ON THE ISOMETRIC STRUCTURE OF RIEMANNIAN MANIFOLDS OF NON-NEGATIVE RICCI CURVATURE CONTAINING
 A COMPACT HYPERSURFACE WITHOUT FOCAL POINT

Kiyotaka Ii

(Received July 2, 1974)

1. Introduction. In their paper [2], J. Cheeger and D. Gromoll proved the following:

Theorem (Cheeger-Gromoll). Let M be a connected, complete and non-compact Riemannian manifold of non-negative Ricci curvature. If M contains a line, then M is isometric to the Riemannian product $N \times \boldsymbol{R}$, where N is a totally geodesic hypersurface in M.

Recall that a line is a normal geodesic $l:(-\infty, \infty) \rightarrow M$, any segment of which is minimal.

The above theorem says that the existence of suitable geometric objects in M determines the isometric structure of M. In the present paper, we shall consider the case where M contains a compact hypersurface without focal point. Our results are the following:

Theorem A. Let M be a connected, complete and non-compact Riemannian manifold of non-negative Ricci curvature. If M contains a compact hypersurface N without focal point, then N is totally geodesic, and M is isometric to a flat line bundle on N or on N / Z_{2}.

Theorem B. Let M be a connected, compact Riemannian manifold of non-negative Ricci curvature. If M contains a compact hypersurface N without focal point, then N is totally geodesic, and M is isometric to a Riemannian manifold $\perp_{[0, r]} N / i$.

