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1. Introduction. The saturation class for approximation by the
Bernstein polynomials

±(n W -χγ~*fβ-
was investigated in [1], [4] and [6]. In these papers it is shown that
the optimal rate of convergence of Bernstein polynomials Bn{f, x) to
f(x) is O(l/n) as n —• °o. It was shown by Butzer [3] (see also [5]) that
for an approximation process Bn(f, k, x), constructed by certain combi-
nations of Bernstein polynomials, the rate of convergence to f(x) may
be much faster than O(l/n).

The approximation processes treated, Bn(f, k, t), are defined induc-
tively by:

(1.2) Bn(f, k, ί) = (2* - 1Γ[2*2U/, k - 1, ί) - BΛ{f, fc - 1, t)] ,
Bn(f9 0, t) = Bn(f, t) .

Similarly, using Szasz operators, one can define

(1.3) Srif, K t) = (2k - l)"l[2»Sr/1(/, k - 1, ί) - Sr(/, k - 1, «)]

where Sτ(f, 0, t) = Sτ(f, t) is the Szasz operator

(1.4) Sr(/, 0, ί) Ξ Sr(/, t) Ξ e-^ Σ τ r ( -

The Szasz operator Sr(f, t) was introduced by Szasz [9]. A local
saturation theorem for Sr(f, t) was proved by Suzuki [8].

A saturation theorem for a given approximation process determines
its optimal rate of convergence and the class of functions for which that
rate is achieved. The optimal rate here would mean that only for a
fixed finite dimensional space of functions can we improve on that rate.

In this paper local saturation theorems for Bn(f, k, t) and Sr(/, k, t)
will be derived. The following special case of our main theorem is
representative for the type of results achieved:
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THEOREM 1. Let f(x)eC[0,1] and 0<a<b<l, then \\n\2Bι%(f, x)-
B%(f9x)-f(x))\\ciatβ^Mι{afβ) for all [a,β]a(a,b) if and only if
fw(x)eA.C.[a, β] and f^eL^a, β) for all [a, β]<z(a, b); \\n%2B2n(f, x)-
Bn(f, x) - f(x))\\cia,βi = o(l) for all n-+oo [a, β]a(a, b) if and only if
f e C\a, b) and (1 - 2x)f'Z)(x) - 3(a?(l - x))f{i)(x) = 0 in (a, b).

2. The main result. The saturation result for combinations of
Bernstein polynomials and Szasz operators will be given in Theorems 2
and 3 respectively.

THEOREM 2. For feC[0, 1], 0 < α < α 1 < 6 1 < 6 < l and {nj con-
tains no2

m

(2.1) /(/; ntt k, a, b) = nf+1 \\B.t(f, k, •) - / ( )II«..H ^ M

implies

(2.2) f{2k+l)(x) 6 A.C.(a, b) and Γ2k+2)(x) e LJia, b\ ,

and (2.2) implies / ( / ; n, k, aj)^ ^ Mγ\

(2.3) I(f; n; k, a, b) = o(l) n -> co implies Σ Qi{t)f{i){t) = 0

/or t e (α, 6), ami Σ^ffiίO/^ί*) ^ (a> δ) implies /(/; n, fc, ax, δj^oί
where qt(t) are fixed polynomials that depend on k.

THEOREM 3. .For /eC[O, <χ>), |/(έ) | ^ iίβL f /or some if
τ m = τo2~m ^

(2.4) J ( / ; r4, Λ, a, 6) EE rr*" 1 | |SΓ <(/ f Λf •) - /(OIIOU.H ^ ^

implies (2.2) a?tcί (2.2) implies J(f; τ, k, alf 6X) ^ -9^;

(2.5) J(f; τi9 ky a, b) - o(l) r , ^ 0 + implies"Σ Qi(t)f{ί)(t) = 0

/or £ 6 (a, b) where Qi(t) are fixed polynomials that depend on k and i
and Σ2 f c + 2 Qi(t)f{i)(t) = 0 in (a, 6) implies J(f; τ, k, alf b,) = o(l).

