ANTI-INVARIANT SUBMANIFOLDS OF SASAKIAN SPACE FORMS I

Kentaro Yano and Masahiro Kon

(Received June 11, 1975)

Introduction. In previous papers [14, 15] the present authors have studied totally real submanifolds of Kaehler manifolds, especially those of complex space forms.

Let \bar{M} be a real $2 m$-dimensional Kaehler manifold with almost complex structure J. An n-dimensional Riemannian manifold M isometrically immersed in \bar{M} is said to be totally real or anti-invariant in \bar{M} if $T_{x}(M) \perp J T_{x}(M)$ for each $x \in M$, where $T_{x}(M)$ denotes the tangent space to M at x. Here we have identified $T_{x}(M)$ with its image under the differential of the immersion. Since, if X is a vector tangent to M at x then $J X$ is normal to M, we see that, the rank of J being $2 m$, $n \leqq 2 m-n$, that is, $n \leqq m$.

In [14] we have studied n-dimensional totally real submanifold of a real $2 n$-dimensional complex space form \bar{M} satisfying certain conditions on the second fundamental forms, and in [15] we have studied n-dimensional totally real submanifolds of a real $2 m$-dimensional complex space form.

The purpose of the present paper is to study similar problems for submanifolds of almost contact metric manifolds, especially for those of Sasakian space forms (cf. [1], [6], [8], [11] and [12]).

Let \bar{M} be a $(2 m+1)$-dimensional almost contact metric manifold whose (1, 1)-type structure tensor field is ϕ. An $(n+1)$-dimensional Riemannian manifold M isometrically immersed in \bar{M} is said to be antiinvariant if $T_{x}(M) \perp \phi T_{x}(M)$ for each $x \in M$. Then we have $n \leqq m$. In the present paper, we study the case $n=m$.

1. Sasakian manifolds. In this section we would like to recall definitions and some fundamental properties of a Sasakian manifold.

Let \bar{M} be a $(2 m+1)$-dimensional differentiable manifold of class C^{∞} and ϕ, ξ, η be a tensor field of type (1, 1), a vector field, a 1-form on \bar{M} respectively such that

$$
\phi^{2}=-I+\eta \otimes \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1
$$

for any vector field X on \bar{M}, where I denotes the identity tensor. Then
\bar{M} is said to have an almost contact structure (ϕ, ξ, η) and is called an almost contact manifold. The almost contact structure is said to be normal if

$$
N+d \eta \otimes \xi=0
$$

where N denotes the Nijenhuis tensor formed with ϕ and $d \eta$ the differential of the 1 -form η. When a Riemannian metric tensor field \bar{g} is given on \bar{M} and \bar{g} satisfies the equations

$$
\bar{g}(\phi X, \phi Y)=\bar{g}(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=\bar{g}(X, \xi)
$$

for any vector fields X and $Y,(\phi, \xi, \eta, \bar{g})$-structure is called an almost contact metric structure and \bar{M} an almost contact metric manifold. If

$$
d \eta(X, Y)=\bar{g}(\phi X, Y)
$$

for any vector fields X and Y, then an almost contact metric structure is called a contact metric structure. If moreover the structure is normal, then a contact metric structure is called a Sasakian structure and a manifold with Sasakian structure is called a Sasakian manifold. It is well known that in a Sasakian manifold with structure (ϕ, ξ, η, \bar{g}) we have

$$
\bar{\nabla}_{x} \xi=\phi X, \quad\left(\bar{\nabla}_{X} \phi\right) Y=-\bar{g}(X, Y) \xi+\eta(Y) X
$$

for any vector fields X and Y, where $\bar{\nabla}$ denotes the operator of covariant differentiation with respect to \bar{g}.

A plane section in the tangent space $T_{x}(\bar{M})$ at x of a Sasakian manifold \bar{M} is called a ϕ-section if it is spanned by a vector X orthogonal to ξ and ϕX. The sectional curvature $K(X, \phi X)$ with respect to a ϕ section determined by a vector X is called a ϕ-sectional curvature. It is easily verified that if a Sasakian manifold has a ϕ-sectional curvature k which does not depend on the ϕ-section at each point, then k is a constant in the manifold. A Sasakian manifold is called a Sasakian space form and is denoted by $\bar{M}(k)$ if it has the constant ϕ-sectional curvature k.

A typical example of Sasakian manifolds is an odd-dimensional sphere $S^{2 n+1}$ (cf. [7]).
2. Anti-invariant submanifolds. Let \bar{M} be an almost contact metric manifold of dimension $2 m+1$ with structure tensors (ϕ, ξ, η, \bar{g}). An ($n+1$)-dimensional Riemannian manifold M isometrically immersed in \bar{M} is called an anti-invariant submanifold if $T_{x}(M) \perp \phi T_{x}(M)$ for each $x \in M$ where $T_{x}(M)$ denotes the tangent space to M at $x \in M$. Here we have identified $T_{x}(M)$ with its image under the differential of the immersion because our computation is local. By the definition, if $X \in T_{x}(M)$,
then ϕX is a normal vector to M. Since the rank of ϕ is $2 m$, we have $n \leqq(2 m+1)-(n+1)$, from which $n \leqq m$. In the sequel, we shall study the case $m=n$.

Let g be the induced metric tensor field of M. We denote by $\bar{\nabla}$ (resp. ∇) the operator of covariant differentiation with respect to \bar{g} (resp. g). Then the Gauss and Weingarten formulas are respectively given by

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) \quad \text { and } \quad \bar{V}_{X} N=-A_{N} X+D_{X} N
$$

for any tangent vector fields X, Y and a normal vector field N on M, where D is the operator of covariant differentiation with respect to the linear connection induced in the normal bundle. Both A and B are called the second fundamental forms of M and satisfy

$$
\bar{g}(B(X, Y), N)=g\left(A_{N} X, Y\right)
$$

A vector field N normal to M is said to be parallel if $D_{X} N=0$ for any tangent vector field X on M. The mean curvature vector m of M is defined to be $m=(\operatorname{Tr} B) /(n+1)$ where $\operatorname{Tr} B=\sum_{i} B\left(e_{i}, e_{i}\right)$ for an orthonormal frame $\left\{e_{i}\right\}$. If $m=0$, then M is said to be minimal and if the second fundamental form of M is of the form $B(X, Y)=g(X, Y) m$, then M is said to be totally umbilical. If the second fundamental form of M vanishes identically, i.e., $B=0$, then M is said to be totally geodesic.

