Tôhoku Math. Journ. 29 (1977), 1-8.

ON THE ISOMETRIC STRUCTURE OF RIEMANNIAN MANIFOLDS OF NON-NEGATIVE RICCI CURVATURE CONTAINING A COMPACT HYPERSURFACE WITHOUT FOCAL POINT

Κιγοτακα Ιι

(Received July 2, 1974)

1. Introduction. In their paper [2], J. Cheeger and D. Gromoll proved the following:

THEOREM (Cheeger-Gromoll). Let M be a connected, complete and non-compact Riemannian manifold of non-negative Ricci curvature. If M contains a line, then M is isometric to the Riemannian product $N \times \mathbf{R}$, where N is a totally geodesic hypersurface in M.

Recall that a line is a normal geodesic $l: (-\infty, \infty) \rightarrow M$, any segment of which is minimal.

The above theorem says that the existence of suitable geometric objects in M determines the isometric structure of M. In the present paper, we shall consider the case where M contains a compact hypersurface without focal point. Our results are the following:

THEOREM A. Let M be a connected, complete and non-compact Riemannian manifold of non-negative Ricci curvature. If M contains a compact hypersurface N without focal point, then N is totally geodesic, and M is isometric to a flat line bundle on N or on N/Z_2 .

THEOREM B. Let M be a connected, compact Riemannian manifold of non-negative Ricci curvature. If M contains a compact hypersurface N without focal point, then N is totally geodesic, and M is isometric to a Riemannian manifold $\perp_{[0,r]}N/i$.

The Riemannian manifold $\perp_{[0,r]}N/i$ is defined as follows: For r>0, let $\perp_{[0,r]}N$ be a flat line bundle on N with fibre [-r, r]. Let $i: \perp_r N \rightarrow \perp_r N$ be a fixed-point free isometric involution on the boundary $\perp_r N$ of $\perp_{[0,r]}N$. Then identifying the boundary points u and i(u), we obtain the Riemannian manifold $\perp_{[0,r]}N/i$.

2. Preliminaries. Let M be an n-dimensional connected and complete Riemannian manifold with Riemannian metric \langle , \rangle and Levi-Civita

connection V. For $p \in M$, let M_p be the tangent space to M. Let $R(X, Y)Z = \nabla_{[X,Y]}Z - [\nabla_X, \nabla_Y]Z$ be the Riemannian curvature tensor. For $u, v \in M_{v}$, let K(u, v) be the sectional curvature of the plane spanned by u and v. If u and v are mutually orthogonal unit vectors, recall that $K(u, v) = \langle R(u, v)u, v \rangle$. For a unit vector $u \in M_p$, $\operatorname{Ric}(u) = \sum_{k=1}^{n-1} K(u, e_k)$ is the Ricci curvature of M with respect to u, where e_1, \dots, e_{n-1}, u is an orthonormal basis of M_{ν} . Let N be a connected and complete hypersurface in *M*. Let $\nu: \perp N \rightarrow N$ and $\nu: \perp_1 N \rightarrow N$ be the flat normal bundle and the unit normal bundle on N respectively. For $u \in \bot_1 N$, $p = \nu(u)$, let $S_u: N_p \times N_p \rightarrow R$ be the second fundamental form of N with respect to u. $S_u(X, Y) = -\langle u, V_X Y \rangle$ for tangent vector fields X and Y on N. The mean curvature of N with respect to u is given by $m(u) = \sum_{k=1}^{n-1} S_u(e_k, e_k)$, where e_1, \dots, e_{n-1} is an orthonormal basis of N_p . Let exp: $TM \rightarrow M$ be the exponential map. Let $\exp_N: \bot N \rightarrow M$ and $\exp_N: \bot_1 N \rightarrow M$ be the restrictions of exp on $\perp N$ and on $\perp N$ respectively. A geodesic c is called normal if its tangent vector \dot{c} is of unit length. For $u \in \perp_1 N$, the map $c: [0, \infty) \rightarrow M$ defined by $c(t) = \exp_{N}(tu)$ is a normal geodesic starting from N and perpendicular to N at t = 0. A cut point $c(\tau)$ of N along c is a point such that the restriction $c \mid [0, \tau]$ is a minimal geodesic from N to $c(\tau)$, but $c \mid [0, \tau']$ is not for any $\tau' > \tau$. The cut locus C(N) of N is the set of cut points of N along all geodesics starting from N and perpendicular to N. C(N) is a closed set in M. A Jacobi field $J: [0, \infty) \rightarrow TM$ along c is said to be transversal to N at t = 0 if it satisfies