We shall prove Theorem 2 and discuss afterwards only the points
of the proof of Theorem 3 in which it differs from that of Theorem 2.
The gap between the necessary and the sufficient conditions, that is the
fact that the conditions are not on the same interval, though not a big
gap is vital since even in the case of Bernstein polynomials approxima-
tion, the result will be wrong if aί = a and bt = b.

One can write Theorems 2 and 3 in such a way that the conditions
are necessary and sufficient as is common for saturation results. For
example, Theorem 2 could be written as:



BERNSTEIN POLYNOMIALS 365

T H E O R E M 2*. For f e C[0, 1], nt = no2* and / ( / , ni9 k, a, β) =
nk+1 \\Bnί(f, k, .) - / ( )l lc[^], we have forO<a<b<l

1. / (/ , nif k, a, β) <̂  M{a, β) for all [a, β] c (α, b) if and only if
f{2k+1)(x) e A.C.(a, β) and Γ2k+2)(x) e L^a, β) for all [a, β] c (α, 6).

2. / ( / , w4, fc, α, β) = o(l) /or αii [α:, /?] c (α, 6) if and only if
feC2k+2(a, b) and Σ2k+2 Qi(t)f{ί)(t) = 0 in (α, 6).

3. Main steps of the proof. We shall outline the proof of Theorem
2 in this section and actually prove it pending proof of Lemmas 3.1
and 3.4 which we shall prove in Sections 4, 5 and 6. We shall discuss
in Section 7 the points in which the proof of Theorem 3 differes from
that of Theorem 2.

I. We first observe, using the recursion relation (1.2), that
Bn(f> k, t) —> f(t) for all k and therefore is an approximation process.
The following lemma will establish the equivalence of the conditions
nk+1\\Bn(f, k, •) - /(0IU..6] - 0(1) (or o(l)) and nk+ί\\B2n(f, k, •) -
B.(f,k, -)llcc..»i = 0(1) (or o(l)).

LEMMA 3.1. If feC[O, 1] and nt = 2*n0f then nk+1\\Bn.(f, k, -) -
k+1\/( )IUα,H ^ ikf/or αiί i implies nk+1\\B2ni(f, k9 •) - B.4(/, &,

/ o r αίi i and the latter implies nk+1 \\Bn.(f, k, •) — / ( )ll<7[α,δ] ^ 4ikf, / o r
[α, 6] satisfying 0 ̂  α < 6 ̂  1.

Therefore it is enough to prove our theorem for \\B2n.(f,k, •)—
Bn.(f, k, )ll<7[α,6] in place of / ( / ; w, A;, a, b).

II. Using Lemma 3.1, we have nk+1\\Bni(f, k, •) - Bήt(f, ky -)\\ciaM^M.
For any g e C50 such that supp # c (α, 6), we have g e L^a, b] and since
L^a, 6]* = Loo[a> b], there exists using Alaoglu's theorem a function h,
heLoo[a, 6], and a subsequence {wio} of {^J such that for any g as above,
we have

(3.1) (n^(B2ni(f, k, ) - B%ip{f, k, •)), ?(.)> - < λ ( ), flr(.)> .

III. For / e C2k+2 we can calculate (nk+1(B2n(f, k, ) - £„(/, k, )), £?( )>
directly using the following asymptotic relation, (see also Butzer [3]) for
n*+1(B2n(f, k; t) - Bn(f, k, ί)).

LEMMA 3.2. For f e C[0,1] Π C2k+2[a, b] and t e (a, b),

(3.2) n^{B2n(f, h t) - B.(f, k, t)} = Σ ^
i=2

s P2,+2(Z>)/ + 0(1)

where Q(k, j ; t) = qj(t) are polynomials in t and in particular
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(3.3) Q(fc, 2k + 2, t) = (7^(1 - t))k+1

Q(k, 2k + 1, ί) = C,(ί(l - *))*•(! - 2ί) .

Formula (3.2) follows Butzer's paper [3] but our method here yields the
proof for other approximation processes (see the proof of Theorem 3).

