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Let H = H(X, Σ, m) be an abstract H°° space; that is, (X, Σ, m) is a
probability measure space and H is a nontrivial σ(L°°(m), Lϊ{m)) closed
(i.e. weak* closed) complex subalgebra of L°°(m) such that leH and

\uvdm = \udm\vdm for all u,veH. We fix arbitrarily an abstract H°°

space H throughout this paper. In our former works [13,15] we have
shown how the function values of an f e H distribute on the outer
boundary of its essential range. In this note we shall show how the
function values of an feH distribute on the interior of its essential
range (Proposition 2.1 and Theorem 2.3). We apply it to the distributions
of conjugate functions of conjugable bounded functions and those of
functions of class H+ (definition will be given later). And then we shall
see how our results can be applied to the classical case and the function
theory. We give new proofs of all the theorems in Davis [1] without
use of Brownian motion and some theorems of Stein-Weiss [10]. In Section
1 we give some preliminaries from the abstract Hardy space theory and
definition of conjugation operation and some of its properties [6,12].
We state there three key lemmas for this paper, which we already know
[15]. Our main results on the distributions of functions in H are treated
in Section 2. Proposition 2.1 is general but weak one and Theorem 2.3
is given under assumption of Jensen measure. In Section 3 we treat the
distributions of conjugate functions of bounded functions and functions
of class H+. Our results are generalizations of those of B. Davis. In
Section 4 we shall see that a theorem of Stein-Weiss is valid for our
case. We compute precisely how function values of conjugate functions
of characteristic functions distribute. In Section 5 we remark that results
of Zygmund and Pichorides are also valid for our setting. In Section
6 we apply our results in former sections to the classical case. We shall
also see how our method is applied to the distributions of conjugate
functions (Hubert transforms) of characteristic functions on the real line.

1. Preliminaries and Notations. We write un—>u if a sequence of
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m-measurable functions un converges m-almost everywhere to an m-
measurable function u as n tends to infinity. L = L(m) is the set of
all m-measurable functions and L* = L\m) is the set of all functions
/ e L(m) such that there exist uneH with | un | < 1, un —> 1 and unf e
L°°(m). H* = H\m) is the set of all functions / € L(m) for which there
exist uneH and FeL*(m) such that \un\ < F and un-+f. L* and H*
are algebras and we have L°°(m) c L*, i ϊ c if* c V and H = if* Π L°°(m).
Let us denote by φ the multiplicative linear functional on H defined by

φ(u) = \udm for ueH. Then there exists a unique extension of φ to a

multiplicative linear functional φ:H*—>C such that if un1ueH\FeV
and if |wj < F and ww—• w, one has φ(un)-+ φ(u). We recall further the
function class H+. H+ consists of all m-measurable functions / such
that Re / ^ 0 and e~tf e H for all t > 0. We have I T c iϊ* and for non-
constant feH+ Reφ(f)>0 and f~ιeH+. As is easily seen, if / e i ϊ a n d
Re / ^ 0, / e H+. If / . e fl"+ and / . ->/, then / e if+ [12, p. 165]. Next
we recall the definition of conjugate functions.

DEFINITION 1.1. A real-valued function / e L is said to be conjugable
if there exists g 6 L such that

(1) expt(f + ig)eH* for all teR = (-co, «>).

In this case # is unique up to an additive real constant and there exist
a unique geL and a real number λ(/) such that

(2) ^(exp t(f + ig)) = etλ{f) for all t e R .

This unique g is denoted by / .

It is known that if / is bounded and conjugable, λ(/) = \fdm. Note

also that if / is bounded, (1) is equivalent to

(3) exp t(f + ig)eH for all t e R ,

since H = H* n L".

REMARK. The following are equivalent.
( i ) All / 6 L°°(m) are conjugable.

(ii) All characteristic functions are conjugable.

(iii) m is a Szegδ measure, i.e., if feLι(m), / ^ 0 and \ufdm =

for all ueH, then / = 1.

An approximation theorem holds for bounded conjugable functions,
which we learned in a lecture of Kδnig.

LEMMA 1.2. Let f be bounded and conjugable. Then there exist
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hneH such that

139

in)

iv)

v)

I Im hn dm = 0 ,

\hndm—> \fdm .

