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(Recieved February 10, 1976)

1. Introduction and statement of results. When a foliation is given,
the following situation occurs generally. A leaf JPX coils a leaf F2 and
the leaf F2 coils another leaf F3 and so on. The purpose of this paper
is to investigate what happens in this situation.

Now, let M be a closed orientable Cr manifold, 0 ^ r ^ oo. Let ^
be a transversely orientable Cr foliation of codimension one on M. We
denote by M/^~ the set of all leaves of ^Γ> Let us consider the relation ^
on M/J?~ defined as follows. We say F1 ^ F2 if and only if F1 c F2. We
write Ft < F2 if and only if Fx ^ F2 and F1 Φ F2. We denote by d(F)
the supremum of k such that there are k leaves Fίf , Fk of J^~ satis-
fying i*\ < < Fk = F. Let d(^) be the supremum of d(F) where
F runs through the set ikf/Ĵ T We call d(F) or d(JH the depth of F
or J^~ respectively. Then these numbers represent some complexity of
the leaf F or the foliation ^ 7

A leaf F is called proper if the topology of F as a manifold and
the topology of F as a subset of M coincide. A leaf F is called locally
dense if the closure of F contains an interior point. If a leaf F is
neither proper nor locally dense, F is called exceptional.

The relation ^ on MjJ^ is clearly reflexive and transitive, but in
many cases ^ is not asymmetric. We are interested in the case where
(ilί/^7 50 is a partially ordered set. In the following cases
becomes a partially ordered set.

PROPOSITION 1. (Af/^7 ^) is a partially ordered set if d{^) is
finite or if all leaves of JΓ are proper.

We state a property of a foliation &* satisfying that (Λf/^7 ^ ) is
a partially ordered set. A subset K of M is called invariant if ίΓ is a
union of some family of leaves of ^ 7 A minimal set K is a non-empty
compact invariant subset of M such that if Kf c K is a non-empty compact
invariant subset then iΓ = K.

PROPOSITION 2. (1) Any non-empty compact invariant subset contains
a minimal set. (2) // (Λf/^7 ^ ) is ^ partially ordered set, then any
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minimal set consists of just one compact leaf.

Since M is a non-empty compact invariant subset of M, we have
the following.

COROLLARY 1. If (M/_^7 <;) is a partially ordered set, J^ has a
compact leaf.

We write down some problems which are interesting in our situations.

PROBLEM 1. When does d{^) become finite?

PROBLEM 2. Is a leaf F proper under the assumption that d(F) is
finite?

PROBLEM 3. Does there exist a codimension-one foliation ^ such
that (M\J?r, fg) is a partially ordered set and d(J?~) is infinite?

PROBLEM 4. Are all leaves of ^~ proper under the assumption that
{MI^Ί <Q is a partially ordered set?

PROBLEM 5. How behave the ends of a leaf F when d(F) is finite?

As to Problems 3 and 4, the author knows nothing about them.
The main theme of this paper concerns to Problems 1, 2 and 5.

The foliations άf satisfying d(J?~) = 1, 2 are characterized as follows.

THEOREM 1. (1) d{J?r) = 1 if and only if all leaves of J^ are compact.
(2) Let ^ be C1. Then d(^) S^if and only if (M/J^ ^ ) is a partially
ordered set and J^~ is almost without holonomy, that is, all holonomy
groups of non-compact leaves of J?~ are trivial.

There are a lot of manifolds which admit codimension-one foliations
of depth 2, see the following.

EXAMPLE. The codimension-one foliations constructed in Tamura [6J
and Mizutani-Tamura [2] by using spinnable structures are of depth 2.

Now we make preparations for treating Problem X.
We denote by P(F) the set of all continuous maps ω: [0,1] —* F. Let

P(jr) = \j{P(F)\FeMljr}. ψe denote by LD0(R,0) the set of all
orientation-preserving Cr diffeomorphisms / : (D(f), 0)—>(R(f), 0) where
D(f) and R(f) are open intervals containing 0. Clearly LD0(R, 0) is a
subpseudogroup of the pseudogroup of the local diffeomorphisms of R.
Let φ: M x R —• M be a Cr flow transverse to

DEFINITION 1. The global holonomy of ( ^ φ ) is the map Φ:
LD0(R, 0) defined as follows. For each ω e P ( ^ ) , let J ^ be the foliation
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on [0,1] x R induced from &~ by the composed map

We define Φ(ω)(x) = y if and only if there is a leaf of J^ containing the
points (0,1) and (1, y). The domain DΦ(ω) of Φ(ω) consists of x e R such
that the leaf of ^Z containing the point (0, x) intersects {1} x R.

