Tôhoku Math. Journ. 28 (1976), 373-379.

ON THE NON-EXISTENCE OF FLAT CONTACT METRIC STRUCTURES

DAVID E. BLAIR

(Received March 29, 1975)

1. Introduction. It is well known that a contact manifold admits a Riemannian metric compatible with the contact structure. While such a metric is not unique, the contact structure imposes some restriction on the curvature. For example, if the characteristic vector field ξ of the contact structure generates a 1-parameter group of isometries, then the sectional curvature of all plane sections containing ξ is equal to 1 [1] (1/4 in their normalization). This is a restrictive class, however as the tangent sphere bundles are usually not of this type (Tashiro [3]). Our purpose here is to show that the metric cannot in general be flat. Precisely we prove the following theorem.

THEOREM. Let M be a contact manifold of dimension ≥ 5 . Then M cannot admit a contact metric structure of vanishing curvature.

The author expresses his appreciation to Professor J. Martinet for many valuable conversations.

2. Preliminaries. Let M be a (2n + 1)-dimensional C^{∞} manifold. We say that M has an *almost contact structure* if it admits a tensor field φ of type (1, 1), a vector field ξ and a 1-form η such that $\eta(\xi) = 1$ and $\varphi^2 = -I + \eta \otimes \xi$. From these conditions one can easily obtain $\varphi \xi = 0$ and $\eta \circ \varphi = 0$. Moreover on a C^{∞} manifold with an almost contact structure (φ, ξ, η) there exists a Riemannian metric g satisfying

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for any two vector fields X and Y on M. Note that η is the covariant form of ξ and we call (φ, ξ, η, g) an almost contact metric structure. We also define a 2-form Φ by $\Phi(X, Y) = g(X, \varphi Y)$.

On the other hand we say M has a contact structure if it admits a global 1-form η such that $\eta \wedge (d\eta)^n \neq 0$. It is well known that a manifold with a contact structure η admits an almost contact metric structure such that

$$d\eta(X, Y) = g(X, \varphi Y)$$
.

We then say that (φ, ξ, η, g) is a contact metric structure.

On a manifold with an almost contact structure (φ , ξ , η), S. Sasaki and Y. Hatakeyama [2] defined four tensors $N^{(1)}$, $N^{(2)}$, $N^{(3)}$ and $N^{(4)}$ by

$$egin{aligned} N^{\scriptscriptstyle(1)}(X,\ Y) &= [arphi,arphi](X,\ Y) + 2d\eta(X,\ Y) arphi \;, \ N^{\scriptscriptstyle(2)}(X,\ Y) &= (\mathscr{L}_{arphi X}\eta)(Y) - (\mathscr{L}_{arphi Y}\eta)(X) \;, \ N^{\scriptscriptstyle(3)}(X) &= (\mathscr{L}_{arepsilon} arphi)X \;, \ N^{\scriptscriptstyle(4)}(X) &= (\mathscr{L}_{arepsilon} \eta)(X) \;, \end{aligned}$$

where $[\varphi, \varphi]$ denotes the Nijenhuis torsion of φ and \mathscr{L} denotes Lie differentiation.

It is easy to show that for a contact metric structure $N^{(2)}$ and $N^{(4)}$ vanish [2]. Recall that the Riemannian connection V of g is given by

$$\begin{split} 2g(\mathcal{F}_X Y,\, Z) &= \, Xg(\,Y,\, Z) \,+\, Yg(X,\, Z) \,-\, Zg(X,\, Y) \\ &+\, g([X,\,\,Y],\, Z) \,+\, g([Z,\,X],\,\,Y) \,-\, g([\,Y,\,Z],\, X) \;. \end{split}$$

Using this and the coboundary formula for d one can straightforwardly obtain a general formula for the covariant derivative of φ for an almost contact metric structure (φ , ξ , η , g), namely

$$egin{aligned} (2.1) & 2g((arPsi_Xarphi)Y,Z) = 3d\varPhi(X,arphiY,arphiZ) - 3d\varPhi(X,Y,Z) \ &+ g(N^{(1)}(Y,Z),arphiX) + N^{(2)}(Y,Z)\eta(X) \ &+ 2d\eta(arphi Y,X)\eta(Z) - 2d\eta(arphi Z,X)\eta(Y) \,. \end{aligned}$$

We close this section with the following lemma.

LEMMA. On a manifold with a contact metric structure $\mathscr{L}_{\varepsilon}\varphi$ is a symmetric operator.