We rewrite the proof by Kδnig, since he gave it only in his lectures.
Let s = u + iveC, a> 0 with a | u | < 1. Then

( 4 )
2 V1 + as 1 — as

1

1 - (auf
~ \n\

+ as 1 — as 11 1 — (auf

Let c = ll/lloo, and α > 0 with ac < 1. Then, if we write h = f + if,
by assumption we have exp t(l ± ah) e H for all t e R. It is easily seen
that

(1 ± ah)~ι = Γ exp - ί(l ± ah)dt e H .
Jo

Let

ha = (1 -

Then, since ha = (1 - (αc)2)((l - ^/Z')"1 - (1 + αfe)"1)/2α, we have ha e ίZ".
Further by (4) we get \ha\ ^ \h\ and |Reλβ | ^ | / | . Since

\ exp — t(l ± ah)dm = exp — t( 1 ± αl/dmj ,

1(1 ± ah^dm are also real. Hence \ Im hadm = 0. Therefore, if αw > 0,
can < 1 and if an —• 0, the sequence of functions hn = feαn satisfies i), ii),
iii), iv). Further, since | exp thn | ̂ exp ί | f\ e L°°cL*, by the continuity of φ

^(exp thn) = exp t^(λJ —» (̂exp ίfe) = exp t \fdm .

Hence \feΛώm = φ(hn) —> 1/ώm. This completes the proof of the lemma.

We next recall some results of our previous work.

LEMMA 1.3 (An extension of Lowner's lemma). Let ueH with \u\t^
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and \udm = &, |6 | < 1. Then

J I e " -

_ l-\rb\*
|β"-rδ|*

/or α« 0 < r < 1 and eue Γ = {\z\ = 1}.

/or α«3/ Lebesgue measurable set E on T

\ dθ\ ±μ-Ldm = \ ±=^de
JE ){\u(x)\<i}\eθ — u\ jE\eiθ — b\

— 2πm{x € X: u{x) e E) .

Further, if \n\ — 1 and \udm = 0,

m{x: u(x) e E) = L{E) ,

where L is the normalized Lebesgue measure on T. [13, p. 90].

LEMMA 1.4. Let u, b be the same as in Lemma 1.3. Let 1 ^ p < oo,
f(eiθ)eLp(T) and f(reίθ) be the Poίsson integral off. Then the composed
function f°u = f(u) is well-defined and

i) lim f(ru) = f(u) m-a.e. and in Lp(m) ,
r-*l

ϋ)

iii) \f(u)dm = /Audm) . [15, p. 521] .

Finally in this section we recall the definitions of Jordan domain and
Garatheodory domain. A Jordan domain is a bounded domain in the
complex plane C bounded by a closed Jordan curve. A bounded domain
D in C is said to be a Caratheodory domain if the boundary dD of D
coincides with that of the unbounded component of the complement of
the closure of D. Naturally D is simply connected. If D is a domain
in C and aeD, μa>D will denote the harmonic measure on the boundary
of D with respect to a and D. If / is a mapping of a set E into another
set F and G is a subset of E, we denote by /((?), as usual, the set
{f(g)- 9 6 G}. We use these notations throughout this paper.

2. Distributions of functions in abstract H spaces. As a conse-
quence of Lemma 1.4 we give first

PROPOSITION 2.1. Let D be a Caratheodory domain in C and aeD
be fixed. Let G be a Jordan domain such that aeGczD. Suppose further
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there exists a bounded harmonic function on D such that

a(z) = 1 on dGf)D

= 0 on dGndD

^ 1 on D\G .

Then, if u eH, \udm = a, m{x: u(x) e D) = 1, it holds

m{x: u(x) $ G U (dG Π 3D)} ^ μα>(?(3G Π D) ,

or equivalently

m{x: u(x) e G U (dG Π 32))} ^ μα,G(3G Π 3D) .

PROOF. Let g be a conformal mapping of the unit disc U onto the
domain D such that g(0) = α. Then the composed function tfo*/ is bounded
and harmonic in U: We know by Theorem 3.1 in [15] that g~ι°ueH,
\g~ιoudm — g^nudmj = g~ι(a) = 0 and \g~ι°u\ ^ 1. Hence by Lemma
1.4 we have

(5) [aogog-'oudm = a o gng'1* udmj = a(g(0)) = a(a) = μα,β(3G Π D).