Let $T_{x}(M)^{\perp}$ be the normal space to M at $x \in M$. Since $m=n$, we see that $\phi T_{x}(M)=T_{x}(M)^{\perp}$ at each point $x \in M$. Since, for any tangent vector field X on M, we have $\bar{g}(\xi, \phi X)=-\bar{g}(\phi \xi, X)=0$, we see that ξ is tangent to M. Thus we have

Lemma 2.1. Let \bar{M} be an almost contact metric manifold of dimension $2 n+1$ and let M be an anti-invariant submanifold of \bar{M} of dimension $n+1$. Then the vector field ξ is tangent to M.

In the sequel, we assume that the ambient manifold \bar{M} is a Sasakian manifold.

We choose a local field of orthonormal frames $e_{0}=\xi, e_{1}, \cdots, e_{n} ; e_{1^{*}}=$ $\phi e_{1}, \cdots, e_{n^{*}}=\phi e_{n}$ in \bar{M} in such a way that, restricted to $M, e_{0}, e_{1}, \cdots, e_{n}$ are tangent to M. With respect to this frame field of \bar{M}, let $\omega^{\circ}=$ $\eta, \omega^{1}, \cdots, \omega^{n} ; \omega^{1^{*}}, \cdots, \omega^{n^{*}}$ be the field of dual frames. Unless otherwise stated we use the conventions that the ranges of indices are respectively:

$$
\begin{aligned}
& A, B, C, D=0,1, \cdots, n, 1^{*}, \cdots, n^{*} \\
& t, s, i, j, k, l=1, \cdots, n \\
& a, b, c, d=0,1, \cdots, n
\end{aligned}
$$

and that when an index appears twice in any term as a subscript and
a superscript, it is understood that this index is summed over its range. Then the structure equations of \bar{M} are given by

$$
\begin{gather*}
d \omega^{A}=\omega_{B}^{A} \wedge \omega^{B}, \quad \omega_{B}^{A}+\omega_{A}^{B}=0 \tag{2.1}\\
d \omega_{B}^{A}=-\omega_{C}^{A} \wedge \omega_{B}^{C}+\Phi_{B}^{A}, \quad \Phi_{B}^{A}=\frac{1}{2} K_{B C D}^{A} \omega^{C} \wedge \omega^{D} \tag{2.2}
\end{gather*}
$$

Restriction of these forms to M gives

$$
\begin{gather*}
\omega^{t^{*}}=0 \tag{2.3}\\
d \omega^{a}=-\omega_{b}^{a} \wedge \omega^{b}, \quad \omega_{b}^{a}+\omega_{a}^{b}=0 \tag{2.4}\\
\omega_{j}^{i}=\omega_{j^{*}}^{i *}, \quad \omega_{j}^{i^{*}}=\omega_{i}^{j^{*}}, \quad \omega^{i}=\omega_{0}^{i *} \tag{2.5}\\
d \omega_{b}^{a}=-\omega_{c}^{a} \wedge \omega_{b}^{c}+\Omega_{b}^{a}, \quad \Omega_{b}^{a}=\frac{1}{2} R_{b c d}^{a} \omega^{c} \wedge \omega^{d} \tag{2.6}
\end{gather*}
$$

Since $0=d \omega^{t^{*}}=-\omega_{a}^{t^{*}} \wedge \omega^{a}$, by Cartan's lemma, we have

$$
\begin{equation*}
\omega_{a}^{t *}=h_{a b}^{t} \omega^{b}, \quad h_{a b}^{t}=h_{b a}^{t}, \tag{2.7}
\end{equation*}
$$

where we use $h_{a b}^{t}$ instead of $h_{a b}^{t^{*}}$ to simplify the notation. From (2.5) and (2.7) we have

$$
\begin{equation*}
h_{j k}^{i}=h_{i k}^{j}=h_{i j}^{k}, \quad h_{00}^{t}=0, \quad h_{0 b}^{t}=\delta_{b}^{t} \tag{2.8}
\end{equation*}
$$

Moreover we see that $g\left(A_{t} e_{a}, e_{b}\right)=h_{a b}^{t}$ where $A_{t}=A_{\phi e_{t}}$. The Gauss equation is given by

$$
\begin{equation*}
R_{b c d}^{a}=K_{b c d}^{a}+\sum_{t}\left(h_{a c}^{t} h_{b d}^{t}-h_{a d}^{t} h_{b c}^{t}\right) \tag{2.9}
\end{equation*}
$$

We also have

$$
\begin{equation*}
d \omega_{j^{*}}^{i *}=-\omega_{k^{*}}^{i *} \wedge \omega_{j^{*}}^{k^{*}}+\Omega_{j^{*}}^{i *}, \quad \Omega_{j^{*}}^{i *}=\frac{1}{2} R_{j^{*} c d}^{i *} \omega^{c} \wedge \omega^{d} \tag{2.10}
\end{equation*}
$$

and consequently the Ricci equation is given by

$$
\begin{equation*}
R_{j^{*} c d}^{i *}=K_{j^{*} c d}^{i *}+\sum_{a}\left(h_{a c}^{i} h_{a d}^{j}-h_{a d}^{i} h_{a c}^{j}\right) \tag{2.11}
\end{equation*}
$$

We define the covariant derivative $h_{a b c}^{t}$ of $h_{a b}^{t}$ by putting

$$
\begin{equation*}
h_{a b c}^{t} \omega^{e}=d h_{a b}^{t}-h_{a d}^{t} \omega_{b}^{d}-h_{a b}^{t} \omega_{a}^{d}+h_{a b}^{s} \omega_{s^{*}}^{t *} \tag{2.12}
\end{equation*}
$$

The Laplacian $\Delta h_{a b}^{t}$ of $h_{a b}^{t}$ is defined to be

$$
\begin{equation*}
\Delta h_{a b}^{t}=\sum_{o} h_{a b c c}^{t} \tag{2.13}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
h_{a b c d}^{t} \omega^{d}=d h_{a b c}^{t}-h_{d b c}^{t} \omega_{a}^{d}-h_{a d c}^{t} \omega_{b}^{d}-h_{a b d}^{t} \omega_{c}^{d}+h_{a b c}^{s} \omega_{s^{*}}^{t *} \tag{2.14}
\end{equation*}
$$

The Riemannian connection of M is defined by (ω_{b}^{a}). The form ($\omega_{j^{*}}^{i *}$) defines a connection induced in the normal bundle of M from that of \bar{M}. The second fundamental form of M is represented by $h_{a b}^{t} \omega^{a} \omega^{b} e_{t^{*}}$ and is sometimes denoted by its components $h_{a b}^{t}$. If $h_{a b c}^{t}=0$ for all t, a, b and c, the second fundamental form of M is said to be parallel. If $\sum_{a} h_{a a}^{t}=0$ for all t, then M is a minimal submanifold of \bar{M}.