The Riemannian manifold $\perp_{[0, r]} N / i$ is defined as follows: For $r>0$, let $\perp_{[0, r]} N$ be a flat line bundle on N with fibre $[-r, r]$. Let $i: \perp_{r} N \rightarrow \perp_{r} N$ be a fixed-point free isometric involution on the boundary $\perp_{r} N$ of $\perp_{[0, r]} N$. Then identifying the boundary points u and $i(u)$, we obtain the Riemannian manifold $\perp_{[0, r]} N / i$.
2. Preliminaries. Let M be an n-dimensional connected and complete Riemannian manifold with Riemannian metric \langle,$\rangle and Levi-Civita$
connection ∇. For $p \in M$, let M_{p} be the tangent space to M. Let $R(X, Y) Z=\nabla_{[X, Y]} Z-\left[\nabla_{X}, \nabla_{Y}\right] Z$ be the Riemannian curvature tensor. For $u, v \in M_{p}$, let $K(u, v)$ be the sectional curvature of the plane spanned by u and v. If u and v are mutually orthogonal unit vectors, recall that $K(u, v)=\langle R(u, v) u, v\rangle$. For a unit vector $u \in M_{p}$, Ric $(u)=\sum_{k=1}^{n-1} K\left(u, e_{k}\right)$ is the Ricci curvature of M with respect to u, where $e_{1}, \cdots, e_{n-1}, u$ is an orthonormal basis of M_{p}. Let N be a connected and complete hypersurface in M. Let $\nu: \perp N \rightarrow N$ and $\nu: \perp_{1} N \rightarrow N$ be the flat normal bundle and the unit normal bundle on N respectively. For $u \in \perp_{1} N, p=\nu(u)$, let $S_{u}: N_{p} \times N_{p} \rightarrow \boldsymbol{R}$ be the second fundamental form of N with respect to u. $S_{u}(X, Y)=-\left\langle u, \nabla_{X} Y\right\rangle$ for tangent vector fields X and Y on N. The mean curvature of N with respect to u is given by $m(u)=\sum_{k=1}^{n-1} S_{u}\left(e_{k}, e_{k}\right)$, where e_{1}, \cdots, e_{n-1} is an orthonormal basis of N_{p}. Let $\exp : T M \rightarrow M$ be the exponential map. Let $\exp _{N}: \perp N \rightarrow M$ and $\exp _{N}: \perp_{1} N \rightarrow M$ be the restrictions of \exp on $\perp N$ and on $\perp_{1} N$ respectively. A geodesic c is called normal if its tangent vector \dot{c} is of unit length. For $u \in \perp_{1} N$, the map $c:[0, \infty) \rightarrow M$ defined by $c(t)=\exp _{N}(t u)$ is a normal geodesic starting from N and perpendicular to N at $t=0$. A cut point $c(\tau)$ of N along c is a point such that the restriction $c \mid[0, \tau]$ is a minimal geodesic from N to $c(\tau)$, but $c \mid\left[0, \tau^{\prime}\right]$ is not for any $\tau^{\prime}>\tau$. The cut locus $C(N)$ of N is the set of cut points of N along all geodesics starting from N and perpendicular to $N . C(N)$ is a closed set in M. A Jacobi field $J:[0, \infty) \rightarrow T M$ along c is said to be transversal to N at $t=0$ if it satisfies
(i) J is perpendicular to c,
(ii) $\left\langle\nabla_{u} J(0), v\right\rangle=-S_{u}(J(0), v)$ for any $v \in N_{p}$,
where $u=\dot{c}(0)$. A deformation $\mathscr{V}:(-\varepsilon, \varepsilon) \times[0, \infty) \rightarrow M$ of c is said to be transversal to N at $t=0$ if it satisfies
(i) $\mathscr{V}(0, t)=c(t)$ for $t \in[0, \infty)$,
(ii) the curve $t \mapsto \mathscr{V}(s, t)$ is a normal geodesic that is perpendicular to N at $t=0$, for each $s \in(-\varepsilon, \varepsilon)$.
It is well-known that the Jacobi field associated to a transversal deformation is transversal. Conversely, any transversal Jacobi field is associated to at least one transversal deformation. Actually, for a transversal Jacobi field J, let $u:(-\varepsilon, \varepsilon) \rightarrow \perp_{1} N$ be a map such that $u(0)=\dot{c}(0)$, and the tangent vector to the curve $s \mapsto \nu \circ u(s)$ at $s=0$ is $J(0)$. Then the $\operatorname{map} \mathscr{Y}:(-\varepsilon, \varepsilon) \times[0, \infty) \rightarrow M$ defined by $\mathscr{V}(s, t)=\exp _{N}(t u(s))$ is a transversal deformation, and the Jacobi field associated to \mathscr{V} coincides with J. See Hermann [3] or Bishop-Crittenden [1]. A focal point $c(\tau)$ of N along c is a point such that $\exp _{N}$ is singular at $\tau \dot{c}(0) \in \perp N . \quad c(\tau)$ is a focal point of N along c if and only if there exists a Jacobi field J along
c that is transversal to N at $t=0, J(0) \neq 0$ and $J(\tau)=0$. The focal locus $F(N)$ of N is the set of focal points of N along all geodesics starting from N and perpendicular to N. For fixed $\tau>0$, a map $\mathscr{W}:(-\varepsilon, \varepsilon) \times$ $[0, \tau] \rightarrow M$ will be called a proper deformation of $c \mid[0, \tau]$ between N and $c(\tau)$ if it satisfies
(i) $\mathscr{W}(0, t)=c(t)$ for $t \in[0, \tau]$,
(ii) $\mathscr{\mathscr { W }}(s, 0) \in N$ for $s \in(-\varepsilon, \varepsilon)$,
(iii) $\mathscr{W}(s, \tau)=c(\tau)$ for $s \in(-\varepsilon, \varepsilon)$,
(iv) the tangent vector $X(t)$ to the curve $s \mapsto \mathscr{W}(s, t)$ at $s=0$ is perpendicular to c, for each $t \in[0, \tau]$.
A vector field $X:[0, \tau] \rightarrow T M$ along $c \mid[0, \tau]$ will be called a proper infinitesimal deformation of $c \mid[0, \tau]$ between N and $c(\tau)$ if it satisfies
(i) $X(\tau)=0$,
(ii) $X(t)$ is perpendicular to c for $t \in[0, \tau]$.

