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1. Introduction. In their paper [2], J. Cheeger and D. Gromoll
proved the following:

THEOREM (Cheeger-Gromoll). Let M be a connected, complete and
non-compact Rίemannian manifold of non-negative Rίcci curvature. If
M contains a line, then M is isometric to the Riemannian product NxR,
where N is a totally geodesic hypersurface in M.

Recall that a line is a normal geodesic l:(— °°, °°)—•Λf, any segment
of which is minimal.

The above theorem says that the existence of suitable geometric
objects in M determines the isometric structure of M. In the present
paper, we shall consider the case where M contains a compact hyper-
surface without focal point. Our results are the following:

THEOREM A. Let M be a connected, complete and non-compact
Riemannian manifold of non-negative Ricci curvature. If M contains
a compact hypersurface N without focal point, then N is totally geodesic,
and M is isometric to a flat line bundle on N or on N/Z2.

THEOREM B. Let M be a connected, compact Riemannian manifold
of non-negative Ricci curvature. If M contains a compact hypersurface
N without focal point, then N is totally geodesic, and M is isometric
to a Rίemannian manifold lί0,r \N/i.

The Riemannian manifold lί0,riNli is defined as follows: For r>0,
let _L [0,r]AΓ be a flat line bundle on N with fibre [—r, r]. Let i: 1 rN—> 1 rN
be a fixed-point free isometric involution on the boundary ±rN of ± [ 0 , r ] ^ .
Then identifying the boundary points u and i(u), we obtain the Rieman-
nian manifold lιo,riN/i.

2. Preliminaries. Let M be an ^-dimensional connected and complete
Riemannian manifold with Riemannian metric < , > and Levi-Civita
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connection P. For peM, let Mp be the tangent space to M. Let
R(X, Y)Z= Pu,γ-\Z — ψXi VY]Z be the Riemannian curvature tensor. For
u, v e Mp, let K(u, v) be the sectional curvature of the plane spanned by
u and v. If u and v are mutually orthogonal unit vectors, recall that
K(u, v) = (R(u, v)u, v). For a unit vector ueMp, Ric(u) = ΣuZlK(u9 ek)
is the Ricci curvature of M with respect to u, where eί9 , en_u u is an
orthonormal basis of Mp. Let N be a connected and complete hyper-
surface in M. Let v: ±N~+N and v\ l^-^Nbe the flat normal bundle
and the unit normal bundle on N respectively. For w e i ^ , p = v(^),
let Su:Npx Np—+R be the second fundamental form of N with respect to
u. SU(X, Y) = -{n, PXY) for tangent vector fields X and Y on N. The
mean curvature of JV with respect to u is given by m(u) = Σ&=ί S.(efc, efc),
where eίf , ew_! is an orthonormal basis of Np. Let exp: TM-+M be the
exponential map. Let exp^: ±N~>M and exp^: i^^+M be the restric-
tions of exp on ±N and on JLJV respectively. A geodesic c is called
normal if its tangent vector c is of unit length. For ue l ^ the map
c: [0, oo)—»jjf defined by φ ) = exp^(tu) is a normal geodesic starting from
JV and perpendicular to N at t = 0. A cut point c(τ) of N along c is a
point such that the restriction c | [0, τ] is a minimal geodesic from N to
c(τ), but c I [0, τ'\ is not for any τ' > τ. The cut locus C(N) of N is the
set of cut points of N along all geodesies starting from N and perpen-
dicular to N. C(N) is a closed set in M. A Jacobi field J: [0, c*)-> Tiki
along c is said to be transversal to N at ί = 0 if it satisfies

( i ) J* is perpendicular to e,
(ii) (PuJ(0), v) = -SUJ(0), v) for any v e Np,

where u = c(0). A deformation T\ ( — ε, έ) x [0, oo)—> M of c is said to
be transversal to iV at t = 0 if it satisfies