For a sequence ωlf , ωn e P(#~) such that 0 (̂1) = ωw(Q), i = 1, ,
n~\ we define ωί # # ωn e P(,JH by the equation

β>i# # <»»(*) = ^(wί - < + 1) if (ί - l)/n £t£i/n.

PROPOSITION 3. If ωl9 , ωn e P(<β~) satisfy ω^l) = ωί+1(0), then

Φ(ω, % # ωn) =

DEFINITION 2. The global holonomy Φ of (^7 <p) is called abelian if,
for all ωx, ω2 e P{^) satisfying ω^O) = ω^l) = ω2(0) = ft)2(l),

for all 16 DΦiω, # ω2) n DΦ(ω2 # 0)0.

As to the global holonomy, Imanishi [1] proved the following.

THEOREM 2. (1) Let J^ be Cι and almost without holonomy. Let
φ be a transverse flow satisfying that, for any non-compact leaf F of
.^Ίφ has a closed orbit intersecting F. Then the global holonomy of
(^7 φ) is abelian. (2) Let &~ be C1 and almost without holonomy. Then
all holonomy groups of J^~ are abelian.

By using Theorem 2 (2), we obtain the following.

PROPOSITION 4. If d{^~) ^ 2, then for all transverse flow φ the
global holonomy Φ of {J^~, φ) is abelian.

Now we can state the result concerning Problem 1.

THEOREM 3. Let &~ be a transversely orientable codimension-one
Cr foliation on a closed orientable Cr manifold M. Let d be a positive
integer. Suppose that 2 :g r ίS °° and (Λf/^7 ^) is a partially ordered
set. Suppose that there is a flow φ transverse to &~ satisfying the
following conditions (1) and (2).

(1) The global holonomy of (J^ φ) is abelian.
(2) For all xeM there are s < 0 and t > 0 such that φ(x, s) and

φ(x, t) are on leaves of depth ^ d.
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Then d{^) £ d + 1.

In Theorem 3 the condition that the global holonomy is abelian is
essential. See the following.

THEOREM 4. Let S2 be the closed surface of genus 2. For all positive
integer d there is a codimension-one C°° foliation ^ on S2 x [0, 1]
satisfying the following conditions (1), (2) and (3).

(1) All leaves of J?~ are proper and transverse to {x} x [0,1] for
all x 6 S2. S2 x {0} and S2 x {1} are compact leaves.

(2) d(jT) = d.
( 3 ) All holonomy groups of &~ are abelian.

The foliation in the following theorem has the minimal depth as a
foliation having a non-abelian holonomy group. See Proposition 4, too.

THEOREM 5. There is a topological foliation J^~ of codimension one
on S2 x [0,1] satisfying the following conditions (1), (2) and (3).

(1) All leaves of ^ are proper and transverse to {x} x [0,1] for
all x e S2.

(2) d ( ^ ) = 8.
(3) The holonomy group of the leaf S2 x {0} of J^ is non-abelian.

Now we treat Problems 2 and 5. At first we recall the definition
of ends.

DEFINITION 4. Let F be an open manifold. A family ε of non-
empty connected open subsets of F is called an end of F if ε satisfies
the following conditions (l)-(4).

(1) 8U = Ua —U is compact for all Ϊ7eε where ( )α means the
closure with respect to the topology of F.

(2) If U, Ur e ε, then there is U" e ε with U" c U n U'.
(3) Π{U\Ueε}=0.
(4) ε is a maximal family with respect to (1), (2) and (3).

DEFINITION 5. Let ε be an end of a non-compact leaf F of jr. Let

Lε(F) = Π{U\Ueε} where ( ) means the closure with respect to the

topology of M. We call Lε(F) the ε limit set of F or the limit set of ε.

For the fundamental property of Lβ(F), see Nishimori [3].

DEFINITION 6. Let F be a non-compact leaf of ̂ . An end ε of F is
called a tame end of depth one if ε satisfies the following conditions (1),
(2) and (3).

(1) ε is isolated, that is, there is U e ε such that if an end ε' contains
U then ε' = ε.
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(2) Lε(F)f]F = 0 .
(3) ε approaches Lε(F) from one side, that is, when some trans-

verse flow φ fixed, for all xeLε(F) there are Ueε and δ > 0 such that
φ({x}x[-d,0])f)U= 0.