On the other hand, since a(z) ^ 1 on D\{G U (dG Π 3-D)}, using Lemma
1.4 aogog-ioufa) ̂  1 on the set {u(x) g G U (dG Π dD)}. Hence by (5) we
get the desired inequality.

If m is a Jensen measure for if, i.e., log \udm ^ I log \u\dm for all

ueH, then one can get the best result in this direction. Before stating
it we give a lemma, which we need only for the case of bounded sub-
harmonic functions.

LEMMA 2.2, Suppose m is a Jensen measure for H. Let D be a
Caratheodory domain, and ueH, \udmeD and m{x:u(x)eS}=l. Then,
if f is a subharmonic function in D such that for a p:l<p<°o there
exists a harmonic majorant g(z) of \f(z)\p, the composed function f(u)
is well-defined and

\f(u)dm ̂  f([udm^ .

PROOF. It is sufficient to show in the case where D is the unit disc
Ϊ7by Theorem 3.1 in [15]. By an easy variant of a theorem of Littlewood
(see for example Tsuji [11, p. 173]), f(z) has the representation of the form

( 6 ) f(z) = h(z) - (log ±JZ*L dμ(a) ,
J a — z
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where h is harmonic in U, l i m ^ h(reίθ) = l i m ^ f(reίθ) a.e. and

sup\\h(reiθ)\pdθ < oo
0<r<lJ

and μ is a σ-finite nonnegative measure on U such that I (1 — \a\)dμ(a)< oo.

Hence by Lemmas 1.3 and 1.4 f(u) is well-defined. Since ueH, \u\^l,
we have (a — ru)/(l — aru) e ίZ* for all 0 < r < 1. Hence by assumption

1 — aru

a — ru
dm ^ — % — ru

— aru
dm = log 1 — arb

a — rb

where 6 = \udm. Since |(1 — aru)/(a — ru)\ ^ 1, we have via Fubini's

theorem

( 7 ) \\loe — aru
a — ru

1 — arb

dμ(a)dm = [[ log - a r u

a — ru
dmdμ(a)

log dμ(a) .
a — rb

For h(z) we have by Lemma 1.4

( 8 ) \h(u)dm = h(b) .

Combining (6), (7) and (8) we get

( 9) \f(ru)dm ^ f(rb) (0 < r < 1) .

Let (τ(2) be the Poisson integral of gUp(eiθ). Then, since by Lemma 1.4
G(ru) converges in Lp(m) to G(u), there exist a sequence r, and an FeLp(m)
such that |(τ(r/M) | ^ F . Since \f(ru)\ ^ |ίf(r^)| 1 / p ^ G(ru), by Lebesgue's
dominated convergence theorem we get

lim Xfir^dm = \f(u)dm ,
ί- oo J J

and hence combining this with (9)

\f(u)dm ^ f(b) .

This completes the proof.

REMARK. If the conclusion in Lemma 2.2 is valid for all bounded

subharmonic functions in D and for all u e H with \udm e D and

m{x: u(x) e D] = 1, then m is a Jensen measure for H. In fact, let v 6 H.
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Then there exist M > 0 and aeC such that uΛfΐφ) + a)dm(x)eD and

m{x:Mv(x) + aeD} = l. Hence by assumption, for any 0 < p < o o we have

likΓveZm ^ \\Mv\pdm, since \z — a\p is bounded and subharmonic in D.

Hence \vdm ^ (\I^\pdm\ *, 0 < p < oo. Letting p —> 0 we have Uώm ^

exp I log I v I dm, the Jensen inequality for v.

Now we state our main result.

THEOREM 2.3. Suppose m is a Jensen measure for H. Let D be a
Caratheodory domain and aeD be fixed. Let G be a Jordan domain

such that α e G c ΰ . Then if ueH, \udm = a and m{x: u(x) eD) = 1,

m{x: u(x) $ G U (3G Π 3D)} ^ μα,G(3G Π D) .

PROOF. Let α(z) be the harmonic function on G such that a(z) = 1
on 3G Π D, a(z) = 0 on 3G Π 3ί). Let

/3(s) = α(z) on G

= 1 on D\G .

Then — /3(a;) is bounded and subharmonic in D. Hence by Lemma 2.2

= /S(α) = a(a) = μa,G(SG Π D) .