( i ) 3^(0,t) = c(ί) for te[0, oo),
(ii) the curve 11-* 3 (̂8, ί) is a normal geodesic that is perpendicular

to N at t = 0, for each s 6 ( —ε, ε).
It is well-known that the Jacobi field associated to a transversal deforma-
tion is transversal. Conversely, any transversal Jacobi field is associated
to at least one transversal deformation. Actually, for a transversal
Jacobi field J, let u:( — e,ε)-+±1Nbe a map such that u(0) = c(0), and
the tangent vector to the curve s ^ vou(s) at s = 0 is /(0). Then the
map T\ (—ε, ε) x [0, ^)-^M defined by T{s91) = expN(tu(s)) is a trans-
versal deformation, and the Jacobi field associated to 3^ coincides with
J. See Hermann [3] or Bishop-Crittenden [1]. A focal point c(τ) of N
along c is a point such that exp^ is singular at τc(0) e ±N. c(τ) is a
focal point of N along c if and only if there exists a Jacobi field J along
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c that is transversal to N at t = 0, J(O)Φθ and J(τ) = 0. The focal locus
F(N) of N is the set of focal points of JV along all geodesies starting
from N and perpendicular to N. For fixed τ>0, a map ^ : ( — ε, ε)x
[0, τ] —• M will be called a proper deformation of c | [0, τ] between N and
c(τ) if it satisfies

( i ) 3^(0, t) - c(ί) for t e [0, r],
(ii) W"(s, 0)eN for β e ( - e , ε),
(iii) 3^(8, τ) = c(τ) for s e (-ε, ε),
(iv) the tangent vector X(£) to the curve s H-> cW(βi t) at s = 0 is

perpendicular to c, for each t e [0, τ].
A vector field X: [0, τ] —> TM along c | [0, τ] will be called a proper
infinitesimal deformation of c \ [0, r] between N and c(r) if it satisfies

( i ) X(τ) = 0f

(ii) X(t) is perpendicular to c for te[0, τ\.
For any such X, there exists a proper deformation *W of c| [0, τ] between
N and c(τ) such that the associated vector field coincides with X. Let
L{s) denote the length of the curve t\-*W~(s, t). Then L:(-ε, ε)-+R
is smooth in a neighbourhood of 0, and

Z'> - (R(X, c)X, c))dt + S.(X(0)f X(0)) ,

where X' denotes the covariant derivative of X along c, and u = c(0).
Let 7(X) denote the right hand side of the above formula.

BASIC LEMMA. If N has no focal point along c | [0, τ]. Then

I(X) ^ 0 ,

for any proper infinitesimal deformation X of c \ [0, τ] between N and
c(τ), moreover equality occurs if and only if X = 0.

For the proof, see Bishop-Crittenden [1].
Let p: MxM~+ R denote the distance function on M. The distance

function pN:M~+R from N is given by pN(p) = inί {p(p, q)\q eN}. pN is

continuous on M, and smooth on M — N — C(N). If c([0, τ])f)C(N) — 0
for some r>0, then c|(0, τ] is an integral curve of the gradient vector
field g r a d ^ of pN. ρN(c(t)) = t for te[O, τ]. Since grad ρN(c(τ)) Φ 0,
N' = pjfdτ}) Π U is a piece of hypersurface in M, where U is a small
neighbourhood of c(τ) in M. c is perpendicular to N' at ί = τ. Moreover,
for any u' 6 ±λN which is sufficiently close to c(0), the geodesic
c': [0, oo)—>M defined by c\t) = exp^(ίu') is perpendicular to N' at t = τ.

3 The isometric structure of M. From now on, we shall assume
that M is of non-negative Ricci curvature, and N is a connected and
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compact hypersurface in M, which has no focal point, that is, F(N) = 0 .

LEMMA 1. N is a minimal hypersurface.

PROOF. For any ue ±xNf we shall prove that the mean curvature
m(u) of N with respect to u vanishes. Define c: [0, oo)~+M by
c(ί) = exp^ (tu). Let eίf •• ,βΛ_1, c be parallel orthonormal vector fields
along c. Fix any τ>0, and define proper infinitesimal deformations Xk,
k = 1, ., n - 1 , of e\ [0, τ] between N and c(τ) by Xk(t) = ((τ - t)/τ)ek(t).
Since N has no focal point along c, we have, by Basic Lemma in §2,

0 :

fc=i Jo

lie (c(t))dt + m(u)
τ Jo

n-1
m(u) .

Letting τ—> oo, we have m(u)^0. Similarly we have 0^m( — u) = —m(u),
and the lemma follows.

Fix peM — N — C(N), and choose a small neighbourhood U of p in
M— N— C(N). Then AT = ^/({τJJfΊ 17 is a piece of hypersurface through
p, where τ = ρN(p).

LEMMA 2. iNΓ is a piece of minimal hypersurface.