For any such X, there exists a proper deformation \mathscr{W} of $c \mid[0, \tau]$ between N and $c(\tau)$ such that the associated vector field coincides with X. Let $L(s)$ denote the length of the curve $t \mapsto \mathscr{W}(s, t)$. Then $L:(-\varepsilon, \varepsilon) \rightarrow \boldsymbol{R}$ is smooth in a neighbourhood of 0 , and

$$
\frac{d^{2} L(0)}{d s^{2}}=\int_{0}^{\tau}\left(\left\langle X^{\prime}, X^{\prime}\right\rangle-\langle R(X, \dot{c}) X, \dot{c}\rangle\right) d t+S_{u}(X(0), X(0)),
$$

where X^{\prime} denotes the covariant derivative of X along c, and $u=\dot{c}(0)$. Let $I(X)$ denote the right hand side of the above formula.

Basic Lemma. If N has no focal point along $c \mid[0, \tau]$. Then

$$
I(X) \geqq 0
$$

for any proper infinitesimal deformation X of $c \mid[0, \tau]$ between N and $c(\tau)$, moreover equality occurs if and only if $X \equiv 0$.

For the proof, see Bishop-Crittenden [1].
Let $\rho: M \times M \rightarrow \boldsymbol{R}$ denote the distance function on M. The distance function $\rho_{N}: M \rightarrow \boldsymbol{R}$ from N is given by $\rho_{N}(p)=\inf \{\rho(p, q) \mid q \in N\} . \quad \rho_{N}$ is continuous on M, and smooth on $M-N-C(N)$. If $c([0, \tau]) \cap C(N)=Q$ for some $\tau>0$, then $c \mid(0, \tau]$ is an integral curve of the gradient vector field $\operatorname{grad} \rho_{N}$ of $\rho_{N} . \quad \rho_{N}(c(t))=t$ for $t \in[0, \tau]$. Since $\operatorname{grad} \rho_{N}(c(\tau)) \neq 0$, $N^{\prime}=\rho_{N}^{-1}(\{\tau\}) \cap U$ is a piece of hypersurface in M, where U is a small neighbourhood of $c(\tau)$ in $M . \quad c$ is perpendicular to N^{\prime} at $t=\tau$. Moreover, for any $u^{\prime} \in \perp_{1} N$ which is sufficiently close to $\dot{c}(0)$, the geodesic $c^{\prime}:[0, \infty) \rightarrow M$ defined by $c^{\prime}(t)=\exp _{N}\left(t u^{\prime}\right)$ is perpendicular to N^{\prime} at $t=\tau$.
3. The isometric structure of M. From now on, we shall assume that M is of non-negative Ricci curvature, and N is a connected and
compact hypersurface in M, which has no focal point, that is, $F(N)=\varnothing$.
Lemma 1. N is a minimal hypersurface.
Proof. For any $u \in \perp_{1} N$, we shall prove that the mean curvature $m(u)$ of N with respect to u vanishes. Define $c:[0, \infty) \rightarrow M$ by $c(t)=\exp _{N}(t u)$. Let $e_{1}, \cdots, e_{n-1}, \dot{c}$ be parallel orthonormal vector fields along c. Fix any $\tau>0$, and define proper infinitesimal deformations X_{k}, $k=1, \cdots, n-1$, of $c \mid[0, \tau]$ between N and $c(\tau)$ by $X_{k}(t)=((\tau-t) / \tau) e_{k}(t)$. Since N has no focal point along c, we have, by Basic Lemma in §2,

$$
\begin{aligned}
0 & \leqq \sum_{k=1}^{n-1} I\left(X_{k}\right) \\
& =\sum_{k=1}^{n-1} \int_{0}^{\tau}\left(\left\langle X_{k}^{\prime}, X_{k}^{\prime}\right\rangle-\left\langle R\left(X_{k}, \dot{c}\right) X_{k}, \dot{c}\right\rangle\right) d t+\sum_{k=1}^{n-1} S_{u}\left(X_{k}(0), X_{k}(0)\right) \\
& =\frac{n-1}{\tau}-\int_{0}^{\tau}\left(\frac{\tau-t}{\tau}\right)^{2} \operatorname{Ric}(\dot{c}(t)) d t+m(u) \\
& \leqq \frac{n-1}{\tau}+m(u)
\end{aligned}
$$

Letting $\tau \rightarrow \infty$, we have $m(u) \geqq 0$. Similarly we have $0 \leqq m(-u)=-m(u)$, and the lemma follows.