Since /5(u) = 1 on {x: u(x) $G{J(dGf] 3D)}, we have

m{x: u(x) ί G U (3G Π 3i))} ^ j"β>σ(3G Π ΰ ) -

This completes the proof.

REMARK 1. If m is not Jensen, the above theorem is in general false.
In fact, let 0 < a < 1 and X = {\z\ = 1} U {α} and

1 + a 2π \ 1 + a 1 + a2 - 2α cos θ

where δa is the Dirac measure at {a}. Let H = H~(U)\X. Then H =
H(X, m) is an abstract H°° space. Let

1 + a 1 + r2 - 2rcosθ

Then / is harmonic in U\[a, 1], and f(eiθ) = 0 f or 0 < θ < 2π and f(r) > 1
for a < r < 1. Hence
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1 - α
[α, 1])

1 + α

Hence there exists θ0, 0 < θ0 < π/2 such that

μo(L/+ u i^-; < -—-— ,

where L± are the line segments joining a and e±θ° respectively, and μQ

is the harmonic measure with respect to the origin and the domain D
bounded by the curves CQ = {eiθ: θ0 < θ <2π — ΘQ} and L+, L_. Let u(z) = z

for zeX. Then ueH(dm), \u(z)\ ̂  1, Iu(z)dm = u(0) = 0. Now

m{z e X: u(z) e U\(D U Co)} = | ^ A + 1 f *
1 + α 2π J-»o 1 + α2 — 2α cos (?

Π E01 + α

This implies the theorem is false in this case.

REMARK 2. The proofs of Lemma 2.2 and Theorem 2.3 show that
they are valid if m is Jensen only for the linear span of {1, u, u2, •••}.
In particular, they always hold for the functions of the form f(u), where
u e H, I u I = 1 and / is a bounded holomorphic function on the unit disc
U. In fact if P is a polynomial in z, then by Lemma 1.3 we get

j log I P(f(u)) I dm = j log I P(/(«<#)) | dμbfU ^ log | P(/(6)) |

where 6 = \udm. That is m is Jensen for the linear span of {1, f(u),

(f(u))\ . . . } .

REMARK 3. In Theorem 2.3 the constant in the inequality is the
smallest possible one if there exists a nonconstant ueH with |u\ = 1.
In fact, there exists veH with \v\ = 1 and iwZm = G in this case. Let

g(z) be a conformal mapping of Σ7 onto G such that #(0) = a. Then for
the composed function g(v) we have

m{x: g(v)(x) e dG} = 1 , \g(v)dm = firίUώmj = α

and by Lemma 1.3
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m{x: g(v)(x) £ G U (3G Π 3D)} = m{x: v(x) e g~\dG Π D)}

n D)) = μatG(SG n D).

3. Distributions of conjugate functions of bounded functions and
of functions of class H+. In this section we apply our results in the
previous sections to the distributions of conjugate functions of conjugable
bounded functions and of functions of class H+. As consequences of
Lemma 1.3 or Proposition 2.1 we have two results. / e L«(m) means
that / is a bounded real-valued m-measurable function.

THEOREM 3.1. Let f e L^m), 0 <; / ^ 1 and be conjugable. Let g
be a conformal mapping of U = {| z \ < 1} onto {w e C: 0 < Re w < 1} such

that g(0) = [fdm. Then

i) m{x: f(x) ^ y) ^ 2L{eίθ: Im g(eiθ) ^ y] y > 0 .

ii) m{x: f(x) ^ -y) ^ 2L{β": Im g(e^) ^ »} » > 0 .

In particular,

iii) m{x: \f(x)\ ^ y} ^ Const. e~*y , y > 0 .

We give here two proofs. The first one uses Lemma 1.3 and the
second one uses Proposition 2.1. The first one gives somewhat better
estimate than the second, but the second is clearer than the first.

FIRST PROOF. Let v(x) = f(x) + if{x) and vn= fn + ihneH be a

fndm—> \fdm =

<7(0). For each fixed n there exists an R > 0 such that m{x: vn(x) e

{z 6 C: 0 5g Re z ^ 1, —i? ^ I m ^ ^ R}} = 1 and lv%ώm lies in that rectangle.