(i) J is perpendicular to c,

(ii) $\langle \mathcal{V}_u J(0), v \rangle = -S_u(J(0), v)$ for any $v \in N_p$,

where $u = \dot{c}(0)$. A deformation $\mathscr{V}: (-\varepsilon, \varepsilon) \times [0, \infty) \to M$ of c is said to be transversal to N at t=0 if it satisfies

(i) $\mathscr{V}(0, t) = c(t)$ for $t \in [0, \infty)$,

(ii) the curve $t \mapsto \mathscr{V}(s, t)$ is a normal geodesic that is perpendicular to N at t = 0, for each $s \in (-\varepsilon, \varepsilon)$.

It is well-known that the Jacobi field associated to a transversal deformation is transversal. Conversely, any transversal Jacobi field is associated to at least one transversal deformation. Actually, for a transversal Jacobi field J, let $u: (-\varepsilon, \varepsilon) \to \perp_1 N$ be a map such that $u(0) = \dot{c}(0)$, and the tangent vector to the curve $s \mapsto \nu \circ u(s)$ at s = 0 is J(0). Then the map $\mathscr{V}: (-\varepsilon, \varepsilon) \times [0, \infty) \to M$ defined by $\mathscr{V}(s, t) = \exp_N(tu(s))$ is a transversal deformation, and the Jacobi field associated to \mathscr{V} coincides with J. See Hermann [3] or Bishop-Crittenden [1]. A focal point $c(\tau)$ of N along c is a point such that \exp_N is singular at $\tau \dot{c}(0) \in \bot N$. $c(\tau)$ is a focal point of N along c if and only if there exists a Jacobi field J along c that is transversal to N at t=0, $J(0) \neq 0$ and $J(\tau) = 0$. The focal locus F(N) of N is the set of focal points of N along all geodesics starting from N and perpendicular to N. For fixed $\tau > 0$, a map $\mathscr{W}: (-\varepsilon, \varepsilon) \times [0, \tau] \to M$ will be called a proper deformation of $c \mid [0, \tau]$ between N and $c(\tau)$ if it satisfies

(i) $\mathscr{W}(0, t) = c(t)$ for $t \in [0, \tau]$,

(ii) $\mathscr{W}(s, 0) \in N$ for $s \in (-\varepsilon, \varepsilon)$,

(iii) $\mathscr{W}(s, \tau) = c(\tau)$ for $s \in (-\varepsilon, \varepsilon)$,

(iv) the tangent vector X(t) to the curve $s \mapsto \mathscr{W}(s, t)$ at s=0 is perpendicular to c, for each $t \in [0, \tau]$.

A vector field $X: [0, \tau] \to TM$ along $c | [0, \tau]$ will be called a proper infinitesimal deformation of $c | [0, \tau]$ between N and $c(\tau)$ if it satisfies

(i) $X(\tau) = 0$,

(ii) X(t) is perpendicular to c for $t \in [0, \tau]$.

For any such X, there exists a proper deformation \mathscr{W} of $c \mid [0, \tau]$ between N and $c(\tau)$ such that the associated vector field coincides with X. Let L(s) denote the length of the curve $t \mapsto \mathscr{W}(s, t)$. Then $L: (-\varepsilon, \varepsilon) \to \mathbb{R}$ is smooth in a neighbourhood of 0, and

$$rac{d^2L(0)}{ds^2}=\int_{\scriptscriptstyle 0}^{\scriptscriptstyle au}(\langle X',\,X'
angle-\langle R(X,\,\dot{c})X,\,\dot{c}
angle)dt+S_u(X(0),\,X(0))\;,$$

where X' denotes the covariant derivative of X along c, and $u = \dot{c}(0)$. Let I(X) denote the right hand side of the above formula.