If a Sasakian manifold \bar{M} is of constant ϕ-sectional curvature k, then we have

$$
\begin{align*}
K_{B C D}^{A}= & \frac{1}{4}(k+3)\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right)+\frac{1}{4}(k-1)\left(\eta_{B} \eta_{C} \delta_{A D}-\eta_{B} \eta_{D} \delta_{A C}\right. \tag{2.15}\\
& \left.+\eta_{A} \eta_{D} \delta_{B C}-\eta_{A} \eta_{C} \delta_{B D}+\phi_{A C} \phi_{B D}-\phi_{A D} \phi_{B C}+2 \phi_{A B} \phi_{C D}\right),
\end{align*}
$$

where $\delta_{A C}$ denotes the Kronecker delta. This is a Sasakian space form and is denoted by $\bar{M}(k)$. If a Riemannian manifold M is of constant curvature c, then we call such a manifold a real space form and denote it by $M(c)$.
3. Fundamental properties. Let \bar{M} be a Sasakian manifold of dimension $2 n+1$ with structure tensors (ϕ, ξ, η, \bar{g}) and M be an antiinvariant submanifold of \bar{M} of dimension $n+1$. For any tangent vector field X to M we have

$$
\phi X=\bar{V}_{x} \xi=\nabla_{x} \xi+B(X, \xi) .
$$

Consequently, comparing the tangential part and the normal part, we have $\nabla_{x} \xi=0$ and $\phi X=B(X, \xi)$. Putting $X=\xi$ in the second equation, we obtain $B(\xi, \xi)=0$. Thus we have

Lemma 3.1. Let \bar{M} be a Sasakian manifold of dimension $2 n+1$ and M be an anti-invariant submanifold of \bar{M} of dimension $n+1$. Then the vector field ξ restricted to M is parallel.

Proposition 3.1. Let \bar{M} be a Sasakian manifold of dimension $2 n+1$ and M be an anti-invariant submanifold of \bar{M} of dimension $n+1$. Then M is not totally umbilical when $n \geqq 1$.

Proof. Let us assume that M is totally umbilical. Then $B(X, Y)=$ $g(X, Y) m$ for any tangent vectors X, Y to M, where m denotes the mean curvature vector. Since $B(\xi, \xi)=0$, we have $g(\xi, \xi) m=0$, which shows that M is minimal. Therefore M is totally geodesic. Then we have $\phi X=B(X, \xi)=0$ for any tangent vector X to M. But this is a contradiction, and Proposition 3.1 is proved.

Next we shall study the second fundamental form of an anti-in-
variant submanifold. For each $t(=1, \cdots, n)$ the second fundamental form A_{t} is represented by the symmetric ($n+1, n+1$)-matrix $A_{t}=\left(h_{a b}^{t}\right)$. Equations (2.8) show that

Hereafter we put $H_{t}=\left(h_{i j}^{t}\right)$, which is a symmetric (n, n)-matrix. Let S denote the square of the length of the second fundamental form of M, i.e.,

$$
S=\sum_{t} \operatorname{Tr} A_{t}^{2}=\sum_{t, a, b}\left(h_{a b}^{t}\right)^{2} .
$$

Putting $T=\sum_{t} \operatorname{Tr} H_{t}^{2}=\sum_{t, i, j}\left(h_{i j}^{t}\right)^{2}$, we obtain

$$
\begin{equation*}
S=T+2 n \tag{3.2}
\end{equation*}
$$

On the other hand, we see from (2.8) that

$$
\operatorname{Tr} A_{t}=\sum_{a} h_{a a}^{t}=\sum_{i} h_{i i}^{t}=\operatorname{Tr} H_{t}
$$

Thus M is minimal if and only if $\operatorname{Tr} H_{t}=0$ for all t.
Proposition 3.2. Let \bar{M} be a Sasakian manifold of dimension $2 n+1$ and M be an anti-invariant submanifold of \bar{M} of dimension $n+1$. Then M is flat if and only if the normal connection of M is flat, i.e., $R_{j * c d}^{i *}=0$.

Proof. Since \bar{M} is a Sasakian manifold and M is anti-invariant, we have

$$
\begin{equation*}
K_{j^{*} c d}^{i *}=K_{j c d}^{i}-\left(\delta_{i c} \delta_{j d}-\delta_{i d} \delta_{j c}\right) . \tag{3.3}
\end{equation*}
$$

On the other hand, from Lemma 3.1, we have

$$
\begin{equation*}
R_{b c d}^{0}=R_{o c d}^{a}=0 \tag{3.4}
\end{equation*}
$$

From (2.8), (2.11) and (3.3) we obtain

$$
\begin{align*}
R_{j^{*} c d}^{* *} & =K_{j^{*} c d}^{i *}+\sum_{a}\left(h_{a c}^{i} h_{a d}^{j}-h_{a d}^{i} h_{a c}^{j}\right) \tag{3.5}\\
& =K_{j c d}^{i}+\sum_{t}\left(h_{i c}^{t} h_{j d}^{t}-h_{i d}^{t} h_{j c}^{t}\right) .
\end{align*}
$$

Equations (2.9) and (3.5) imply that $R_{j c d}^{i}=R_{j * c d}^{i *}$. This combined with (3.4) proves our assertion.