PROOF. Note that for a contact metric structure $(\varphi, \xi, \eta, g), \nabla_{\xi}\xi = 0$ and $\nabla_{\xi}\varphi = 0$. Now

$$g((\mathscr{L}_{\xi}\varphi)X, Y) = g(\nabla_{\xi}\varphi X - \nabla_{\varphi_{X}}\xi - \varphi \nabla_{\xi}X + \varphi \nabla_{X}\xi, Y)$$
$$= g(-\nabla_{\varphi_{X}}\xi + \varphi \nabla_{X}\xi, Y)$$

which vanishes if either X or Y is ξ . For X and Y orthogonal to ξ , $N^{(2)} = 0$ becomes $\eta([\varphi X, Y]) + \eta([X, \varphi Y]) = 0$; continuing the computation we have

$$egin{aligned} g((\mathscr{L}_{arepsilon}arphi)X,\ Y) &= \eta(arphi_{arphi X}Y) + \eta(arphi_{arphi}arphi Y) \ &= \eta(arphi_{arphi}arphi X) + \eta(arphi_{arphi Y}X) \ &= g((\mathscr{L}_{arphi}arphi)Y,\ X) \ . \end{aligned}$$

374

3. Proof of the theorem. For a contact metric structure (φ, ξ, η, g) , $N^{(2)} = 0$ and $\Phi = d\eta$, so equation (2.1) becomes

 $2g((arPsi_{X}arphi)Y,Z)=g(N^{\scriptscriptstyle(1)}(Y,Z),\,arphi X)+2d\eta(arphi Y,X)\eta(Z)-2d\eta(arphi Z,X)\eta(Y)\;.$

Setting $Y = \xi$ and using the Lemma of Section 2 we obtain

that is

$$-arphi arphi_{_X} \hat{arphi} = -rac{1}{2} (\mathscr{L}_{arepsilon} arphi) X - X + \eta(X) \hat{arphi} \; .$$

Applying φ we have

(3.1)
$${\it V}_{\scriptscriptstyle X}\xi = -\frac{1}{2} arphi(\mathscr{L}_{\xi} arphi) X - arphi X \, .$$

We denote by R_{xy} the curvature transformation $\nabla_x \nabla_y - \nabla_y \nabla_x - \nabla_{[x,y]}$. Then using (3.1)

$$egin{aligned} R_{arepsilon X} & \xi = arepsilon_arepsilon arpsilon_X \xi = arphi_arepsilon arphi_X \xi - arphi_{arepsilon,Xarphi} \xi \ & = -rac{1}{2} arphi arepsilon_arepsilon(arepsilon,arphi arphi) - arphi arepsilon_arepsilon X + rac{1}{2} arphi(\mathscr{L}_arepsilon arphi) arepsilon(arepsilon, X) + arphi arepsilon(arepsilon, X) \ & = rac{1}{2} arphi arepsilon_arepsilon arepsilon_arepsilon arepsilon arepsilon_arepsilon arepsilon_arepsilon arepsilon_arepsilon X arepsilon) - arphi arepsilon_arepsilon X + rac{1}{2} arphi (\mathscr{L}_arepsilon arphi) arepsilon(arepsilon, X) + arphi arepsilon(arepsilon, X) \ & = rac{1}{2} arphi arepsilon_arepsilon arepsilon_arepsilon arepsilon_arepsilon arepsilon arepsilon arepsilon_arepsilon arepsilon arepsilon$$

Therefore

(3.2)
$$\frac{1}{2}R_{\xi x}\xi = \frac{1}{2}\varphi(\nabla_{\xi}\nabla_{\varphi x}\xi - \nabla_{[\xi,\varphi x]}\xi) + \frac{1}{2}\varphi\nabla_{(\mathscr{L}_{\xi}\varphi)x}\xi - \varphi\nabla_{x}\xi$$

and hence since M is flat

$$egin{aligned} 0 &= rac{1}{2}arphi \Big(-rac{1}{2}arphi (\mathscr{L}_{arepsilon}arphi)^{2}X - arphi (\mathscr{L}_{arepsilon}arphi)X \Big) - rac{1}{2} (\mathscr{L}_{arepsilon}arphi)X - X + \eta(X) \xi \ &= rac{1}{4} (\mathscr{L}_{arepsilon}arphi)^{2}X - X + \eta(X) \xi \;. \end{aligned}$$

Thus we define a symmetric operator h by $h = (1/2) \mathscr{L}_{\varepsilon} \varphi$ and we have shown that $h^2 = -\varphi^2$; in particular note that h has rank 2n. Clearly we also have $h\xi = 0$, eigenvectors corresponding to non-zero eigenvalues are orthogonal to ξ and the non-zero eigenvalues are ± 1 . D. E. BLAIR