IV. Using Lemma 3.2 we have for feC2k+2[a, b]

(3.4) lim <nf+1 (*,.,(/, k, •) - Bnt{f, k, .)), ff( )>

= (P2k+2(D)f( ), *(•)> = </(•), Pa+,(D)ff( )>

and the last expression is a continuous linear functional on /(£). In
order to compare (3.1) and (3.4) one has to prove (3.4) for all / e C[0, 1]
satisfying

(3.5) \\nk+\B2nί(f, k, .) - BΛi(f, k, .))lk..« ^ M .

V. One first observes the following implications:

LEMMA 3.3. For /eC[0, 1] δ > 0 and ^ - nQ2\ n\+δ \\B2n.(f, k, • ) -
Bn{f, k, )Hc7[a,δ] ̂  M for all nt implies nϊ\\B2n.(f, k - 1, •) - Bn.(f, k -
1, OllcCH^^i.

Using induction and since our theorem is well-known for k = 0, it
is clear that (3.5) implies /(2fc)(α0 e LTO[α, 6] and therefore f{2k)(x)eLι[af b].
Finally we will prove the crucial lemma.

LEMMA 3.4. For feC[0,1] and f{2k)(x)eL1[af b],

(3.6) |Λ*+1<(ftΛ<(/, fc, •) - BUi(f, k, .)), </(•)>!

where K depends on g {and its derivatives).

Therefore, if / satisfies (3.5), there exists a sequence ft e C2fc+2 such
that fi-+f in the norm ll/ll^i] + \\f{2k) I U ^ I and using (3.6) we have

lim (nk+1{B2ni{f, k, •) - Bnt(f, k, •)), flf( )>

- lim lim (nk+1{B2ni{flf k, .) - B%i(fl9 k, .)), g(.)) = I.

But since /, e C2fe+2, we have, using (3.4) for /„

l-+oo

and therefore (3.4) is valid for any / satisfying (3.5).

VI. Combining (3.1) and (3.4), we obtain
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This implies P2k+2(D)f(t) = Σ 2 f c + 2 Qi(t)f{i)(t) = Λ(ί) in the distribution sense.
Since the above equation is solvable for h e Loo, we obtain /(2fc+2)(£) e
Loo(α, 6). (Actually we need to treat just a second order differential
equation, since we know f{21c)(t) e Loo(α, 6) by the induction step.)

VII. The ''small o" part is similar with only one difference: instead

of <Λ( ), flr(.)> = </(•), Pa+.Φ)flr( )>, we have </(•), P2* f c + 2ΦM0> = 0.

VIII. The second implication, that is fm+2){x) e L4a, b] and fl2k+ί)(x) e
A.C.[a, 6], implies / ( / , nif k, a19 bt) ̂  M and P2k+2(D)f(x) = 0 in [α, 6]
implies / ( / , w, &, a:, δ j = o(l) w—•oo is computational and will be omitted.

Lemmas 3.1-3.4 will be proved in the following sections.

4. Proof of Lemmas 3.1 and 3.3. Wherever a norm is written in
this section, it is the C[α, b] norm.

PROOF OF LEMMA 3.1. The first implication follows

" ί+Ίl f tΛ/ . fc , )-B%i(f,k, Oil

^(2*+ri(2Λi)*+iιift.<(/,fc, o - / ( o n

The second implication follows

*ϊ+ ι 11 / ( 0 - Bni(f, k, 011 = lim ̂ +111 ft..4(/f fcf 0 - BUi(f, k,
m-»oo

2 ί - I

% i r
i I I ^ ( Z , k, -) - B,«-^(/t k,

PROOF OF LEMMA 3.3. Using the recursion relation (1.2) and
t — %02S we have

I(N) = {2" - 1) Σ 2ki(B2ni(f, k, t) - Bni(f, k, t))

= Σ 2ki(2kBini(f, k~\ t) - B2ni{f, Ar\ ί)) - Σ 2kί(B2ni(f, k-l,
N N

Σ e}ki(e)kτ> (f JL-i f\ _ τ> (f Ί.-1 f\\ __ γ>
i=0 i=0

B%f(f, k-1, ί))

H ( / f ft - 1, t) - B.w + 1(/, ft - 1,

- 2*[B;.β(/,- ft - 1, ί) - 5. 0 (/, ft - 1, t)] .