BASIC LEMMA. If N has no focal point along $c \mid [0, \tau]$. Then

 $I(X) \geqq 0$,

for any proper infinitesimal deformation X of $c | [0, \tau]$ between N and $c(\tau)$, moreover equality occurs if and only if $X \equiv 0$.

For the proof, see Bishop-Crittenden [1].

Let $\rho: M \times M \to R$ denote the distance function on M. The distance function $\rho_N: M \to R$ from N is given by $\rho_N(p) = \inf \{\rho(p, q) | q \in N\}$. ρ_N is continuous on M, and smooth on M - N - C(N). If $c([0, \tau]) \cap C(N) = \bigotimes$ for some $\tau > 0$, then $c \mid (0, \tau]$ is an integral curve of the gradient vector field grad ρ_N of ρ_N . $\rho_N(c(t)) = t$ for $t \in [0, \tau]$. Since grad $\rho_N(c(\tau)) \neq 0$, $N' = \rho_N^{-1}(\{\tau\}) \cap U$ is a piece of hypersurface in M, where U is a small neighbourhood of $c(\tau)$ in M. c is perpendicular to N' at $t = \tau$. Moreover, for any $u' \in \perp_1 N$ which is sufficiently close to $\dot{c}(0)$, the geodesic $c': [0, \infty) \to M$ defined by $c'(t) = \exp_N(tu')$ is perpendicular to N' at $t = \tau$.

3. The isometric structure of M. From now on, we shall assume that M is of non-negative Ricci curvature, and N is a connected and

K. II

compact hypersurface in M, which has no focal point, that is, $F(N) = \emptyset$.

LEMMA 1. N is a minimal hypersurface.

PROOF. For any $u \in \perp_1 N$, we shall prove that the mean curvature m(u) of N with respect to u vanishes. Define $c: [0, \infty) \to M$ by $c(t) = \exp_N(tu)$. Let e_1, \dots, e_{n-1} , \dot{c} be parallel orthonormal vector fields along c. Fix any $\tau > 0$, and define proper infinitesimal deformations X_k , $k = 1, \dots, n-1$, of $c \mid [0, \tau]$ between N and $c(\tau)$ by $X_k(t) = ((\tau - t)/\tau)e_k(t)$. Since N has no focal point along c, we have, by Basic Lemma in §2,

$$\begin{split} 0 &\leq \sum_{k=1}^{n-1} I(X_k) \\ &= \sum_{k=1}^{n-1} \int_0^\tau (\langle X_k', X_k' \rangle - \langle R(X_k, \dot{c}) X_k, \dot{c} \rangle) dt + \sum_{k=1}^{n-1} S_u(X_k(0), X_k(0)) \\ &= \frac{n-1}{\tau} - \int_0^\tau \left(\frac{\tau-t}{\tau}\right)^2 \operatorname{Ric} (\dot{c}(t)) dt + m(u) \\ &\leq \frac{n-1}{\tau} + m(u) \;. \end{split}$$

Letting $\tau \to \infty$, we have $m(u) \ge 0$. Similarly we have $0 \le m(-u) = -m(u)$, and the lemma follows.

Fix $p \in M - N - C(N)$, and choose a small neighbourhood U of p in M - N - C(N). Then $N' = \rho_N^{-1}(\{\tau\}) \cap U$ is a piece of hypersurface through p, where $\tau = \rho_N(p)$.

LEMMA 2. N' is a piece of minimal hypersurface.

PROOF. Let $c: (-\infty, \infty) \to M$ be a normal geodesic which is perpendicular to N at t=0, and $c \mid [0, \tau]$ is a minimal geodesic from N to $p = c(\tau)$. Then c is perpendicular to N' at $t=\tau$. It is sufficient to prove that the mean curvature of N' with respect to $\dot{c}(\tau)$ vanishes. Let $c_+ = c \mid [0, \infty)$, and $c_-: [0, \infty) \to M$; $c_-(t) = c(-t)$. For each $v \in N_{c(0)}$, $v \neq 0$, let J_+ and J_- be the Jacobi fields along c_+ and c_- respectively that are transversal to N at t=0, and $J_+(0) = J_-(0) = v$. Since N has no focal point along c_+ and c_- , J_+ and J_- do not vanish everywhere. Define $J: (-\infty, \infty) \to TM$ by $J(t) = J_+(t)$ for $t \geq 0$, and $J(t) = J_-(-t)$ for t < 0. Then J is a smooth Jacobi fields $J_1: [0, \infty) \to TM$; $J_1(t) = J(t + \tau)$ and $J_2: [0, \infty) \to TM$; $J_2(t) = J(-t+\tau)$ are transversal to N' at t=0. It follows easily that N' has no focal point along c. Then, by Lemma 1, the mean curvature of N' with respect to $\dot{c}(\tau)$ vanishes.