Fix $p \in M-N-C(N)$, and choose a small neighbourhood U of p in $M-N-C(N)$. Then $N^{\prime}=\rho_{N}^{-1}(\{\tau\}) \cap U$ is a piece of hypersurface through p, where $\tau=\rho_{N}(p)$.

Lemma 2. N^{\prime} is a piece of minimal hypersurface.
Proof. Let $c:(-\infty, \infty) \rightarrow M$ be a normal geodesic which is perpendicular to N at $t=0$, and $c \mid[0, \tau]$ is a minimal geodesic from N to $p=c(\tau)$. Then c is perpendicular to N^{\prime} at $t=\tau$. It is sufficient to prove that the mean curvature of N^{\prime} with respect to $\dot{c}(\tau)$ vanishes. Let $c_{+}=c \mid[0, \infty)$, and $c_{-}:[0, \infty) \rightarrow M ; c_{-}(t)=c(-t)$. For each $v \in N_{c(0)}, v \neq 0$, let J_{+}and J_{-} be the Jacobi fields along c_{+}and c_{-}respectively that are transversal to N at $t=0$, and $J_{+}(0)=J_{-}(0)=v$. Since N has no focal point along c_{+}and c_{-}, J_{+}and J_{-}do not vanish everywhere. Define $J:(-\infty, \infty) \rightarrow T M$ by $J(t)=J_{+}(t)$ for $t \geqq 0$, and $J(t)=J_{-}(-t)$ for $t<0$. Then J is a smooth Jacobi field along c, which does not vanish everywhere. Recall that the Jacobi equation is of second order. Since N^{\prime} is a "level surface" of ρ_{N}, the Jacobi fields $J_{1}:[0, \infty) \rightarrow T M ; J_{1}(t)=J(t+\tau)$ and $J_{2}:[0, \infty) \rightarrow T M$; $J_{2}(t)=J(-t+\tau)$ are transversal to N^{\prime} at $t=0$. It follows easily that N^{\prime} has no focal point along c. Then, by Lemma 1 , the mean curvature of N^{\prime} with respect to $\dot{c}(\tau)$ vanishes.

Lemma 3. ρ_{N} is harmonic in $M-N-C(N)$.
Proof. Let p, U and N^{\prime} be as above. Let E_{1}, \cdots, E_{n-1}, $E_{n}=\operatorname{grad}\left(\rho_{N} \mid U\right)$ be orthonormal vector fields in U. Then the restrictions $E_{k} \mid N^{\prime}, k=1, \cdots, n-1$, are tangent to N^{\prime}, and $E_{n} \mid N^{\prime}$ is perpendicular to N^{\prime}. The integral curves of E_{n} are geodesics, $\nabla_{E_{n}} E_{n}=0$. Hence we have,

$$
\begin{aligned}
\Delta \rho_{N}(p) & =-\left.\sum_{k=1}^{n}\left\langle\nabla_{E_{k}} E_{n}, E_{k}\right\rangle\right|_{p} \\
& =-\left.\sum_{k=1}^{n-1}\left\langle E_{n}, \nabla_{E_{k}} E_{k}\right\rangle\right|_{p} \\
& =m\left(E_{n}(p)\right) \\
& =0
\end{aligned}
$$

by Lemma 2, where $m\left(E_{n}(p)\right)$ is the mean curvature of N^{\prime} with respect to $E_{n}(p)$.