Next we assume that the ambient manifold \bar{M} is of constant ϕ-sectional curvature k. Since M is anti-invariant, (2.15) implies that

$$
\begin{align*}
K_{b c d}^{a}=\frac{1}{4}(k+3)\left(\delta_{a c} \delta_{b d}-\right. & \left.\delta_{a d} \delta_{b c}\right)+\frac{1}{4}(k-1)\left(\eta_{b} \eta_{c} \delta_{a d}\right. \tag{3.6}\\
& \left.-\eta_{b} \eta_{d} \delta_{a c}+\eta_{a} \eta_{d} \delta_{b c}-\eta_{a} \eta_{c} \delta_{b d}\right) .
\end{align*}
$$

If $A_{t} A_{s}=A_{s} A_{t}$ for all t and s, then the second fundamental form of M is said to be commutative, which is equivalent to $\sum_{b} h_{a b}^{t} h_{b c}^{s}=\sum_{b} h_{a b}^{s} h_{b c}^{t}$. If we assume that the second fundamental form of M is commutative, then by a direct computation and (2.8), we have

$$
\begin{equation*}
\sum_{t}\left(h_{a c}^{t} h_{b d}^{t}-h_{a d}^{t} h_{b c}^{t}\right)=-\left(\delta_{a c} \delta_{b d}-\delta_{a d} \delta_{b c}\right) . \tag{3.7}
\end{equation*}
$$

From the Gauss equation (2.9) and (3.7) we obtain

$$
\begin{equation*}
R_{b c d}^{a}=K_{b c d}^{a}-\left(\delta_{a c} \delta_{b d}-\delta_{a d} \delta_{b c}\right) . \tag{3.8}
\end{equation*}
$$

When \bar{M} is of constant ϕ-sectional curvature k, substituting (3.6) into (3.8), we find

$$
\begin{align*}
R_{b c d}^{a}=\frac{1}{4}(k-1)\left(\delta_{a c} \delta_{b d}-\delta_{a d} \delta_{b c}\right. & +\eta_{b} \eta_{c} \delta_{a d}-\eta_{b} \eta_{d} \delta_{a c} \tag{3.9}\\
& \left.+\eta_{a} \eta_{d} \delta_{b c}-\eta_{a} \eta_{c} \delta_{b d}\right) .
\end{align*}
$$

From this we have
Proposition 3.3. Let M be an ($n+1$)-dimensional ($n \geqq 2$) antiinvariant submanifold of a Sasakian space form $\bar{M}^{2 n+1}(k)$ with commutative second fundamental form. Then M is flat if and only if \bar{M} is of constant curvature 1 , i.e., $k=1$.

By Lemma 3.1, ξ is parallel with respect to the induced connection on M. Therefore, by (3.9) and a theorem in [9; p. 274], we have

Theorem 3.1. Let M be an $(n+1)$-dimensional anti-invariant submanifold of a Sasakian space form $\bar{M}^{2 n+1}(k)$. If the second fundamental form of M is commutative, then M is locally a Riemannian direct product $M^{n} \times R^{1}$, where M^{n} is a hypersurface of M^{n+1} of constant curvature $(1 / 4)(k-1)$ and is totally geodesic in M^{n+1}.
4. Anti-invariant submanifolds of a sphere. In this section we shall study the Laplacian for the square of the length of the second fundamental form of anti-invariant submanifolds. In the first place, we prove the following

Lemma 4.1. Let M be an $(n+1)$-dimensional anti-invariant submanifold of a Sasakian space form $\bar{M}^{2 n+1}(k)$. Then we have

$$
\begin{align*}
\sum_{t, a, b} h_{a b}^{t} \Delta h_{a b}^{t}= & \sum_{t, a, b, c} h_{a b}^{t} h_{c c a b}^{t}+\frac{1}{4}(k+3)(n+1) \sum_{t} \operatorname{Tr} H_{t}^{2} \tag{4.1}\\
& -\frac{1}{2}(k+3) \sum_{t}\left(\operatorname{Tr} H_{t}\right)^{2}+\sum_{t, s}\left\{\operatorname{Tr}\left(H_{t} H_{s}-H_{s} H_{t}\right)^{2}\right. \\
& \left.-\left[\operatorname{Tr}\left(H_{t} H_{s}\right)\right]^{2}+\operatorname{Tr} H_{s} \operatorname{Tr}\left(H_{t} H_{s} H_{t}\right)\right\}
\end{align*}
$$

Proof. By the assumption, the second fundamental form of M satisfies the Codazzi equation, i.e., $h_{a b c}^{t}=h_{a c b}^{t}$. Therefore, by a straightforward computation, we have

$$
\begin{aligned}
& \sum_{t, a, b} h_{a b}^{t} \Delta h_{a b}^{t}=\sum_{t, a, b, c}\left(h_{a b}^{t} h_{c c a b}^{t}-K_{s * a c}^{t *} h_{b c}^{s} h_{a b}^{t}+K_{c a c}^{d} h_{d b}^{t} h_{a b}^{t}\right. \\
& \left.+K_{a b c}^{d} h_{d c}^{t} h_{a b}^{t}\right)-\sum_{t, s, a, b, c, d}\left[\left(h_{a c}^{t} h_{b c}^{s}-h_{b c}^{t} h_{a c}^{s}\right)\left(h_{a d}^{t} h_{b d}^{s}-h_{b d}^{t} h_{a d}^{s}\right)\right. \\
& \\
& \left.+h_{a b}^{t} h_{c d}^{t} h_{a b}^{s} h_{c d}^{s}-h_{a b}^{t} h_{c a}^{t} h_{c b}^{s} h_{d d}^{s}\right]
\end{aligned}
$$

Substituting (2.15) into this equation, we have

$$
\begin{align*}
& \sum_{t, a, b} h_{a b}^{t} \Delta h_{a b}^{t}=\sum_{t, a, b, c} h_{a b}^{t} h_{c c a b}^{t}+\frac{1}{4}(k+3)(n+1) \sum_{t} \operatorname{Tr} A_{t}^{2} \tag{4.2}\\
& \quad-\frac{1}{2}(k+1) \sum_{t}\left(\operatorname{Tr} A_{t}\right)^{2}-\frac{1}{2}(k-1) n(n+1) \\
& \quad+\sum_{t, s}\left\{\operatorname{Tr}\left(A_{t} A_{s}-A_{s} A_{t}\right)^{2}-\left[\operatorname{Tr}\left(A_{t} A_{s}\right)\right]^{2}+\operatorname{Tr} A_{s} \operatorname{Tr}\left(A_{t} A_{s} A_{t}\right)\right\}
\end{align*}
$$