Since g~ι can be approximated uniformly on that rectangle by polynomials
in z (by virtue of Walsh theorem), g~\vn) clearly belongs to H and

\s~1(v«)dW' = g'yX^ndmj and \g~\v^\ <; 1. Letting n —• oo, we get
g-ι(y)eH, \g-\v)dm = g-ιQvdm) = flΓι(J/<2m) = 0, and \g'ι(v)\ ^ 1.
Let D = {z e C: 0 < Re z < 1}, λ > 0 and Cx = {iy: y ^ λ}, C2 = {1 + i?/: # ̂  λ}.
Then if ζ e D and 0 < λ ^ Im ζ, by symmetry we see that

Since harmonic measures are invariant under conformal mappings, we
have for each x e X with Im v(x) = f(x) ^ λ, 0 < Re v(x) = f(x) < 1,
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2π )iimgi€i
e

" 2
Integrating the both sides with respect to m on the set {x e X: fix) ^ λ,
0 < fix) < 1} and using Lemma 1.3, we have

L{eiθ: Im g{eiθ) ^ λ} - m{z: flΓ'ίΦOJe{eiθ: Im ίr(β") ^ λ}}

^ i.m{a;:/(αj) ^ λ, 0 < /(a?) < 1} .
Δ

Hence

m{x: f(x) ^ λ} + m{a;: /(α?) ̂  λ, fix) = 0 or 1}

^ 2L{β": Im flr(e'O ̂  λ} ,

which implies the desired inequality i). The same argument yields the
inequality ii), since L{eίθ: Imgieίθ) Ξ> y} = L{eίθ: lmgieiθ) ^ — y). iii) is
gained by direct calculation or by a theorem of Stein-Weiss, which we
shall prove later by our method.

SECOND PROOF. AS in the first proof we have g~\v) e H, \g~ιiv)dm = 0
and I g~\v) | ^ 1. Let λ > 0 and Cί9 C2, D be as before. Let C3 = {iy:y ^ λ},
C4 = {1 + iy: y ^ λ}, C5 = {x + iλ: 0 < x < 1} and G be the domain in D
bounded by curves C3, C4, Cβ. Let α(a ) be the harmonic function on G
satisfying α(z) = 1 on C5, α(2;) = 0 on C3 U C4. Then by the principle of
reflection, α(z) can be continued harmonically into D\G. If we denote
by a{z) this continued function, we have aiz) = 2 on CΊ U C2 and | α(^) | ^ 1
on D\G. Now applying Proposition 2.1 we have

m{x: fix) ^X} = m {x: g~\vix)) $ g

Since aiz) is harmonic on D and aiz) = 1 on C5, a:(z) = 0 on C3 U C4, aiz) =2
on CΊ U C2, we have

which proves i). The same argument yields ii). iii) is showed as before.
Next we state similar estimates for functions in class H+.

THEOREM 3.2. If ve H+ is nonconstant and y > 0, then

) < 2 R e φ^v)
i) m{x: Im v(x) ^ y + Im

ii) m{x: Im v(x) ^ - » + Im

πy

2 R e φ

πy
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PROOF. We may assume φ(v) = 1 without loss of generality. Let
g(z) = (z - l)/(z + 1). Then g maps the half plane S = {z e C: Re z > 0}
onto the unit disc U and g{l) = 0. We know g(v) e H, \ g(v) | <: 1 and
φ{g{v)) = g(φ(v)) = g(ΐ) = 0 [12, p. 165-166]. Hence quite in the same
way as in the proofs of Theorem 3.1 we have

m{x: Im v(x) ^ y) ^ j"if{Rθ.>o,im,<,,}({a + iy: x > 0})

2 f °°

+ x2 π

The same argument yields the second inequality.

REMARK 1. In Theorems 3.1, 3.2 the bounds are the smallest possible
ones respectively, if there exists a nonconstant ueH with | u | = 1, as
is shown similarly to Remark 3 in Section 2.

REMARK 2. Let h be a characteristic function of an arc of the unit

h(eίθ)dθ = \fdm, where / is given in Theorem

3.1. Then the Poisson integral k of h + ih is a conformal mapping of

the unit disc onto the strip {z e C: 0 < Re z < 1} satisfying fc(0) = \fdm

and hence a candidate for g in Theorem 3.1.
If m is a Jensen measure, we can say more.