Recall that $d\eta(X, Y) = (1/2)(g(\mathcal{V}_X\xi, Y) - g(\mathcal{V}_Y\xi, X))$ as can be easily deduced from the coboundary formula for d. Thus

$$2g(X, \varphi Y) = g(-\varphi hX - \varphi X, Y) - g(-\varphi hY - \varphi Y, X)$$

giving

$$g(arphi h X, \ Y) = g(arphi h Y, \ X) = -g(h \, Y, \ arphi X) = -g(h arphi X, \ Y) \; ,$$

that is h and φ anti-commute. In particular then, if X is an eigenvector of the eigenvalue +1, φX is an eigenvector of -1 and vice-versa. Thus the contact distribution D defined by $\eta = 0$ is decomposed into the orthogonal eigenspaces of ± 1 which we denote by [+1] and [-1].

We now show that the distribution [-1] is integrable. If X and Y are vector fields belonging to [-1], (3.1) gives $\mathcal{V}_X \xi = 0$, $\mathcal{V}_Y \xi = 0$. Thus since M is flat $0 = R_{XY} \xi = -\mathcal{V}_{[X,Y]} \xi = \mathcal{P}h[X,Y] + \mathcal{P}[X,Y]$. But $\eta([X,Y]) =$ $-2d\eta(X,Y) = 0$, thus applying φ we have h[X,Y] = -[X,Y].

We denote by $[-1] \bigoplus [\xi]$ the distribution spanned by [-1] and ξ , it is also integrable. For, any vector field belonging to [-1] can be written as φX for some $X \in [+1]$. Thus (3.2) becomes $0 = (1/2)R_{\xi X}\xi = -(1/2)\varphi V_{[\xi,\varphi X]}\xi$ and (3.1) shows that $[\xi, \varphi X] \in [-1]$.

Since $[-1] \bigoplus [\xi]$ is integrable, we can choose local coordinates (u^0, \dots, u^{2n}) such that $\partial/\partial u^0, \dots, \partial/\partial u^n \in [-1] \bigoplus [\xi]$ and we define local vector fields $X_i, i = 1, \dots, n$ by $X_i = \partial/\partial u^{n+i} + \sum_{j=0}^n f_i^j \partial/\partial u^j$ where the f_i^j 's are functions chosen so that $X_i \in [+1]$. Thus X_1, \dots, X_n are n linearly independent vector fields spanning [+1]. Clearly $[\partial/\partial u^k, X_i] \in [-1] \bigoplus [\xi]$ for $k = 0, \dots, n$ and hence ξ is parallel along $[\partial/\partial u^k, X_i]$. Therefore using (3.1)

$$0 = \mathcal{V}_{\left[\partial/\partial u^k, X_i\right]} \hat{\xi} = \mathcal{V}_{\partial/\partial u^k} \mathcal{V}_{X_i} \hat{\xi} - \mathcal{V}_{X_i} \mathcal{V}_{\partial/\partial u^k} \hat{\xi} = -2 \mathcal{V}_{\partial/\partial u^k} \varphi X_i$$

from which we have that

$$(3.3) \hspace{1cm} \overline{\hspace{-1.5cm} V_{\varphi_{X_i}}} \varphi X_i = 0 \; .$$

Similarly, noting that $[X_i, X_j] \in [-1]$,

$$0=R_{{\scriptscriptstyle X}_i{\scriptscriptstyle X}_i}{\mathop{ar{\xi}}}=-2{\mathop{ar{
abla}}}_{{\scriptscriptstyle X}_i}{\mathop{arphi}} X_j+2{\mathop{ar{
abla}}}_{{\scriptscriptstyle X}_i}{\mathop{arphi}} X_i$$

giving

or equivalently

(3.5)
$$\varphi[X_i, X_j] = -(\operatorname{\mathbb{V}}_{X_i} \varphi) X_j + (\operatorname{\mathbb{V}}_{X_j} \varphi) X_i .$$

Using (3.3) and (3.1)

$$0 = R_{X_i \varphi X_i} \xi = - \nabla_{[X_i, \varphi X_i]} \xi = \varphi h[X_i, \varphi X_j] + \varphi [X_i, \varphi X_j]$$

376

from which

$$g([X_i, \varphi X_j], X_k) = -g(h[X_i, \varphi X_j], X_k) = -g([X_i, \varphi X_j], X_k)$$

and hence

(3.6)
$$g([X_i, \varphi X_j], X_k) = 0$$
.