PROOF. Let c: (— °°, c>o) ^+ M be a normal geodesic which is perpendi-
cular to JV at t = 0, and e\ [0, r] is a minimal geodesic from N to p = c(τ).
Then c is perpendicular to iSΓ at t = τ. It is sufficient to prove that the
mean curvature of N' with respect to c(τ) vanishes. Let c+ = c|[0, oo),
and c_: [0, oo)~»j|f; c_(ί) = c( — t). For each v e Nc{0), v Φ 0, let J+ and J_
be the Jacobi fields along c+ and c_ respectively that are transversal to
N at ί = 0, and J+(0) = JL(O) = v. Since iSΓ has no focal point along c+ and
c_, /+ and J_ do not vanish everywhere. Define J: (—oo, oo)—> T7|f by
J(t) = J+(ί) for ί ^ 0, and J(ί) = «7L(-ί) for ί < 0. Then J is a smooth
Jacobi field along c, which does not vanish everywhere. Recall that the
Jacobi equation is of second order. Since N' is a "level surface" of pN,
the Jacobi fields J,: [0, o o ) ^ Γ I ; J^ί) = J(t + τ) and J2: [0, oo)^. Γϋf;
J^ί) = J( — ̂  + τ) are transversal to i\Γ at t = 0. It follows easily that iSΓ
has no focal point along c. Then, by Lemma 1, the mean curvature of
JV' with respect to c(τ) vanishes.
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LEMMA 3. pN is harmonic in M—N—C(N).

PROOF. Let p, U and N' be as above. Let Elf-"fEn^19

En = gτs.ά(ρN\ U) be orthonormal vector fields in U. Then the restrictions
Ek\N', k = 1, , n — 1, are tangent to N'f and En\N' is perpendicular to
N'. The integral curves of En are geodesies, VEnEn = 0. Hence we have,

4 M P ) = -£<rEkEn,Ek)\p
k=l

= m(En(p))

= 0 ,

by Lemma 2, where m(SΛ(p)) is the mean curvature of N' with respect

to EM-
The following lemma is due to Cheeger-Gromoll [2].
LEMMA 4. grad pN is parallel in M — N — C(N).

PROOF. Let p and U be as above. Let Elf , £7B_j, En = grad do^| U)
be orthonormal vector fields in U which are parallel along the integral
curves of En. Then in U,

ΣRic (E.) = Σ <MEM Ek)En, Ek)

_ T7 T7 Jy1 I T7 Γ7 771 771 \

., Ek) + (FE/BkEn, Ek))

J2JM>» #Tv »* / ™~~ f t ΠJγ,\r τ /*-/„. JCJU/

by Lemma 3, where Fί?M is the covariant differential of En. Since we
have assumed that the Ricci curvature of M is non-negative, it follows
that FEn = 0.

Let V be a small neighbourhood of p in N', and F'x(—ε, ε) be the
Riemannian product of V and (—e, ε), for small ε>0. Then, by Lemma
4, the map t'\ V x (-ε, ε) — M- N- C(N); c'(q,t) = exp(tEn(q)) is an
isometric imbedding. See Kobayashi-Nomizu [4]. For fixed q 6 V, t H* C'
(q, t) is an integral curve of EΛ. For fixed t e(—ε, ε), ί'(F'x{ί}) coincides
with jθ/({τ + ί}) Π ί'( V x (—ε, ε)), where τ = pN(p) Similarly, for p e N, let
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V be a small neighbourhood of p in N, and F x ( — ε, ε) be the Riemannian
product. Let Xv be a unit normal vector field on V. Then the map
c:Vx( — e, ε)—>M—C(N); c(q, t) = exipN(tXv(q)) is an isometric imbedding.
For fixed q eV, t\-+ c(q, t) and tt-» c(q, — t) are integral curves of Enf for
t > 0. For fixed t e ( - ε, ε), c( V x {ί}) coincides with p^dt}) Π c( V x ( - ε, ε)).

The following lemma is essentially due to Shiohama [6].

LEMMA 5. If N has a cut point, then the cut locus C(N) is a com-
pact totally geodesic hypersurface without boundary.

