ae A, s e S. Then we have the canonical morphism A\K S-+
AS — B whose kernel N consists of all elements (v, v~1) for v e V. Hence
if we define g: V—>S by g{v) = v'1 then N is the graph of g and g(V)
is dense in S. Since in A K S we have

(a, ϊ)(v, v~ι) = (av, V1) = (vv~ιav, v~ι) = (v, v~ι){a, 1) ,

(1, s)(v, v~ι) — (svs~\ sv'1) = (v, v^s) — (v, i -^Xl, s)

for all aeA, v eV, s e S we conclude that N is contained in the center
of A\K S. Thus, all three conditions have been verified.

For the converse it suffices to note that the closure of the canonical
image of V under the composite map F - > 4 - > ( A K S)/N is the canonical
image of S in (A K S)/N.

2. The Lie algebra of (A, B). Let G be a group and A, B two
subgroups of G. By (A, B) we denote the subgroup of G generated by
all commutators (α, 6) = aba~~ιb~ι with a 6 A and b eB. Since

= (a1a)b(a1a)~1b~1baιb~~1ar1

= (GMX, δ)(αx, 6)"1

is valid for all a, ax e A and b e B it follows that A normalizes (A, B) and
similarly B normalizes {A, B).

From now on G will be a real Lie group, A an analytic subgroup
of G and B an arbitrary subgroup of G. Let Ad be the adjoint repre-
sentation of G in L{G) and put
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THEOREM 4. Let G, A, B, P be as just defined above. Then (A, B)
is an analytic subgroup of G and L((A, B)) coincides with the smallest
subalgebra M of L(G) such that MZD P and [L(A), M] cikf.

PROOF. Since (A, B) is clearly arcwise connected it follows from [3]
that it is an analytic subgroup of G.

If aeL{A), teR, beB then

exp (ta)b exp (— tά)b~ι = exp (ta) exp ( - t Ad (b)(a)) e {A, B) .

By taking the derivative at t = 0 we get

a - Ad (b)(a) e L((A, B)) ,

which proves that P c L((A, B)). Since A normalizes (A, JS) we must
have [L(A), L((A, B))] c L((A, B)). By definition of M we must have
MaL((A,B)).

Now let C be the analytic subgroup of G such that L(C) = M. For
fixed beB and sufficiently small aeL(A) we have

exp {a)b exp (— a)b~ι = exp (a) exp (— Ad (b)(a))

= exp(JΓ(α, -Ad(δ)(α)))

where H(a, β) is the Campbell-Hausdorff series. If β = a — Ad (b)(a) then
β e P so that

H(a, -Ad (6)(α)) - H(α, - α + £) e AT

because every homogeneous part of this series is in M. This proves
that (exp(a), b)eC for sufficiently small aeL(A). If alf a2eA are such
that (a19 b)eC and (α2, 6)eC then since A normalizes C we have also

{axa2, b) = ajOiba^a^b"1

= α^αg, b)baτιb~ι

= αi(α2> δ)αf1(α1, b)eC .

Since A is connected these facts clearly imply that (α, δ) 6 C for all α 6 A.
Since 6 e B was chosen arbitrarily we conclude that (A, B) a C. Therefore
we have L((A, B)) a L(C) = M.

This concludes the proof.

THEOREM 5. Let G be a real Lie group and A, B analytic subgroups
of G. Then L((A, B)) coincides with the smallest subspace N of L(G)
such that Ni) [L(A), L(B)]> [L(A), N]czN and [L(B), N] c JV.

PROOF. By Theorem 4 we have a — Ad {b)(a) e L{(A, B)) for all
aeL(A) and beB. By taking b = exp(tβ) where teR and βeL(B) we
obtain
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a - Ad (exp (tβ))(a) = a - Exp (t ad (β))(a) e L((A, B)) .

By taking derivative at t = 0 we get [α, /S] e L((A, £)), i.e., [L(A), L(B)] c
L((A, 5)). Since A and 5 normalize (A, 5) we have that [L(A), L((A, £))]c
L((A, B)) and [L{B\ L((A, B))] c L((A, £)). Hence, by definition of N we
have NczL((A,B)).

On the other hand it is clear that N is a subalgebra of L(G). Let
C be the analytic subgroup of G such that L(C) — N. Then by Bourbaki
[2], Chap. Ill, § 9, Proposition 4 we have (A, ΰ ) c C s o that L((A, B)) c N.

This completes the proof of L{(A, B)) = iV.

3. On the exponential map. It is well-known that for simply con-
nected nilpotent real analytic group G the exponential map exp: L(G) —> G
is an isomorphism of analytic manifolds [5], Theorem 2.1, p. 136. When
G is simply connected and solvable then it is known that the following
are equivalent:

( i ) exp is an isomorphism of analytic manifolds;
(ii) exp is injective;
(iii) exp is surjective.

This list of equivalent statements can be extended by another five state-
ments. We refer to [7] or [2], p. 278-279 for more details.

THEOREM 6. Let G be a simply connected solvable real analytic
group such that G is the topological identity component of a real alge-
braic group. Then exp: L(G) —>G is an isomorphism of analytic mani-
folds.

PROOF. Since real algebraic groups have only finitely many topological
connected components the theorem follows from the next lemma and
the equivalence of statements (i), (ii) and (iii) above. Note also that in
an algebraic group the centralizer of an element is also algebraic.

LEMMA. Let G be a solvable, simply connected, real analytic group
such that exp is not surjective. For aeG let Z(a) be the centralizer
of a in G and Zx{a) the identity component of Z(a). If a& exp (L(G))
then the image of a in Z(a)IZ1(a) has infinite order.

PROOF. Assume that an e Zx{a) for some n ^ 1. Then an belongs to
the center of Zx(a) and by [5], Theorem 1.2, p. 189 there exists a e L(^(α))
such that an = exp(α). If b = exp(— a/n) then (ab)n = 1. Since G is
solvable and simply connected it has no nontrivial compact subgroups
and we get ab = 1. Thus a e exp (L(G)), contradicting our hypothesis.

The proof is completed.

Since simply connected nilpotent groups are algebraic, Theorem 6
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generalizes the result mentioned in the beginning of this part of the
paper.

The condition stated in Theorem 6 for exp: L(G) —> G to be an isomor-
phism of analytic manifolds (assuming that G is solvable and simply
connected) is not necessary. An example is the group G such that L{G)
has a basis x, y, z such that [x, y] = 0, [z, x] = x + y, [z, y] = y. The
Lie algebra L(G) is not algebraic but exp: L(G) —• G is bijective.
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