LEMMA 3. ρ_N is harmonic in M-N-C(N).

PROOF. Let p, U and N' be as above. Let E_1, \dots, E_{n-1} , $E_n = \operatorname{grad}(\rho_N | U)$ be orthonormal vector fields in U. Then the restrictions $E_k | N', k = 1, \dots, n-1$, are tangent to N', and $E_n | N'$ is perpendicular to N'. The integral curves of E_n are geodesics, $V_{E_n} E_n = 0$. Hence we have,

$$egin{aligned} & \Delta
ho_N(p) = -\sum\limits_{k=1}^n \langle \mathcal{V}_{E_k} E_n, E_k
angle |_p \ & = -\sum\limits_{k=1}^{n-1} \langle E_n, \mathcal{V}_{E_k} E_k
angle |_p \ & = m(E_n(p)) \ & = 0 \ . \end{aligned}$$

by Lemma 2, where $m(E_n(p))$ is the mean curvature of N' with respect to $E_n(p)$.

The following lemma is due to Cheeger-Gromoll [2].

LEMMA 4. grad ρ_N is parallel in M - N - C(N).

PROOF. Let p and U be as above. Let $E_1, \dots, E_{n-1}, E_n = \operatorname{grad}(\rho_N | U)$ be orthonormal vector fields in U which are parallel along the integral curves of E_n . Then in U,

$$\begin{aligned} \operatorname{Ric} \left(E_{n} \right) &= \sum_{k=1}^{n-1} \left\langle R(E_{n}, E_{k}) E_{n}, E_{k} \right\rangle \\ &= \sum_{k=1}^{n-1} \left\langle \mathcal{V}_{[E_{n}, E_{k}]} E_{n} - \mathcal{V}_{E_{n}} \mathcal{V}_{E_{k}} E_{n} + \mathcal{V}_{E_{k}} \mathcal{V}_{E_{n}} E_{n}, E_{k} \right\rangle \\ &= -\sum_{k=1}^{n-1} \left(\left\langle \mathcal{V}_{\mathcal{V}_{E_{k}} E_{n}} E_{n}, E_{k} \right\rangle + \left\langle \mathcal{V}_{E_{n}} \mathcal{V}_{E_{k}} E_{n}, E_{k} \right\rangle \right) \\ &= -\sum_{j,k=1}^{n-1} \left\langle \mathcal{V}_{E_{j}} E_{n}, E_{k} \right\rangle \langle \mathcal{V}_{E_{k}} E_{n}, E_{j} \rangle - \sum_{k=1}^{n-1} E_{n} \langle \mathcal{V}_{E_{k}} E_{n}, E_{k} \rangle \\ &= - \left\langle \mathcal{V} E_{n}, \mathcal{V} E_{n} \right\rangle + E_{n} (\mathcal{A} \rho_{N}) \\ &= - \left\langle \mathcal{V} E_{n}, \mathcal{V} E_{n} \right\rangle, \end{aligned}$$

by Lemma 3, where ∇E_n is the covariant differential of E_n . Since we have assumed that the Ricci curvature of M is non-negative, it follows that $\nabla E_n = 0$.