PROOF. Since N is compact, the distance r = p(N, C(N)) between N
and C(N) is greater than zero. Let pr e C(N) be a point such that
pN(pr) = r. First we shall prove that, for a small neighbourhood U of
pr in M, C(N)nU is a piece of totally geodesic hypersurface, and
ρN\C(N)Γ\ U = r. Let c: (— °o, oo)~+M be a normal geodesic such that
c I [0, r] is a minimal geodesic from N to C(N), c(r) = pr. Since N has no
focal point, there are precisely two minimal geodesic from N to pr.
d = c I [0, r] and c2: [0, r] —> M <?2(£) = c(2r — £)• See Omori [5] and also
Shiohama [6]. Let Vjf j=l, 2, be small neighbourhoods of ^(0) in N.
Let Xji Vj—t'lίN be unit normal vector fields on Vs such that
X(cs(0)) = Ci(0). Define Φ5: Vά x ( - - , oc) ̂ M by *,•(?, ί) - exp^ (ίXyί?)).
Then Φy are immersions, and Φ3\ V, x ( — r, r) are isometric imbeddings.
It follows that Φy(Vy x {r}) are totally geodesic hypersurfaces which are
perpendicular to c(r). Hence fJΓ=Φ1(yix{r})nΦ2(

1^2X W) is ^° a totally
geodesic hypersurface through pr. For any peH, there are two minimal
geodesies, of length r, from p to N. Hence HaC(N). By taking U
suitably, we have H = C(N) Π C7. Next, let p' e 3, where H denotes the
closure of H in M. Then pr e C(N) and /θ (̂p') = r. Therefore, as above,
C(N)Π IT is a piece of totally geodesic hypersurface, ρN\C(N)Γ\ IT = r,
where U' is a small neighbourhood of p' in M. Let Co denote the
connected component of C(N) which contains pr. Then we have shown
that Co is a compact totally geodesic hypersurface without boundary,
here the compactness of Co follows from that of N. It is easy to see
that C(N) has at most two connected components Co, in the direction
of c(0), and C(N) — Co, in the direction of — c(0). It is proved by the
same way as above that if C(N) — CQ is non-empty, then it is also a
compact totally geodesic hypersurface without boundary.

REMARK. ( i ) If there does not exist a unit normal vector field
X: ΛΓ—• l J V defined globally on N, then C(N) is connected.

(ii) If C(N) consists of two connected components, then M is
compact.
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COROLLARY. C(N) is locally isometric to N.

3. Non-compact case, Proof of Theorem A. In this section, we shall
consider the case where M is non-compact. If N has no cut point, then
M is isometric to the flat normal bundle j_JV. The isometry is given by
exp^: A.N-+M. On the other hand, if N has a cut point, then C(N) is
a connected and compact totally geodesic hypersurface without boundary.
There exists a unit normal vector field X:N—> ±λN defined globally on
N such that there is no cut point in the direction of —X. Define
iN: N-*N by iN(q) = exp^ (2rX(q))9 where r = p(N, C(N)). Then iN is an
isometric involution on N. Since for each peC(N), there are precisely
two minimal geodesies from p to N, iN has no fix point. Define
j : N-+C(N) by j(q) = exipN(rX(q)), then j is an isometric double covering.
J(Q) = J(iΛQΪ) for Q e N C(N) is isometric to the quotient space N/{iN) = N/Z2.
As a hypersurface, C(N) has no cut point. Therefore M is isometric to
the flat normal bundle ±C(N) on C(N). ±C(N) is a non-trivial line
bundle. Thus we obtain Theorem A.

4. Compact case, Proof of Theorem B. In this section, we shall
consider the case where M is compact. For r>0, let ±ιQ>r)N=
{ue ±N\(u,u) < r2}, ±[0,r]N = {ue ±N\(u, u) ^ r2} and ±rN =
{ue l_N\ <̂ 6, u) — r2} be Riemannian submanifolds in the flat normal bundle
JiN. For a fixed-point free isometry i: ±rN—* ±rN, let ±ίQ,r^N/i denote
the Riemannian manifold obtained from l [ 0 ) r ] ^ by identifying the
boundary points ue ±rN with i(u). Now, if C(N) is connected, then
C(N) = pAM) and M-C(N) is isometric to l ί0,r)N, where r = p(N, C(N)).
Define ΐ: i rN—> l rN by i(u) = v, where v is such that exp^ (v) = exp^ (u),
vΦUj which is determined uniquely. Then i is a fixed-point free isometric
involution on ±rN. It is easy to see that M is isometric to ±[Ojr]JV/ί.
Next, if C(N) consists of two connected components Co and Cx. Then,
for the sake of simplicity, we may assume r = p(N, Co) — p(N, CJ. Then
C(N) = |0/({r}), and M- C(N) is isometric to ±[0,r)N. Let i: ± riV— _LriV
be as above. Then i is a fixed-point free isometric involution on each
of the connected components of l_rN. It is easy to see that M is iso-
metric to ±ίOtrlN/ί. Thus we obtain Theorem B.

I wish to express my sincere thanks to Professor K. Shiohama who
kindly has read through the manuscript to point out several errors.
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