THEOREM 3.3. Suppose m is a Jensen measure. Let /eLS(w), 0 5j
/ <̂  1 and be conjugable. Let y > 0 and h(z) be a conformal mapping
of the unit disc U onto the rectangle R = {0 < Re w < 1, — y < Im w < y}
such that h(0) = I/dm. Then

m{x: \f(x)\ ^y}^ L{eiθ: |Imfc(e")l = y) .

PROOF. Let g(z) be a conformal mapping of U onto D = {0 < Re w<l)

with 0(0) = \/ώm, and J = {x ± iy:0 <x <1} and v = f + if. Then as

in Theorem 3.1, g-^eH, \g~ι{v)\ <; 1, Iflf̂ vjrfm = 0. Applying Theorem

2.3 to g~ι(v), we have

m{x: |/(αθl ^y} = m{x: g-\v{x)) $ g~ι{R) U g'\dR Π

On the other hand
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which completes the proof.

THEOREM 3.4. Suppose m is a Jensen measure. If veH+ is non-
constant and y > 0, then

m{x: |Im φ ) - Im φ(v)\ ^ y) < R e ^ ) .
V

PROOF. We may assume φ(v) == 1 without loss of generality. A
similar argument to the proof of Theorem 3.3 yields

m{x: |Im v(x)\ ^ y} ^ ft,ίBe,>0,-ir<im,<ι,>({B ± iy: x>0}) .

The right side is equal to C(y) = (2/ττ) \ (1 + x2)~γdx, where I/a = sinh

π/2y. Let &(#) = JΓ 1 - C(y). Then lim, J ! fc(y) = 0 and

k'(y) =, -y~* + y~\l + sinh2 πβyY1 cosh π/2»

= 2Γ2((cosh π/22/)-1 - 1) < 0 for y > 0 .

Hence we get &(#) > 0 for y > 0, which completes the proof.

REMARK. Also in the above two theorems, the same remarks as
those to Theorems 3.1 and 3.2 hold.

Combining Theorem 3.4 with the remark to Definition 1.1 we have
the following result whose proof we omit.

COROLLARY 3.5. If m is a Szego measure, the conjugation operator
is a linear operator of weak type (1.1), i.e.

y

for all y > 0 and feLι{m).

One more result is the following one of strong type which is valid
without additional assumption for m.

THEOREM 3.6. Let f e L£(m), 0 <; / <; 1 and be conjugable. Let g
be a conformal mapping of the unit disc U onto {w e C: 0 < Re w < 1}
such that g(0) = \fdm. Then, if Φ is a nonnegative convex function
On (— oo, oo),

[φ(f)dm ^ — \2πφ(Im g{eiθ))dθ .
J 27Γ Jo

PROOF. Let u(x) = f(x) + if(x). Then as in the proof of Theorem

3.1 we get g'^u) e H, \ g~\u) \ ̂  1 and [g-ι(u)dm = 0. For each 0 < r < 1

let
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2π Jo \eιθ — rg (u)\2

Then, since (l/2π)Γ(l - \a\2)/\eiθ - a\2dθ = 1 for all α: |α | < 1, we have
Jo

by Jensen's inequality
φ(K(χ)) ^ ^ - f i j - l ^ W φ ( I m ( β

2π Jo I et<? — rg \u) |2

Integrating the both sides with respect to m and using the first part of
Lemma 1.3 and Fubini's theorem

[2πφ(Im g(eiθ)[φ(kr(x))dm ^ — [ φ ( I m g(eiθ))dθ .
J 2π Jo

Letting r —> 1, we have by Lemma 1.4 the desired inequality. The proof
is thus complete.

4. Distributions of conjugate functions of characteristic functions.
Here we show that if / is a conjugable characteristic function one can
compute precisely the distribution function of the conjugate function of
/. For an m-measurable set E we denote by χE the characteristic function
of E.

THEOREM 4.1. Let E be an m-measurable set in X such that χE is
conjugable. Then for any Lebesgue measurable subset of the set {iR} U
{1 + iR} it holds

( * ) m{x: {χE + iχE)(x) e F) == L(h(F))

= _ l f l-\g(m(E))\2

 d

2π)9iF)\eiθ - g{m(E))\2 '

where g, h are the conformal mappings of the strip {0 < Re z < 1} onto
the unit disc given by

g(z) = tan f(* - | ) .

h(z) = (g(z) - g(m(E)))/(l - g(m(E))g(z)) .

In particular, the distribution of χE + iχE depends only on m(E).