The following lemma is due to Cheeger-Gromoll [2].
Lemma 4. $\operatorname{grad} \rho_{N}$ is parallel in $M-N-C(N)$.
Proof. Let p and U be as above. Let $E_{1}, \cdots, E_{n-1}, E_{n}=\operatorname{grad}\left(\rho_{N} \mid U\right)$ be orthonormal vector fields in U which are parallel along the integral curves of E_{n}. Then in U,

$$
\begin{aligned}
\operatorname{Ric}\left(E_{n}\right) & =\sum_{k=1}^{n-1}\left\langle R\left(E_{n}, E_{k}\right) E_{n}, E_{k}\right\rangle \\
& =\sum_{k=1}^{n-1}\left\langle\nabla_{\left[E_{n}, E_{k}\right]} E_{n}-\nabla_{E_{n}} \nabla_{E_{k}} E_{n}+\nabla_{E_{k}} \nabla_{E_{n}} E_{n}, E_{k}\right\rangle \\
& =-\sum_{k=1}^{n-1}\left(\left\langle\nabla_{\nabla_{E_{k}} E_{n}} E_{n}, E_{k}\right\rangle+\left\langle\nabla_{E_{n}} \nabla_{E_{k}} E_{n}, E_{k}\right\rangle\right) \\
& =-\sum_{j, k=1}^{n-1}\left\langle\nabla_{E_{j}} E_{n}, E_{k}\right\rangle\left\langle\nabla_{E_{k}} E_{n}, E_{j}\right\rangle-\sum_{k=1}^{n-1} E_{n}\left\langle\nabla_{E_{k}} E_{n}, E_{k}\right\rangle \\
& =-\left\langle\nabla E_{n}, \nabla E_{n}\right\rangle+E_{n}\left(\Delta \rho_{N}\right) \\
& =-\left\langle\nabla E_{n}, \nabla E_{n}\right\rangle,
\end{aligned}
$$

by Lemma 3, where ∇E_{n} is the covariant differential of E_{n}. Since we have assumed that the Ricci curvature of M is non-negative, it follows that $\nabla E_{n}=0$.

Let V^{\prime} be a small neighbourhood of p in N^{\prime}, and $V^{\prime} \times(-\varepsilon, \varepsilon)$ be the Riemannian product of V^{\prime} and $(-\varepsilon, \varepsilon)$, for small $\varepsilon>0$. Then, by Lemma 4 , the $\operatorname{map} \iota^{\prime}: V^{\prime} \times(-\varepsilon, \varepsilon) \rightarrow M-N-C(N) ; c^{\prime}(q, t)=\exp \left(t E_{n}(q)\right)$ is an isometric imbedding. See Kobayashi-Nomizu [4]. For fixed $q \in V^{\prime}, t \mapsto \iota^{\prime}$ (q, t) is an integral curve of E_{n}. For fixed $t \in(-\varepsilon, \varepsilon), \iota^{\prime}\left(V^{\prime} \times\{t\}\right)$ coincides with $\rho_{N}^{-1}(\{\tau+t\}) \cap c^{\prime}\left(V^{\prime} \times(-\varepsilon, \varepsilon)\right)$, where $\tau=\rho_{N}(p)$. Similarly, for $p \in N$, let
V be a small neighbourhood of p in N, and $V \times(-\varepsilon, \varepsilon)$ be the Riemannian product. Let X_{V} be a unit normal vector field on V. Then the map c: $V \times(-\varepsilon, \varepsilon) \rightarrow M-C(N) ; \iota(q, t)=\exp _{N}\left(t X_{V}(q)\right)$ is an isometric imbedding. For fixed $q \in V, t \mapsto \iota(q, t)$ and $t \mapsto \iota(q,-t)$ are integral curves of E_{n}, for $t>0$. For fixed $t \in(-\varepsilon, \varepsilon), \iota(V \times\{t\})$ coincides with $\rho_{N}^{-1}(\{t\}) \cap c(V \times(-\varepsilon, \varepsilon))$. The following lemma is essentially due to Shiohama [6].