On the other hand, by (2.8) and (3.1), we have

$$
\begin{align*}
\sum_{t \neq s} \operatorname{Tr} & \left(A_{t} A_{s}-A_{s} A_{t}\right)^{2}=-2 \sum_{t \neq s} \sum_{i, j, k, l}\left(h_{i j}^{t} h_{j k}^{t} h_{k l}^{s} h_{l i}^{s}\right. \tag{4.3}\\
& -h_{i j}^{t} h_{j k}^{s} h_{k l}^{t} h_{l i}^{s}-2 \sum_{t \neq s}\left\{1+\sum_{i}\left(2 h_{t t}^{i} h_{s s}^{i}-2 h_{s i}^{t} h_{s i}^{t}\right)\right\} \\
= & \sum_{t \neq s} \operatorname{Tr}\left(H_{t} H_{s}-H_{s} H_{t}\right)^{2}+4 \sum_{t}\left[\operatorname{Tr} H_{t}^{2}-\left(\operatorname{Tr} H_{t}\right)^{2}\right]-2 n(n-1),
\end{align*}
$$

(4.4) $\sum_{t, s}\left[\operatorname{Tr}\left(A_{t} A_{s}\right)\right]^{2}=\sum_{t}\left(\operatorname{Tr} A_{t}^{2}\right)^{2}=\sum_{t}\left(\operatorname{Tr} H_{t}^{2}\right)^{2}+4 \sum_{t} \operatorname{Tr} H_{t}^{2}+4 n$,
(4.5) $\sum_{t, s} \operatorname{Tr} A_{s} \operatorname{Tr}\left(A_{t} A_{s} A_{t}\right)=\sum_{t, s} \operatorname{Tr} H_{s} \operatorname{Tr}\left(H_{t} H_{s} H_{t}\right)+3 \sum_{t}\left(\operatorname{Tr} H_{t}\right)^{2}$.

Substituting (3.2), (4.3), (4.4) and (4.5) into (4.2), we have (4.1), and Lemma 4.1 is proved.

Lemma 4.2. Let M be an $(n+1)$-dimensional anti-invariant minimal submanifold of a Sasakian space form $\bar{M}^{2 n+1}(k)$. Then we have

$$
\begin{align*}
\sum_{t, a, b} h_{a b}^{t} \Delta h_{a b}^{t}= & \frac{1}{4}(k+3)(n+1) \sum_{t} \operatorname{Tr} H_{t}^{2} \tag{4.6}\\
& +\sum_{t, s} \operatorname{Tr}\left(H_{t} H_{s}-H_{s} H_{t}\right)^{2}-\left[\operatorname{Tr}\left(H_{t} H_{s}\right)\right]^{2}
\end{align*}
$$

In the sequel, we need the following lemma proved in [3].
Lemma 4.3 ([3]). Let A and B be symmetric (n, n)-matrices. Then

$$
-\operatorname{Tr}(A B-B A)^{2} \leqq 2 \operatorname{Tr} A^{2} \operatorname{Tr} B^{2}
$$

and the equality holds for non-zero matrices A and B if and only if A and B can be transformed simultaneously by an orthogonal matrix into scalar multiples of \bar{A} and \bar{B} respectively, where

$$
\bar{A}=\left[\begin{array}{cc|c}
0 & 1 & 0 \\
1 & 0 & 0 \\
\hline 0 & 0
\end{array}\right], \quad \bar{B}=\left[\begin{array}{rr|r}
1 & 0 & 0 \\
0 & -1 & \\
\hline 0 & 0
\end{array}\right]
$$

Moreover, if A_{1}, A_{2}, A_{3} are symmetric (n, n)-matrices such that

$$
-\operatorname{Tr}\left(A_{a} A_{b}-A_{b} A_{a}\right)^{2}=2 \operatorname{Tr} A_{a}^{2} \operatorname{Tr} A_{b}^{2}, \quad 1 \leqq a, b \leqq 3, \quad a \neq b
$$

then at least one of the matrices A_{a} must be zero.
In the following, we put $T_{t s}=\sum_{i, j} h_{i j}^{t} h_{i j}^{s}$ and $T_{t}=T_{t t}$. Then we have $T=\sum_{t} T_{t}$.

ThEOREM 4.1. Let M be an $(n+1)$-dimensional compact orientable anti-invariant minimal submanifold of a Sasakian space form $\bar{M}^{2 n+1}(1)$. Then we have

$$
\begin{equation*}
\int_{M t, a, b, c} \sum_{a b c}\left(h^{t}\right)^{2 *} 1 \leqq \int_{M}\left[\left(2-\frac{1}{n}\right) T-(n+1)\right] T^{*} 1 \tag{4.7}
\end{equation*}
$$

Proof. We can write (4.6) as

$$
\begin{equation*}
\sum_{t, a, b} h_{a b}^{t} \Delta h_{a b}^{t}=(n+1) T+\sum_{t, s} \operatorname{Tr}\left(H_{t} H_{s}-H_{s} H_{t}\right)^{2}-\sum_{t} T_{t}^{2} \tag{4.8}
\end{equation*}
$$

Applying Lemma 4.3, we obtain

$$
\begin{align*}
-\sum_{t, s} & \operatorname{Tr}\left(H_{t} H_{s}-H_{s} H_{t}\right)^{2}+\sum_{t} T_{t}^{2}-(n+1) T \tag{4.9}\\
& \leqq 2 \sum_{t \neq s} T_{t} T_{s}+\sum_{t} T_{t}^{2}-(n+1) T \\
\quad & =\left[\left(2-\frac{1}{n}\right) T-(n+1)\right] T-\frac{1}{n} \sum_{t, s}\left(T_{t}-T_{s}\right)^{2}
\end{align*}
$$

Since M is compact orientable, we have

$$
\int_{M} \sum_{t, a, b, c}\left(h_{a b c}^{t}\right)^{2 *} 1=-\int_{M} \sum_{t, a, b} h_{a b}^{t} \Delta h_{a b}^{t} * 1 .
$$

Therefore (4.8) and (4.9) imply (4.7) and Theorem 4.1 is proved.
Corollary 4.1. Let M be an $(n+1)$-dimensional compact orientable anti-invariant minimal submanifold of a Sasakian space form $\bar{M}^{2 n+1}(1)$. Then either $T=0$, or $T=n(n+1) /(2 n-1)$ or at some point $x \in M$, $T(x)>n(n+1) /(2 n-1)$.