Let V' be a small neighbourhood of p in N', and $V' \times (-\varepsilon, \varepsilon)$ be the Riemannian product of V' and $(-\varepsilon, \varepsilon)$, for small $\varepsilon > 0$. Then, by Lemma 4, the map $t': V' \times (-\varepsilon, \varepsilon) \to M - N - C(N); t'(q, t) = \exp(tE_*(q))$ is an isometric imbedding. See Kobayashi-Nomizu [4]. For fixed $q \in V', t \mapsto t'$ (q, t) is an integral curve of E_* . For fixed $t \in (-\varepsilon, \varepsilon), t'(V' \times \{t\})$ coincides with $\rho_N^{-1}(\{\tau + t\}) \cap t'(V' \times (-\varepsilon, \varepsilon))$, where $\tau = \rho_N(p)$. Similarly, for $p \in N$, let V be a small neighbourhood of p in N, and $V \times (-\varepsilon, \varepsilon)$ be the Riemannian product. Let X_v be a unit normal vector field on V. Then the map $\iota: V \times (-\varepsilon, \varepsilon) \to M - C(N); \ \iota(q, t) = \exp_N(tX_v(q))$ is an isometric imbedding. For fixed $q \in V$, $t \mapsto \iota(q, t)$ and $t \mapsto \iota(q, -t)$ are integral curves of E_n , for t > 0. For fixed $t \in (-\varepsilon, \varepsilon), \ \iota(V \times \{t\})$ coincides with $\rho_N^{-1}(\{t\}) \cap \iota(V \times (-\varepsilon, \varepsilon))$. The following lemma is essentially due to Shiohama [6].

LEMMA 5. If N has a cut point, then the cut locus C(N) is a compact totally geodesic hypersurface without boundary.

PROOF. Since N is compact, the distance $r = \rho(N, C(N))$ between N and C(N) is greater than zero. Let $p_r \in C(N)$ be a point such that $\rho_N(p_r) = r$. First we shall prove that, for a small neighbourhood U of p_r in M, $C(N) \cap U$ is a piece of totally geodesic hypersurface, and $\rho_N | C(N) \cap U \equiv r$. Let $c: (-\infty, \infty) \to M$ be a normal geodesic such that $c \mid [0, r]$ is a minimal geodesic from N to C(N), $c(r) = p_r$. Since N has no focal point, there are precisely two minimal geodesic from N to p_r . $c_1 = c \mid [0, r]$ and $c_2: [0, r] \rightarrow M$; $c_2(t) = c(2r - t)$. See \overline{O} mori [5] and also Shiohama [6]. Let V_j , j=1, 2, be small neighbourhoods of $c_j(0)$ in N. Let $X_j: V_j \rightarrow \perp_1 N$ be unit normal vector fields on V_j such that $X(c_j(0)) = \dot{c}_j(0).$ Define $\varPhi_j: V_j \times (-\infty, \infty) \rightarrow M$ by $\varPhi_j(q, t) = \exp_N(tX_j(q)).$ Then Φ_j are immersions, and $\Phi_j | V_j \times (-r, r)$ are isometric imbeddings. It follows that $\Phi_j(V_j \times \{r\})$ are totally geodesic hypersurfaces which are perpendicular to $\dot{c}(r)$. Hence $H = \Phi_1(V_1 \times \{r\}) \cap \Phi_2(V_2 \times \{r\})$ is also a totally geodesic hypersurface through p_r . For any $p \in H$, there are two minimal geodesics, of length r, from p to N. Hence $H \subset C(N)$. By taking U suitably, we have $H = C(N) \cap U$. Next, let $p' \in \overline{H}$, where \overline{H} denotes the closure of H in M. Then $p' \in C(N)$ and $\rho_N(p') = r$. Therefore, as above, $C(N) \cap U'$ is a piece of totally geodesic hypersurface, $\rho_N | C(N) \cap U' \equiv r$, where U' is a small neighbourhood of p' in M. Let C_0 denote the connected component of C(N) which contains p_r . Then we have shown that C_0 is a compact totally geodesic hypersurface without boundary, here the compactness of C_0 follows from that of N. It is easy to see that C(N) has at most two connected components C_0 , in the direction of $\dot{c}(0)$, and $C(N) - C_0$, in the direction of $-\dot{c}(0)$. It is proved by the same way as above that if $C(N) - C_0$ is non-empty, then it is also a compact totally geodesic hypersurface without boundary.

REMARK. (i) If there does not exist a unit normal vector field $X: N \to \perp_1 N$ defined globally on N, then C(N) is connected.