Lemma 5. If N has a cut point, then the cut locus $C(N)$ is a compact totally geodesic hypersurface without boundary.

Proof. Since N is compact, the distance $r=\rho(N, C(N))$ between N and $C(N)$ is greater than zero. Let $p_{r} \in C(N)$ be a point such that $\rho_{N}\left(p_{r}\right)=r$. First we shall prove that, for a small neighbourhood U of p_{r} in $M, C(N) \cap U$ is a piece of totally geodesic hypersurface, and $\rho_{N} \mid C(N) \cap U \equiv r$. Let $c:(-\infty, \infty) \rightarrow M$ be a normal geodesic such that $c \mid[0, r]$ is a minimal geodesic from N to $C(N), c(r)=p_{r}$. Since N has no focal point, there are precisely two minimal geodesic from N to p_{r}. $c_{1}=c \mid[0, r]$ and $c_{2}:[0, r] \rightarrow M ; c_{2}(t)=c(2 r-t)$. See Ōmori [5] and also Shiohama [6]. Let $V_{j}, j=1,2$, be small neighbourhoods of $c_{j}(0)$ in N. Let $X_{j}: V_{j} \rightarrow \perp_{1} N$ be unit normal vector fields on V_{j} such that $X\left(c_{j}(0)\right)=\dot{c}_{j}(0)$. Define $\Phi_{j}: V_{j} \times(-\infty, \infty) \rightarrow M$ by $\Phi_{j}(q, t)=\exp _{N}\left(t X_{j}(q)\right)$. Then Φ_{j} are immersions, and $\Phi_{j} \mid V_{j} \times(-r, r)$ are isometric imbeddings. It follows that $\Phi_{j}\left(V_{j} \times\{r\}\right)$ are totally geodesic hypersurfaces which are perpendicular to $\dot{c}(r)$. Hence $H=\Phi_{1}\left(V_{1} \times\{r\}\right) \cap \Phi_{2}\left(V_{2} \times\{r\}\right)$ is also a totally geodesic hypersurface through p_{r}. For any $p \in H$, there are two minimal geodesics, of length r, from p to N. Hence $H \subset C(N)$. By taking U suitably, we have $H=C(N) \cap U$. Next, let $p^{\prime} \in \bar{H}$, where \bar{H} denotes the closure of H in M. Then $p^{\prime} \in C(N)$ and $\rho_{N}\left(p^{\prime}\right)=r$. Therefore, as above, $C(N) \cap U^{\prime}$ is a piece of totally geodesic hypersurface, $\rho_{N} \mid C(N) \cap U^{\prime} \equiv r$, where U^{\prime} is a small neighbourhood of p^{\prime} in M. Let C_{0} denote the connected component of $C(N)$ which contains p_{r}. Then we have shown that C_{0} is a compact totally geodesic hypersurface without boundary, here the compactness of C_{0} follows from that of N. It is easy to see that $C(N)$ has at most two connected components C_{0}, in the direction of $\dot{c}(0)$, and $C(N)-C_{0}$, in the direction of $-\dot{c}(0)$. It is proved by the same way as above that if $C(N)-C_{0}$ is non-empty, then it is also a compact totally geodesic hypersurface without boundary.

Remark. (i) If there does not exist a unit normal vector field $X: N \rightarrow \perp{ }_{1} N$ defined globally on N, then $C(N)$ is connected.
(ii) If $C(N)$ consists of two connected components, then M is compact.