Next we shall study the case in which $T=n(n+1) /(2 n-1)$, that is, the square of the length of the second fundamental form of M satisfies $S=n(5 n-1) /(2 n-1)$.

Theorem 4.2. Let M be an $(n+1)$-dimensional anti-invariant minimal submanifold of a Sasakian space form $\bar{M}^{2 n+1}(1)$. If $S=$ $n(5 n-1) /(2 n-1)$, then $n=2$ and M is flat. With respect to an adapted dual orthonormal frame field $\omega^{0}, \omega^{1}, \omega^{2}, \omega^{1 *}, \omega^{2 *}$, the connection form (ω_{B}^{A}) of $\bar{M}^{\mathrm{b}}(1)$, restricted to M, is given by

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & -\omega^{1} & -\omega^{2} \\
0 & 0 & 0 & \omega^{0}+\lambda \omega^{2} & \lambda \omega^{1} \\
0 & 0 & 0 & \lambda \omega^{1} & \omega^{0}-\lambda \omega^{2} \\
\omega^{1} & \omega^{0}+\lambda \omega^{2} & \lambda \omega^{1} & 0 & 0 \\
\omega^{2} & \lambda \omega^{1} & \omega^{0}-\lambda \omega^{2} & 0 & 0
\end{array}\right], \quad \lambda=\frac{1}{\sqrt{2}} \cdot
$$

Proof. From the assumption we have $T=n(n+1) /(2 n-1)$. Then the second fundamental form of M is parallel by (4.8) because $\sum_{t, a, b} h_{a b}^{t} \Delta h_{a b}^{t}=-\sum_{t, a, b, c}\left(h_{a b c}^{t}\right)^{2}$ in this case. From Lemma 4.3 and (4.9) we have

$$
\begin{equation*}
\sum_{t>s}\left(T_{t}-T_{s}\right)^{2}=0, \tag{4.10}
\end{equation*}
$$

$$
\begin{equation*}
-\operatorname{Tr}\left(H_{t} H_{s}-H_{s} H_{t}\right)^{2}=2 \operatorname{Tr} H_{t}^{2} \operatorname{Tr} H_{s}^{2}, \tag{4.11}
\end{equation*}
$$

and hence $T_{t}=T_{s}$ for all t, s and we may assume that $H_{t}=0$ for $t=$ $3, \cdots, n$. Therefore we must have $n=2$ and we obtain

$$
H_{1}=\lambda\left[\begin{array}{ll}
0 & 1 \tag{4.12}\\
1 & 0
\end{array}\right], \quad H_{2}=\lambda\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

by putting $h_{12}^{1}=\lambda=h_{11}^{2}$. From (3.1) and (4.12) we have

$$
A_{1}=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{4.13}\\
1 & 0 & \lambda \\
0 & \lambda & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & \lambda & 0 \\
1 & 0 & -\lambda
\end{array}\right]
$$

On the other hand, by (2.12), we have

$$
\begin{equation*}
d h_{a b}^{t}=h_{a d}^{t} \omega_{b}^{d}+h_{d b}^{t} \omega_{a}^{d}-h_{a b}^{s} \omega_{s}^{t} \tag{4.14}
\end{equation*}
$$

Putting $t=1, a=1$ and $b=0$, we see that $d \lambda=\omega_{0}^{2}=0$, which shows that λ is a constant. Since $T=2$, we get $4 \lambda^{2}=2$. Thus we may assume that $\lambda=1 / \sqrt{2}$. Moreover (4.13) and (4.14) imply the equations:

$$
\begin{align*}
& \omega_{1}^{0}=\omega^{1^{*}}=0, \quad \omega_{2}^{0}=\omega^{2 *}=0, \quad \omega_{1 *}^{0}=-\omega^{1}, \quad \omega_{2^{*}}^{0}=-\omega^{2}, \tag{4.15}\\
& \omega_{1}^{2 *}=\lambda \omega^{1}, \quad \omega_{1}^{1 *}=\omega^{0}+\lambda \omega^{2}, \quad \omega_{2}^{2 *}=\omega^{0}-\lambda \omega^{2}, \quad \omega_{1}^{2}=0
\end{align*}
$$

From the Gauss equation (2.9) and (4.13) we see easily that M is flat. From these considerations we obtain our assertion.

Example 1. We give an example of an anti-invariant submanifold in S^{5}. Let $J=\left(a_{t s}\right)(t, s=1, \cdots, 6)$ be the almost complex structure of C^{3} such that $a_{2 i, 2 i-1}=1, a_{2 i-1,2 i}=-1 \quad(i=1,2,3)$ the other components being zero. Let $S^{1}(1 / \sqrt{3})=\left\{z \in C:|z|^{2}=1 / 3\right\}$, a plane circle of radius $1 / \sqrt{3}$. We consider $S^{1}(1 / \sqrt{3}) \times S^{1}(1 / \sqrt{3}) \times S^{1}(1 / \sqrt{3})$ in S^{5} in C^{3}, which is obviously flat. The position vector X of $S^{1} \times S^{1} \times S^{1}$ in S^{5} in C^{3} has components given by

$$
X=\frac{1}{\sqrt{3}}\left(\cos u^{1}, \sin u^{1}, \cos u^{2}, \sin u^{2}, \cos u^{3}, \sin u^{3}\right)
$$

u^{1}, u^{2} and u^{3} being parameters on each $S^{1}(1 / \sqrt{3})$. Putting $X_{i}=\partial_{i} X=$ $\partial X / \partial u^{i}$, we have

$$
\begin{aligned}
& X_{1}=\frac{1}{\sqrt{3}}\left(-\sin u^{1}, \cos u^{1}, 0,0,0,0\right) \\
& X_{2}=\frac{1}{\sqrt{3}}\left(0,0,-\sin u^{2}, \cos u^{2}, 0,0\right) \\
& X_{3}=\frac{1}{\sqrt{3}}\left(0,0,0,0,-\sin u^{3}, \cos u^{3}\right)
\end{aligned}
$$