We now compute $(V_{X_i}\varphi)X_j$ explicitly. Using (3.3), (3.6) and (3.5)

$$egin{aligned} &2g((arPsi_{X_i}arphi)X_j,\,X_k)=g([arphi,\,arphi](X_j,\,X_k),\,arphi X_i)\ &=-g([X_j,\,X_k],\,arphi X_i)\ &=g(-(arphi_{X_j}arphi)X_k+(arphi_{X_k}arphi)X_j,\,X_i)\;. \end{aligned}$$

Since $\Phi = d\eta$, the sum of the cyclic permutations of *i*, *j*, *k* in $g((\mathcal{F}_{X_i}\varphi)X_j, X_k)$ is zero. Thus our computation yields $g((\mathcal{F}_{X_i}\varphi)X_j, X_k) = 0$. Similarly

$$2g((arPsi_{X_i}arphi)X_j,arphi X_k) = g(-[X_j,arphi X_k] - [arphi X_j, X_k], arphi X_i) \ = g(-arPsi_{X_j}arphi X_k + arPsi_{arphi X_k} X_j - arPsi_{arphi X_j} X_k + arPsi_{X_k}arphi X_j, arphi X_i)$$

which vanishes by (3.3) and (3.4). Finally

$$egin{aligned} &2g((arPsi_{X_i}arphi)X_j,\,\xi)=g(arphi^2[X_j,\,\xi]-arphi[arphi X_j,\,\xi],\,arphi X_i)+2d\eta(arphi X_j,\,X_i)\ &=2g(arphi hX_j,\,arphi X_i)+2g(X_j,\,X_i)\ &=4g(X_j,\,X_i)\;. \end{aligned}$$

Thus for any vector fields X and Y in [+1],

(3.7)
$$(\nabla_X \varphi) Y = 2g(X, Y)\xi.$$

Note that (3.5) now gives $[X_i, X_j] = 0$.

Before differentiating (3.7) we show that $V_{X_i}X_j \in [+1]$. First note that

$$-2g({ extsf{\sigma}}_{_{arphi X_i}}X_j,\,X_k)=2g(({ extsf{\sigma}}_{_{arphi X_i}}arphi)X_j,\,arphi X_k)$$
 ,

but the right side vanishes by a computation of the type we have been doing. Therefore

$$g(arphi_{X_i}X_j,\,arphi X_k)=\,-\,g(X_j,\,arphi_{X_i}arphi X_k)=\,-\,g(X_j,\,[X_i,\,arphi X_k])=\,0$$

by (3.6). That $g(\mathcal{V}_{X_i}X_j, \xi) = 0$ is trivial.

Now to show the non-existence of flat contact metric structures for dim $M \ge 5$, we shall contradict the linear independence of the X_i 's. Note also that we have so far used only the vanishing of $R_{XY}\hat{\varsigma}$. Equation (3.7) can be written as

$$abla_{X_i} arphi X_j - arphi arphi_{X_i} X_j = 2g(X_i, X_j) arphi \; .$$

Differentiating this we have

D. E. BLAIR

$$egin{aligned} &
abla_{X_k}
abla_{X_i} arphi X_j - (
abla_{X_k} arphi)
abla_{X_i} X_j - arphi
abla_{X_k}
abla_{X_i} X_j \ &= 2(X_k g(X_i, \, X_j)) \xi - 4g(X_i, \, X_j) arphi X_k \;. \end{aligned}$$

Taking the inner product with φX_i , remembering (3.7) and that $V_{X_i}X_j \in [+1]$, we have

$$g({
abla}_{X_k} {
abla}_{X_i} arphi X_j, \, arphi X_l) - g({
abla}_{X_k} {
abla}_{X_i} X_j, \, X_l) = -4g(X_i, \, X_j)g(X_k, \, X_l) \; .$$

Interchanging i and k, $i \neq k$ and subtracting we have

 $0 = g(X_i, X_j)g(X_k, X_l) - g(X_k, X_j)g(X_i, X_l)$

by virtue of the flatness and $[X_i, X_k] = 0$. Setting i = j and k = l we have $0 = g(X_i, X_i)g(X_k, X_k) - g(X_i, X_k)^2$ contradicting the linear independence of X_i and X_k .