(ii) If C(N) consists of two connected components, then M is compact.

COROLLARY. C(N) is locally isometric to N.

3. Non-compact case, Proof of Theorem A. In this section, we shall consider the case where M is non-compact. If N has no cut point, then M is isometric to the flat normal bundle $\perp N$. The isometry is given by $\exp_N: \perp N \rightarrow M$. On the other hand, if N has a cut point, then C(N) is a connected and compact totally geodesic hypersurface without boundary. There exists a unit normal vector field $X: N \rightarrow \perp_1 N$ defined globally on N such that there is no cut point in the direction of -X. Define $i_N: N \to N$ by $i_N(q) = \exp_N(2rX(q))$, where $r = \rho(N, C(N))$. Then i_N is an isometric involution on N. Since for each $p \in C(N)$, there are precisely two minimal geodesics from p to N, i_N has no fix point. Define $j: N \rightarrow C(N)$ by $j(q) = \exp_N(rX(q))$, then j is an isometric double covering. $j(q) = j(i_N(q))$ for $q \in N$. C(N) is isometric to the quotient space $N/_{\{i_N\}} = N/Z_2$. As a hypersurface, C(N) has no cut point. Therefore M is isometric to the flat normal bundle $\perp C(N)$ on C(N). $\perp C(N)$ is a non-trivial line Thus we obtain Theorem A. bundle.

4. Compact case, Proof of Theorem B. In this section, we shall consider the case where M is compact. For r>0, let $\perp_{[0,r]} N =$ $\perp_{[0,r]} N = \{ u \in \bot N | \langle u, u \rangle \leq r^2 \}$ $\{u \in \bot N | \langle u, u \rangle < r^2\},$ and $\perp N =$ $\{u \in \bot N | \langle u, u \rangle = r^2\}$ be Riemannian submanifolds in the flat normal bundle $\perp N$. For a fixed-point free isometry $i: \perp_r N \rightarrow \perp_r N$, let $\perp_{[0,r]} N/i$ denote the Riemannian manifold obtained from $\perp_{[0,r]}N$ by identifying the boundary points $u \in \perp_r N$ with i(u). Now, if C(N) is connected, then $C(N) = \rho_N^{-1}(\{r\})$ and M - C(N) is isometric to $\perp_{[0,r]} N$, where $r = \rho(N, C(N))$. Define $i: \perp_r N \to \perp_r N$ by i(u) = v, where v is such that $\exp_N(v) = \exp_N(u)$, $v \neq u$, which is determined uniquely. Then i is a fixed-point free isometric involution on $\perp_r N$. It is easy to see that M is isometric to $\perp_{[0,r]} N/i$. Next, if C(N) consists of two connected components C_0 and C_1 . Then, for the sake of simplicity, we may assume $r = \rho(N, C_0) = \rho(N, C_1)$. Then $C(N) = \rho_N^{-1}(\{r\})$, and M - C(N) is isometric to $\perp_{[0,r]} N$. Let $i: \perp_r N \to \perp_r N$ be as above. Then i is a fixed-point free isometric involution on each of the connected components of $\perp_r N$. It is easy to see that M is isometric to $\perp_{[0,r]}N/i$. Thus we obtain Theorem B.

I wish to express my sincere thanks to Professor K. Shiohama who kindly has read through the manuscript to point out several errors.

BIBLIOGRAPHY

[1] R. L. BISHOP AND R. J. CRITTENDEN, Geometry of manifolds, Academic Press, (1964).

[2] J. CHEEGER AND D. GROMOLL, The splitting theorem for manifolds of non-negative Ricci

curvature, J. Diff. Geom., 6 (1971), 119-128.

- [3] R. HERMANN, Differential geometry and the calculus of variations, Academic Press, (1968).
- [4] S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry I, Interscience, (1963).
- [5] H. OMORI, A class of Riemannian metrics of a manifold, J. Diff. Geom. 2 (1968), 233-256.
- [6] K. SHIOHAMA, On complete non-compact Riemannian manifolds with certain properties, Tôhoku Math. J., 22 (1970), 76-94.

DEPARTMENT OF MATHEMATICS Yamagata University 990 Yamagata, Japan