The vector field ξ on S^{5} is given by

$$
\xi=J X=\frac{1}{\sqrt{3}}\left(-\sin u^{1}, \cos u^{1},-\sin u^{2}, \cos u^{2},-\sin u^{3}, \cos u^{3}\right)
$$

Since $\xi=X_{1}+X_{2}+X_{3}, \xi$ is tangent to $S^{1} \times S^{1} \times S^{1}$. On the other hand, the structure tensors (ϕ, ξ, η) of S^{5} satisfy

$$
\phi X_{i}=J X_{i}+\eta\left(X_{i}\right) X, \quad i=1,2,3
$$

which shows that ϕX_{i} is normal to $S^{1} \times S^{1} \times S^{1}$ for all i. Therefore $S^{1} \times S^{1} \times S^{1}$ is an anti-invariant submanifold of S^{5}. Moreover $S^{1} \times$
$S^{1} \times S^{1}$ is a minimal submanifold of S^{5} with $S=6$ and the normal connection of this is flat (see $[3,5]$).

Theorem 4.3. Let M be an $(n+1)$-dimensional anti-invariant minimal submanifold of $S^{2 n+1}$. If M is compact orientable and if $S=$ $\left(5 n^{2}-\imath\right) /(2 n-1)$, then

$$
M=S^{1}\left(\frac{1}{\sqrt{3}}\right) \times S^{1}\left(\frac{1}{\sqrt{3}}\right) \times S^{1}\left(\frac{1}{\sqrt{3}}\right) \text { in } S^{5}
$$

5. Flat normal connection. Let $S^{1}(1 / \sqrt{2})$ be a plane circle of radius $1 / \sqrt{2}$. By a similar method as that in Example 1, we see that $S^{1}(1 / \sqrt{2}) \times S^{1}(1 / \sqrt{2})$ is an anti-invariant submanifold of S^{3}, which is flat and minimal. Moreover this has flat normal connection and $S=2$.

In this section, we characterize $S^{1}(1 / \sqrt{2}) \times S^{1}(1 / \sqrt{2})$ of S^{3}. First we have the following

Lemma 5.1 ([3]). Let M be an ($n+1$)-dimensional minimal submanifold of $S^{2 n+1}$. Then

$$
\begin{equation*}
\sum_{t, a, b} h_{a b}^{t} \Delta h_{a b}^{t}=(n+1) \sum_{t} \operatorname{Tr} A_{t}^{2}+\sum_{t, s}\left\{\operatorname{Tr}\left(A_{t} A_{s}-A_{s} A_{t}\right)^{2}-\left[\operatorname{Tr}\left(A_{t} A_{s}\right)\right]^{2}\right\} \tag{5.1}
\end{equation*}
$$

Theorem 5.1. Let M be an ($n+1$)-dimensional anti-invariant minimal submanifold of $S^{2 n+1}$ with flat normal connection. If $S=n+1$, then M is flat and $n=1$.

Proof. From the assumption and (2.11) we see that the second fundamental form of M is commutative, i.e., $A_{t} A_{s}=A_{s} A_{t}$. Putting

$$
S_{t s}=\sum_{a, b} h_{a b}^{t} h_{a b}^{s}, \quad S_{t t}=S_{t}, \quad S=\sum_{t} S_{t}
$$

we obtain, from (5.1),

$$
\begin{align*}
\sum_{t, a, b} h_{a b}^{t} \Delta h_{a b}^{t} & =(n+1) S-\sum_{t} S_{t}^{2} \tag{5.2}\\
& =(n+1) S-\left(\sum_{t} S_{t}\right)^{2}+\sum_{t \neq s} S_{t} S_{s}
\end{align*}
$$

Since $S=$ constant, we have

$$
\sum_{t, a, b} h_{a b}^{t} \Delta h_{a b}^{t}=-\sum_{t, a, b, c}\left(h_{a b c}^{t}\right)^{2} .
$$

From this and (5.2) we have

$$
\begin{equation*}
0 \leqq \sum_{t, a, b, c}\left(h_{a b c}^{t}\right)^{2}=S[S-(n+1)]-\sum_{t \neq s} S_{t} S_{s} \leqq S[S-(n+1)] \tag{5.3}
\end{equation*}
$$

If $S=n+1$, we have $h_{a b c}^{t}=0$ and $\sum_{t \neq s} S_{t} S_{s}=0$. Thus we may assume that $S_{1}=n+1$ and $S_{t}=0$ for $t=2, \cdots, n$. Thus we obtain the following

$$
\begin{align*}
& \sum_{a, b}\left(h_{a b}^{1}\right)^{2}=n+1 \tag{5.4}\\
& h_{a b}^{t}=0 \text { for all } t>1 \text { and for all } a, b .
\end{align*}
$$

Using (3.1) we see that $\sum_{a, b}\left(h_{a b}^{1}\right)^{2}=2+\sum_{i, j}\left(h_{i j}^{1}\right)^{2}$. Since $h_{i j}^{1}=h_{1 j}^{i}=h_{1 i}^{j}=0$ unless $i=j=1$ by (5.4), we have

$$
\begin{equation*}
\sum_{a, b}\left(h_{a b}^{1}\right)^{2}=2+\left(h_{11}^{1}\right)^{2} . \tag{5.5}
\end{equation*}
$$

If M is minimal, the second fundamental form of M satisfies $\sum_{i} h_{i i}^{1}=0$, which implies that $h_{11}^{1}=0$. Consequently we must have $n+1=2$, that is, $n=1$. Moreover, Proposition 3.2 shows that M is flat.