Using the assumption of our lemma,

| | I ( i N D | | ^ ( 2 * - N ' '
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and therefore

\\2k^[B2nN+1(f, k - 1, •) - BUN+ι(f, k - 1, )]ll ^ 2(2* - l)nόk~δ + K = K,

which concludes the proof.

5. An asymptotic relation. We shall prove here results that we
shall utilize also in later sections.

Define

(5.1) W(n, t,u)^±(n V (1 - tγ~mδ(u - H) ,

LEMMA 5.1. —W(nf t, u) = (JϋLλwin, t, u)(u-t) where p(t) = t(l-t).
dt \ p(t) I

PROOF.

< N » \ 7 7 / ^^^Λ \ i \ / I

\ — m

m=0 \ m I V ' \ W / 1 - t

= ^T^(w, ί, u)u - n W{n, t, u) + n W(n, t, u)u

LEMMA 5.2. Let Am(n, t) be given by

(5.2) AJn, t) = nm\w(n, t, u)(u - t)mdu ,

then:

a) Am+ί(n, t) = p(t)nAm^(nf t) + p(t)(d/dt)AJn, t);
b) Am(n, t) is a polynomial in t and n;
c) The degree of Am(n, t) in n is [m/2];
d) The coefficient of nm in the polynomial A2m(n, t) is C^tY and

in the polynomial A2m_1 is C2p(tYp'(t).

PROOF. We first observe that the recursion formula (a) follows
Lemma 5.1. The remainder of the conclusion is derived from (a) by
computation.

Using the recursion relation defining Bn(f, k, t) (1.2), we obtain
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(5.3) B.(f, M ) = Σ «(i, k)B2jn(f, t)
3=0

and

(5.4) B2n(f, k, t) - Bn(f, k, t) = Σ C(j, k)B2Jn(f, t) .
3 = 0

Obviously, a(j, k) and C{j, k) are constants that depend only on
(1.2), and satisfy Σ*=o OL{Q, k) = 1.

PROOF OF LEMMA 3.2. We have, using Taylor's formula,

nk+ί[B2n(f, k, t) - Bn(f, k, t)]

Σ J K) ( )
A + l f Γ 2k + 2

- nk+1 Σ C(j, k)\ W(n2*, t, u)\ Σ
3=0 J L m=o

+ e(w, ί)(w - t)2k+t~\du .

The rest of the proof follows Lemma 5.2 and some computations.

6. Proof of the crucial step. In this section we shall prove Lemma
3.4 but for the proof we shall need a preliminary lemma.

LEMMA 6.1. Let C(j, k) be defined by (5.4), then

fc+i

(6.1) Σ C(j, k)2~mj = 0 for m = 0, 1, ., k .

PROOF. It is easily seen that C(0, 0) = - 1 , C(l, 0) = 1, C(0, 1) = 1,
C(l, 1) = - 3 and C(2, 1) = 2 and therefore (6.1) is valid for k = 0 and
k = 1. Proceeding by induction,

(2* - 1){IU/, *, t) - Bn{f, k, *)}

( ) Σ
i=o

= 2*f t , , (/ f k - 1, t) - B.(f, k-l,t)

= 2* Σ C(i, fc - l)B,i+l.(/, t) - Σ C(j, k - l)B2in(f, t) ,
3=0 3=0

and therefore (2k - l)C(j, k) = 2fcC(i - 1, k - 1) - C(i, k - 1), i ^ 1 which
yields

fc+l fe+1 k

(2* - 1) Σ C(i, A;)2-ίlB = 2k Σ C(i - 1, fc - 1)2"'- - Σ C(i, A; - 1)2"^
i=o i=i i=o

which is equal to zero by the induction hypothesis for m = 1, k — 1.
For m = k, we have
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ft+ 1 ft