Now we fix a metric d of M. For a tame end ε of depth 1, we
define a(ε) = sup {d(dU, Le(F))\Ueε. If Ueε', then εf = ε}.

By using the induction, we define a tame end of depth greater than
one as follows.

DEFINITION 7. An end ε of F is called a tame end of depth d if ε
satisfies the following conditions (l)-(4).

(1) d(ε) = d.
( 2 ) Lε(F)f)F= 0.

(3) ε approaches L*(F) = Lε(F) - f)ueε (\J*+>BULΛF)) from one
side.

(4) There are Ueε and a > 0 such that (i) if an end ε' Φ ε contains
U then ε' is a tame end of depth < d and α(ε') > a.

For a tame end ε of depth d, we define a(ε) = Sup{cZ(3ϊ7, Lε(F)) \ U e ε.
If Ueε' Φ ε then ε' is a tame end of depth < d}.

Now we can state the result concerning Problems 2 and 5.

THEOREM 6. Let J^ he a transversely orientdble Cr foliation of
codimension one on a closed orientdble Gr manifold M. Suppose that
2 <* r <; oo. Let F be a leaf of ά?~ such that d = d(F) is finite. Suppose
that all holonomy groups of leaves F' czF are abelian. Then F is a
proper leaf. Moreover F has a finite number of tame ends of depth d — 1
and a countable number of tame ends of depth < d — 1 and satisfies the
following conditions.

(1) F consists of finite leaves of ^ .
(2) For each end ε of F, there is just one leaf Ff < F such that

Lε(F) = F' and d{ε) = d{Ff).
(3) For each leaf Fr < F, there is an end ε of F such that Lε(F) =

Ff and d(ε) = d{F'). If d{Fr) < d — 1, there are a countable number of
such ε's. If d{Fr) = d — 1, such ε is unique.

The proof of Theorem 6 will clarify how the ends ε of F approach
their limit sets Lε{F).

The author thanks H. Imanishi for useful discussions.

2. The proofs of Propositions 1, 2, 3 and 4. At first we state some
properties of limit sets. Let F be a non-compact leaf of ̂ . We denote
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by L(F) the set of points y eMsuch that there is a sequence xlf x2, eF9

which are discrete with respect to the topology of F as a manifold, and
which converges to y with respect to the topology of M. We call L(F)
the limit set of F.

LEMMA 1. A non-compact leaf F is proper if and only if L{F) Γi
F= 0 .

LEMMA 2, L(F) and Lε(F) are non-empty compact invariant subsets
of M.

We omit the proofs of Lemmas 1 and 2. The relation between L(F)
and Le(F) is as follows.

LEMMA 3. L(F) = \J {Lε(F)\ε is an end of F}.

PROOF. Clearly L(F)Z) \JεLε(F). From now we will show that
L(F) c Ue Lε(F). Choose a sequence Kίf K2y of subsets of F such that

(1) Ki is a compact connected submanif old of same dimension as F,
(2) F=\jZ.ιKt,
(3) KtcInt Kί+ι.

Let yeL(F). Then there is a sequence xlf x2J ••• eF such that {a?,}Π=i is
discrete in F and {#JΓ=i converges to y in Λf.

We remark that, for each i, F — Kt consists of a finite number of
connected components. We remark also that Ki contains at most a finite
number of x/s. By induction we choose connected components Vt of
F — Ki as follows.

( i ) Let VΊ be one of the connected components of F — Kγ containing
an infinite number of x/s.

(ii) Suppose that V19 , Vt have been already chosen. Let Vi+1 be
one of the connected components of Vt — Ki+ί containing an infinite number
of #/s.

Let ε be the family of non-empty connected open subsets V of F such
that V contains some Vt and Va — V is compact where ( )a means the
closure with respect to the topology of F as a manifold. It is easy to
see that ε is an end of F and Lε(F) contains y. Thus we obtain
L(F) c Uε Lε(F), which completes the proof of Lemma 3.

LEMMA 4. For any non-compact leaf F, L{F) contains another leaf
F'.

COROLLARY 2. For any non-compact leaf F, there is a leaf Ff

satisfying F' < F.

In order to prove Lemma 4, we need the following known lemma.
We give a proof for self-containedness.
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LEMMA 5. A non-empty perfect subset E ofR is an uncountable set.