Corollary. $C(N)$ is locally isometric to N.
3. Non-compact case, Proof of Theorem A. In this section, we shall consider the case where M is non-compact. If N has no cut point, then M is isometric to the flat normal bundle $\perp N$. The isometry is given by $\exp _{N}: \perp N \rightarrow M$. On the other hand, if N has a cut point, then $C(N)$ is a connected and compact totally geodesic hypersurface without boundary. There exists a unit normal vector field $X: N \rightarrow \perp{ }_{1} N$ defined globally on N such that there is no cut point in the direction of $-X$. Define $i_{N}: N \rightarrow N$ by $i_{N}(q)=\exp _{N}(2 r X(q))$, where $r=\rho(N, C(N))$. Then i_{N} is an isometric involution on N. Since for each $p \in C(N)$, there are precisely two minimal geodesics from p to N, i_{N} has no fix point. Define $j: N \rightarrow C(N)$ by $j(q)=\exp _{N}(r X(q))$, then j is an isometric double covering. $j(q)=j\left(i_{N}(q)\right)$ for $q \in N . C(N)$ is isometric to the quotient space $N /_{\left(i_{N}\right)}=N / \boldsymbol{Z}_{2}$. As a hypersurface, $C(N)$ has no cut point. Therefore M is isometric to the flat normal bundle $\perp C(N)$ on $C(N) . \quad \perp C(N)$ is a non-trivial line bundle. Thus we obtain Theorem A.
4. Compact case, Proof of Theorem B. In this section, we shall consider the case where M is compact. For $r>0$, let $\perp_{[0, r)} N=$ $\left\{u \in \perp N \mid\langle u, u\rangle\left\langle r^{2}\right\}, \quad \perp_{[0, r]} N=\left\{u \in \perp N \mid\langle u, u\rangle \leqq r^{2}\right\} \quad\right.$ and $\quad \perp{ }_{r} N=$ $\left\{u \in \perp N \mid\langle u, u\rangle=r^{2}\right\}$ be Riemannian submanifolds in the flat normal bundle $\perp N$. For a fixed-point free isometry $i: \perp{ }_{r} N \rightarrow \perp_{r} N$, let $\perp_{[0, r]} N / i$ denote the Riemannian manifold obtained from $\perp_{[0, r]} N$ by identifying the boundary points $u \in \perp{ }_{r} N$ with $i(u)$. Now, if $C(N)$ is connected, then $C(N)=\rho_{N}^{-1}(\{r\})$ and $M-C(N)$ is isometric to $\perp_{[0, r)} N$, where $r=\rho(N, C(N))$. Define $i: \perp_{r} N \rightarrow \perp_{r} N$ by $i(u)=v$, where v is such that $\exp _{N}(v)=\exp _{N}(u)$, $v \neq u$, which is determined uniquely. Then i is a fixed-point free isometric involution on $\perp_{r} N$. It is easy to see that M is isometric to $\perp_{[0, r]} N / i$. Next, if $C(N)$ consists of two connected components C_{0} and C_{1}. Then, for the sake of simplicity, we may assume $r=\rho\left(N, C_{0}\right)=\rho\left(N, C_{1}\right)$. Then $C(N)=\rho_{N}^{-1}(\{r\})$, and $M-C(N)$ is isometric to $\perp_{[0, r)} N$. Let $i: \perp_{r} N \rightarrow \perp_{r} N$ be as above. Then i is a fixed-point free isometric involution on each of the connected components of $\perp_{r} N$. It is easy to see that M is isometric to $\perp_{[0, r]} N / i$. Thus we obtain Theorem B.

I wish to express my sincere thanks to Professor K. Shiohama who kindly has read through the manuscript to point out several errors.

Bibliography

[1] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, (1964).
[2] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of non-negative Ricci
curvature, J. Diff. Geom., 6 (1971), 119-128.
[3] R. Hermann, Differential geometry and the calculus of variations, Academic Press, (1968).
[4] S. Kobayashi and K. Nomizu, Foundations of differential geometry I, Interscience, (1963).
[5] H. Ōmori, A class of Riemannian metrics of a manifold, J. Diff. Geom. 2 (1968), 233-256.
[6] K. Shiohama, On complete non-compact Riemannian manifolds with certain properties, Tôhoku Math. J., 22 (1970), 76-94.

Department of Mathematics
Yamagata University
990 Yamagata, Japan