4. Remarks. In dimension 3 it is easy to construct flat contact metric structures. For example, consider \mathbb{R}^3 with coordinates (X^1, X^2, X^3) and define a contact structure η by $\eta = (1/2)(\cos X^3 dX^1 + \sin X^3 dX^2)$. Then ξ is $2(\cos X^3 \partial/\partial X^1 + \sin X^3 \partial/\partial X^2)$ and the metric g whose components are $g_{ij} = (1/4)\delta_{ij}$ gives a flat contact metric structure. Geometrically we see that $\partial/\partial X^3$ spans the [+1] distribution and $\sin X^3 \partial/\partial X^1 - \cos X^3 \partial/\partial X^2$ spans [-1], i.e. ξ is parallel along [-1] and rotates as we move parallel to the X^3 -axis. Note also that η is invariant under the group of translations generated by $\{X^4 \rightarrow X^4 + 2\pi, A = 1, 2, 3\}$ and therefore the 3dimensional torus T^3 also carries this structure. It is still an open question whether or not T^5 carries a contact structure, but if it does it can not have a flat associated metric.

Constructing the diffeomorphism of R^3 that maps this η to the standard contact form $\eta_0 = (1/2)(dZ - YdX)$ we see that the metric g_0 whose components are given by

$$rac{1}{4} egin{pmatrix} 1 \,+\, Y^2 \,+\, Z^2 & Z & -Y \ Z & 1 & 0 \ -\, Y & 0 & 1 \end{pmatrix} \,,$$

makes (η_0, g_0) a flat contact metric structure.

Note that in the proof of our theorem, the vanishing of $R_{\xi x}\xi$ is enough to obtain the decomposition of the contact distribution into the ± 1 eigenspaces of the operator $h = (1/2) \mathscr{L}_{\xi} \varphi$. Moreover $R_{XY}\xi = 0$ for X and Y in [-1] is sufficient for the integrability of [-1]. Thus we have the following result.

THEOREM. Let M be a contact manifold of dimension 2n + 1 with contact metric structure (φ, ξ, η, g) . If the sectional curvature of all

378

plane sections containing ξ vanish, then the operator $h = (1/2) \mathscr{L}_{\xi} \varphi$ has rank 2n and the contact distribution is decomposed into ± 1 eigenspaces of h. Moreover if $R_{xy}\xi = 0$ for X, $Y \in [-1]$, M admits a foliation by n-dimensional integral submanifolds of the contact distribution.

We close with an example of such a structure. Consider on \mathbb{R}^5 with coordinates (X^1, \dots, X^5) , the standard contact structure

$$\eta = rac{1}{2} (dX^{\scriptscriptstyle 5} - X^{\scriptscriptstyle 3} dX^{\scriptscriptstyle 1} - X^{\scriptscriptstyle 4} dX^{\scriptscriptstyle 2}) \;.$$

Then η together with the metric g whose components are given by

$$rac{1}{4}egin{pmatrix} 1+(X^3)^2+(X^5)^2&X^3X^4&X^5&0&-X^3\ X^3X^4&1+(X^4)^2+(X^5)^2&0&X^5&-X^4\ X^5&0&1&0&0\ 0&X^5&0&1&0\ -X^3&-X^4&0&0&1 \end{pmatrix}$$

is a contact metric structure. g is not flat, but $R_{\xi X}\xi = 0$ and $R_{\partial/\partial X^3\partial/\partial X^4}\xi = 0$. Defining h by $h = (1/2) \mathscr{L}_{\xi} \varphi$, one can easily check that h determines a decomposition of the contact distribution into ± 1 eigenspaces of h. [-1] is spanned by $\partial/\partial X^3$ and $\partial/\partial X^4$ and [+1] is spanned by $\partial/\partial X^1 - X^5\partial/\partial X^3 + X^3\partial/\partial X^5$ and $\partial/\partial X^2 - X^5\partial/\partial X^4 + X^4\partial/\partial X^5$.

References

- Y. HATAKEYAMA, Y. OGAWA and S. TANNO, Some properties of manifold with contact metric structures, Tôhoku Math. J., 15 (1963), 42-48.
- [2] S. SASAKI and Y. HATAKEYAMA, On differentiable manifolds with certain structure which are closely related to almost contact structure II, Tôhoku Math. J., 13 (1963), 281-294.
- [3] Y. TASHIRO, On contact structures of tangent sphere bundles, Tôhoku Math. J., 21 (1969), 117-143.

INSTITUT DE RECHERCHE MATHEMATIQUE AVANCEE LABORATOIRE ASSOCIÉ AU C.N.R.S. 7, RUE RENÉ DESCARTES 67084 STRASBOURG CÉDEX AND MICHIGAN STATE UNIVERSITY EAST LANSING, MICHIGAN 48824

.1