From the theorem of Chern-Do Carmo-Kobayashi [3] and Theorem 5.1, we have

Theorem 5.2. Let M be an $(n+1)$-dimensional compact orientable anti-invariant minimal submanifold of $S^{2 n+1}$ with flat normal connection. If $S=n+1$, then

$$
M=S^{1}\left(\frac{1}{\sqrt{2}}\right) \times S^{1}\left(\frac{1}{\sqrt{2}}\right) \text { in } S^{3}
$$

6. Anti-invariant submanifolds with parallel mean curvature vector.

 First of all, we consider the following example.Example 2. Let $J=\left(a_{t s}\right)(t, s=1, \cdots, 2 n+2)$ be the almost complex structure of C^{n+1} such that $a_{2 i, 2 i-1}=0, a_{2 i-1,2 i}=-1(i=1, \cdots, n+1)$ the other components being zero. Let $S^{1}\left(r_{i}\right)=\left\{z_{i} \in C:\left|z_{i}\right|^{2}=r_{i}^{2}\right\}, i=$ $1, \cdots, n+1$. We consider $M=S^{1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right) \times \cdots \times S^{1}\left(r_{n+1}\right)$ in C^{n+1} such that $r_{1}^{2}+\cdots+r_{n+1}^{2}=1$. Then M is a flat submanifold of $S^{2 n+1}$ with parallel mean curvature vector and with flat normal connection (see [13]). The position vector X of M in C^{n+1} has components given by

$$
\begin{aligned}
& X=\left(r_{1} \cos u^{1}, r_{1} \sin u^{1}, \cdots,\right. r_{n+1} \cos u^{n+1}, \\
&\left.r_{n+1} \sin u^{n+1}\right), \\
& r_{1}^{2}+\cdots+r_{n+1}^{2}=1 .
\end{aligned}
$$

Then X is an outward unit normal vector of $S^{2 n+1}$ in C^{n+1}. Putting $X_{i}=\partial_{i} X=\partial X / \partial u^{i}$, we have

$$
\begin{aligned}
X_{1}= & r_{1}\left(-\sin u^{1}, \cos u^{1}, 0, \cdots, 0\right), \\
& \cdots \cdots \cdots \\
X_{n+1} & =r_{n+1}\left(0, \cdots, 0,-\sin u^{n+1}, \cos u^{n+1}\right)
\end{aligned}
$$

The vector field ξ on $S^{2 n+1}$ is given by its components

$$
\xi=J X=\left(-r_{1} \sin u^{1}, r_{1} \cos u^{1}, \cdots,-r_{n+1} \sin u^{n+1}, r_{n+1} \cos u^{n+1}\right)
$$

Therefore we see that $\xi=X_{1}+\cdots+X_{n+1}$, which means that the vector
field ξ is tangent to M. And the structure tensors (ϕ, ξ, η) of $S^{2 n+1}$ satisfy

$$
\phi X_{i}=J X_{i}+\eta\left(X_{i}\right) X, \quad i=1, \cdots, n+1 .
$$

Thus ϕX_{i} is normal to M for all i. Therefore M is an anti-invariant submanifold of $S^{2 n+1}$.

Lemma 6.1 ([13]). Let M be an $(n+1)$-dimensional submanifold of $S^{2 n+1}$ with parallel mean curvature vector and with flat normal connection and we let $\lambda_{a}^{\alpha}, 1 \leqq a \leqq n+1$, be the eigenvalues of A_{α} corresponding to eigenvectors E_{a} (recall that the flat normal connection of M implies the A_{α} 's are simultaneously diagonalizable). Then we have

$$
\begin{equation*}
\sum_{\alpha, a, b} h_{a b}^{\alpha} \Delta h_{a b}^{\alpha}=\sum_{\alpha} \sum_{a>b}\left(\lambda_{a}^{\alpha}-\lambda_{b}^{\alpha}\right)^{2} K_{a b}, \tag{6.1}
\end{equation*}
$$

where $K_{a b}$ denotes the sectional curvature of M determined by $\left\{E_{a}, E_{b}\right\}$.
Theorem 6.1. Let M be an $(n+1)$-dimensional compact orientable anti-invariant submanifold of $S^{2 n+1}$ with parallel mean curvature vector and with flat normal connection. Then

$$
M=S^{1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right) \times \cdots \times S^{1}\left(r_{n+1}\right), \quad r_{1}^{2}+\cdots+r_{n+1}^{2}=1 .
$$

Proof. Since the normal connection of M is flat, by Proposition 3.2, M is flat. Moreover, the square of the length of the second fundamental form of M is constant since the mean curvature vector of M is parallel. Thus we have $\sum_{\alpha, a, b} h_{a b}^{\alpha} \Delta h_{a b}^{\alpha}=-\sum_{\alpha, a, b, c}\left(h_{a b c}^{\alpha}\right)^{2}$. Since $K_{a b}=0$, (6.1) implies $h_{a b c}^{\alpha}=0$, that is, the second fundamental form of M is parallel. Consequently, Theorem 4.1 of Yano-Ishihara [13] implies our assertion.

References

[1] D. E. Blair and K. Ogiue, Geometry of integral submanifolds of contact distribution, Illinois J. Math., 19 (1975), 269-276.
[2] B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257-266.
[3] S. S. Chern, M. Do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields, Springer, (1970), 59-75.
[4] M. Kon, Totally real submanifolds in a Kaehler manifold, J. Differential Geometry, 11 (1976), 251-257.
[5] G. D. Ludden, M. Okumura and K. Yano, A totally real surface in $C P^{2}$ that is not totally geodesic, Proc. Amer. Math. Soc., 53 (1975), 186-190.
[6] G. D. Ludden, M. Okumura and K. Yano, Anti-invariant submanifolds of almost contact metric manifolds, to appear in Math. Ann.
[7] S. SASAKI, Almost contact manifolds, Lecture note I, Tôhoku University, (1965).
[8] S. Yamaguchi, M. Kon and T. Ikawa, On C-totally real submanifolds, J. Differential
[9] K. Yano, On n-dimensional Riemannian spaces admitting a group of motions of order $n(n-1) / 2+1$, Trans. Amer. Math. Soc., 74 (1953), 260-279.
[10] K. Yano, Differential geometry of totally real submanifolds, Topics in Differential Geometry, 1976, 173-184.
[11] K. Yano, Anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor, to appear.
[12] K. Yano, Differential geometry of anti-invariant submanifolds of a Sasakian manifold, Bollettino U.M.I., 12 (1975), 279-296.
[13] K. Yano and S. Ishifara, Submanifolds with parallel mean curvature vector, J. Differential Geometry, 6 (1971), 95-118.
[14] K. Yano and M. Kon, Totally real submanifolds of complex space forms, Tôhoku Math. J., 28 (1976), 215-225.
[15] K. Yano and M. Kon, Totally real submanifolds of complex space forms II, Kōdai Math. Sem. Rep., 27 (1976), 385-399.
Tokyo Institute of Technology
and
Science University of Tokyo