2" Σ C(j - l, ft - 1)2-'* - Σ C(i, & - i)2-'» = o .
j=ί i=o

PROOF OF LEMMA 3.4.

l f l fc4-l

Σ C(i, ft)PT(2%, ί, u)f(u)g(t)dudt
oJo i=o

S 6 f 1 ft4-l 2fc4-2 -I

I Σ C(i, ft) Σ Wφn, t, u)f(y,)-^g«\u){t - ufdtdu
a JO j = 0 1 = 0 l\

flfl fc+1

+ nk+ι\ \ Σ C(j, k)W(2jn, ί, u)f(u)ε(t, u)(t - u)2k+2dtdu
Jojo i=o2*4-1

We estimate /2 first,

| |7 2 | | S max |e(ί, u)\ Σ,\C(j, k) |max»*+ 1Γ( V(2%, ί, i)(ί -
3=1 j JOJO

^ iΓmax|s(ί, w)| ^ iί2 .

To estimate the Ju we evaluate the following typical expression

Ir = nk+ι[b[ Σ C ( i , k)W(2jn, t, u)[f{u)urg[8){u)ψdtdu .
JαJo 3=0

We write φ^u) = f(u)urg{s)(u), n5 = 2jn and recall i ̂  2k + 2. Since

», ί, «)«'* = Σ
m=0

Σ CO", *) Σ ^ ( —

fc+l

j , k)
+ 1) (ns + 1 + i)

V ^ J , ( m \ ( m A - ^ \ ( m _1_

x 2-ι Φi[ )l + ) * "I +

(m/»j )€(o,6) ηfij \ γi /\7lj 71 j ' V 71 j

We can write

VLLL = i + Ai. + . . . + _A_ + of 1

(nj + 1) (uj + 1 + i) n5 (ujf \nk+1

and f m , 1 \ / m , i \ _ / m N

^ — + — j . . . ^ [- j _ ̂  ^
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where neither dlf , dk nor e0, , et^ depends on j .
Using the Euler-Mclaurin formula [2, pp. 268-275] we obtain

Σ ΦA —

~2k-hl . ^ H \ Λ

where h(u) = ^(iφ&S which, since P2k(t) is a fixed polynomial and
0,1] = M, implies

'/ < II h { 2 k ) II

nf
Therefore,

3 = 0

A. +
ίl3-

2ifc^<(w)^1)

The second term is O(n~k+% since \\f{m)\\LlM] ^ C( | | / |U l [ β i H + \\R{2k) |Ul[β>6])
for m^2fc. Recalling Lemma 6.1, Σί£J C(i, fc)(l/wf) = 0 for ra = 0, 1, • , fc
we observe that the first term is 0(1) at most.

7. The Szasz operator. The difference in the statement of Theorem
3 is that I f(t) \ ̂  KeLt (instead of f(t) e C) and this assures us of the
convergence of the operator Sτ(f, k, t) locally. Lemmas corresponding to
Lemmas 3.1, 3.3 and 3.4 are stated and proved similarly. In the corres-
ponding lemma to Lemma 3.2, (3.3) is replaced by

(7.1) Q(fc, 2k + 2, ί) = C3t
k+1 , Q(k, 2k + 1, t) = CAt

k .

To show (7.1), one recalls that for the Szasz operators,

(7.2) , t, u) = , t) ,

-%-Wiτ, t, u) =
dt

and therefore

(7.3)

Defining A*m{τ, t) by

(7.4) A*(τ, t) = r—

tτ, t, u)(u - t)

t, u), (it - t)"> ,
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we derive

(7.5) A*(τ9 t) = vitΓAt^τ, t) + V(t)^-At{τ, t)

ot
for p(t) — t (instead of t(l — t)) and the rest follows similar steps where
τ~ι takes the place of n.

We would like to express our thanks to Professors S. Riemenschneider
and A. Meir for many stimulating conversations and important comments.
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