PROOF. Let u(x) = χE(x) + iXE(x). Then by assumption for h we

have as in the proof of Theorem 3.1 h(u)eH, \h(u)\ = 1 and \h(u)dm =

h(\udm) = h(m(E)) = 0. Hence by Lemma 1.3

m{x: u(x) eF} = m{x: h(u(x)) e h(F)} = L(h(F)) .
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The second equality follows immediately from the invariance of harmonic
measures under conformal mappings, or one can get it in a similar way
to the first one. The proof is complete.

As a consequence we have a theorem of Stein-Weiss for our setting.

COROLLARY 4.2 (Stein-Weiss). Let E be as above and X(y) be the
distribution function of χE, i.e., X(y) = m{\χE(x)\ ^ y). Then

sinh πy — i sin πm(E)

PROOF. Let a = tan (π/2)(m(E) - 1/2). Then by simple computation
we have (1 - α2)/(l + α2) = sin πm(E). Further if we let X+(y) =
m{%E(x) ^ y}f then we have by Theorem 4.1

exp 2πi\+(y) = h(iy)/h(l + iy)

= [(1 + Osinhπy + (l- <H]/[(1 + a2)siάhπy - (1 - a*)i] .

Since (1 — <%2)/(l + a2) = sin πm(E), we have

exp 2πi>S(y) = s i n h πy + l s ί n πm{E) .
sinh πy — i sin πm(E)

In a similar way we have the same equality for X~(y) = m{χE(x) ^ —y}.
Hence we obtain the desired equality.

5. Results of Zygmund-Pichorides type. Here we give inequalities
of strong type which are deduced easily from Lemma 1.2.

THEOREM 5.1 (Pichorides). Let f be a real-valued, bounded and con-
jugable function on X such that | /1 ^ k < ττ/2. Then

11 sinh (//2) 112 ̂  (cos &)"1/211 sin (//2) 112 .

PROOF. Let h = f + if and hn = un + i ^ be a sequence in H satis-
fying the approximation property of Lemma 1.2. Then one easily sees

that cos hneH and I cos hndm = cos \hndm e 7?. Hence

I cosh vn cos w^m = I Re cos hndm — 1 cos hndm

= cos \feΛdm = cos ιwΛeZm .

Therefore, since cos un ^ cos | /1 ^ cos k, we have

cos k I sinh2 (vJ2)dm ^ I (cosh vw — 1) cos undm
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S r
u^dm — I cos undm

= ( sin2 (uJ2) - sin2 [(uJ2)dm .

Letting w^oo we have

||sinh (//2)H2. ̂  (cos kΓ[\\sin (//2) ||2 - sin2 \(f/2)dm] ,

which implies the desired inequality. This completes the proof.

A similar argument, applied to exp ±ih, yields the Zygmund type
inequality, which will be also proved by Theorem 3.5.

THEOREM 5.2. Let f be a real-valued bounded and conjugable function
on X such that | / | ^ 1 and 0 < k < π/2. Then

I exp k I /1 dm ^ 2(cos ft)"1 .

6. Applications. Let T = {z e C: \z\ = 1} and Z7 = {2 e C: | s | < 1}.

Let H°°(T) = {/ e L°°(r): ("/(β1 V ^ = 0, n = 1, 2, ...} with essential
Jo

supremum norm and H°°(U) be the set of all bounded holomorphic
functions in U with supremum norm. Then boundary functions of
functions in H^iU) are in H°°(T) and this correspondence is an iso-
metrical isomorphism, and H°°(T) is weak* closed in L°°(T). For each
/ 6 H"( U), (l/2τr) \2πf(eίθ)dθ = /(0). Hence φ: f e ίf°°( T) — (l/2τr) Γf(eίθ)dθ

Jo Jo

is a multiplicative linear functional on H°°(T) and hence H°°(T) with
Lebesgue measurable sets and d0/2τr satisfies the assumptions for abstract
H°° space, and dθ/2π is a Jensen measure as is well-known. The classical
conjugation operation coincides with our one in Definition 1.1. If μ is
a finite nonnegative measure on T, μ is its conjugate function and g is
the absolutely continuous part of μ with respect to Lebesgue measure,
/ is defined on T by g + iβ and F{z) is defined on U by

F(z) = -A- ΓP(S, eiθ)dμ{eiθ) + i-f. Γ
2π Jo 2ττ Jo

where P and Q are the Poisson and conjugate Poisson kernels respectively.
F is holomorphic in U and Re F(z) > 0 there. Hence F(reίθ) 6 H+(dθ/2π)
for all 0 < r < l . Since limr_1jF

τ(rβ<0=/(βf0 a.e., by the property of H+ as is
noted in Introduction, we have / 6 H+(dθ/2π) and φ(f)•= lim r^ φ(F(reiθ)) =
iP(0) = JM(Γ). Hence we can apply all the results in the previous sections
to this classical case. These applications give new proofs of known
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results due to Stein-Weiss [10] and B. Davis [1], Especially, for results
by Davis we can give proofs without use of Brownian motion. Unfor-
tunately we could not prove the Davis' result on the best possible constant
in weak type (1.1) inequality for conjugate functions. We also note that
our method can be applied for any domain in C and Cn. Finally we see
how our method can be applied to conjugate functions on the real line
R. Here we prove only an analogue of Theorem 4.1 which can be deduced
from that theorem or directly from Lemma 1.3.

THEOREM 6.1. Let E be a Lebesgue measurable set on R such that
\E\ < oo and χE be the conjugate function of the characteristic function
χE of E. Then for any Lebesgue measurable set F on the set J = {iR} U
{1 + iR},

(*) I{ί 6R: (χE + iχE)(t)eF}\ = ^\ - l / f dt

+ j ω i i i n _ ^ _ ) ,

where \ \ denotes the usual Lebesgue measure on R. We understand
the equality (*) as follows; if the left side is infinite, the right side is
also infinite and vice versa.

PROOF. Let f(it) = χE(t) + iχE(t) and

Then f(z) is holomorphic on the right half plane S = {zeC:Rez > 0}
and 0 < Re f(z) < 1 there and f(iy) e {iR} U {1 + iR} for almost all yeR.
Let g(z) = tan (π/2)(z - 1/2), h(z) = exp πi(z - 1/2) and

Hz) = - i(s - l)(z + I)"1 .

Then g(z) = koh(z) and h maps D = {z e C: 0 < Re z < 1} conformally onto
S and k maps S conf ormally onto U. Now for ζ = σ + iτ e S let

Let H°°(S) be the set of all bounded holomorphic functions on S. Then
for any beH°°(S) limx^b(x + it) = b(it) exists a.e. and b(ίt) eL°°(R). Let
H°°(R) be the set of all boundary functions of H^S) with essential su-
premum norm. Then H°°(R) is a weak* closed subalgebra of L°°(R), which
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is isometrically isomorphic to H°°(S), and

\b(it)dmζ(t) = &(0 for all b e H~(S) .

Hence φζ: b(it) e H°°(R) —> \6(iί)dmζ(ί) is a multiplicative linear functional
on H°°(R). Hence H^iR) with dmζ is an abstract H°° space. The classical
conjugation operation coincides with that of Definition 1.1. Now for our
f(it) we have mζ(E) = /(ζ). Hence by Theorem 4.1

2ττ J *<*>| eιθ — g°

Changing the integration variable by eίθ = k(it) we get

As is easily seen,

lim x Re h<>f(χ + iy) = lim x exp (π Im f(x + iy)) sin (π Re /(# +

JEX2 + (y — ί) 2

and

lim #2(Im fco/(α; + iy) + 1)

= lim x\l — exp (π Im f(x + iy)) cos (π Re f(x + iy)))

£ -dt)2 - lim x\π Im f(χ + î
(y - t)2 I x-oo V V ^

2

Hence multiplying the both sides of ($) by σ and then letting σ*
we get

dt

Here if the left side is infinite, the right side is infinite and vice versa.
Next changing the variables by — e~πy = t for t < 0 and e~πy = t for
ί > 0, we have

dt __ 7Γ /f dy , f dy \

I sinh2 —y cosh2 — /̂ I
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which completes the proof.
As a consequence we have

COROLLARY 6.2 (Stein-Weiss). Let E be as in Theorem 6.1. Then
for each y > 0

Ut)\^y}\4ψ
sinh πy

PROOF. Applying Theorem 6.1 we have

\{teB:\%M\ £ * ) . ! =
"sinh2iL s

sinh πy

The proof is complete.
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