PROOF OF LEMMA 5. Since E is perfect, E is closed and, for all
x e E, E — {x} contains x. If the Lebesgue measure of E is positive,
clearly E is uncountable. Suppose that E is measure zero. Then
R — E is dense. Since R — E is open, R — E is a union of a countable
number of open intervals {Iλ}; R — E = \JxIλ. Let (al9 6X) and (α2, 62) be
two of the intervals Iλ such that bx < a2. We number the connected
components of [6lf α2] — E and we obtain a sequence Iιt I2, of open
intervals.

The perfectness of E implies that between any two intervals It and
Ij there is an interval Ik which is different from It and I3.

Now we construct a locally constant monotonely increasing map
ψ: [bίf a2] — E-+{m/2n\m and n are integers}. Let ψ(x) — 1/2 for xellt

Let ix = Min {i \ It is between (alf bx) and JJ and i2 — Min {i | I* is between
ii and (α2, δ2)}. Let ψ(a?) = 1/22 for x e Ih and ψ(x) = 3/22 for a? e / v By
continuing this process we can define ψ uniquely. Since \J?=ι I* is dense
in [bί9 α2], ψ is naturally extended to a continuous map ψ: [blf a2]—>[0,1],
Let A = {Min/Jΐ = 1, 2, •••}. Then we see that A is a countable set
and ψ: ([b19 a2] Π E) — A —> [0,1] is a bijection. Thus E is uncountable.

PROOF OF LEMMA 4. Suppose that L(i^) does not contain another
leaf. Since L(F) is non-empty and invariant, L{F) = ί7. Let C be a
line segment transverse to &~ and intersecting F. Then L(F) Π C =
F Π C is a non-empty perfect set. By Lemma 5, F n C is an uncountable
set. On the other hand the standard arguments of foliation theory tell
us that, for any leaf F, F Π C is a countable set. This is a contradiction.

By the same way, we can prove the following.

LEMMA 6. If F is not proper, F contains an uncountable number
of leaves.

PROOF. Suppose that F is not proper and F contains at most a
countable number of leaves. Let C be a line segment transverse to J^
and intersecting F. Since F is not proper, F Π C is a perfect set. By
Lemma 5, F Π C is an uncountable set. On the other hand, since FλΓ[C
is a countable set for any leaf Fλ and F consists of at most a countable
number of leaves, F Π C is at most a countable set. This is a contradic-
tion, which completes the proof of Lemma 6.

As to the following lemma, recall that M is a compact manifold.

LEMMA 7. Let F be a non-compact leaf. Then F contains at most
a finite number of compact leaves.
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Since L(F) and Lε(F) are contained by F, we have the following.

COROLLARY 3. L(F) and Lε(F) contain at most a finite number of
compact leaves.

PROOF OF LEMMA 7. Suppose that F contains an infinite number of
compact leaves, from which we take an infinite sequence Fίt F2, . We
will bring out a contradiction.

Since M is compact, A = Π~=i (L)Γ=% Ft) is not empty. Let xQ e A
and let C be a line segment transverse to &~ and containing x0. Then
C intersects an infinite number of compact leaves contained by F. We
can choose infinite sequences a19 a2, , b19 b2, 6 C satisfying the follow-
ing conditions (l)-(4).

(1) at belongs to F.
(2) bi belongs to some compact leaf contained by F.
(3) bt is between at and ai+19 and between b^ and bί+1.
(4) ai+1 is between bt and bί+1, and between at and aί+2.
Let Ci be the circle consisting of a path from α, to at+1 in F and

the subset {xeC\x is between at and ai+1}. We renumber the compact
leaves so that Ft contains &*. We may suppose that Ft Φ Fs if i Φ j .
As to the intersection numbers of d and Fif we have that d Fi = ± 1
and Ct Fj = 0 if i Φ j . Therefore the homology classes [Ct] eHγ(M, R)
are linearly independent and H^M, R) is not finitely generated, which
is a contradiction since M is a compact manifold.

Now we prove the propositions.

PROOF OF PROPOSITION 1. Suppose that (Af/^7 S) is not a partially
ordered set. Then we have two leaves F19 F2 satisfying F1 < F2 and
F2 < Ft. Since we have an infinite sequence Fx< F2< F1<F2<F1< ,
d(^)= oo. Fλ<F2 means that ^ c i f ^ ) . Since L(F2) is closed and F2<F19

F2aF1dL(F2). Therefore F2 is not proper. Thus we completes the proof.

PROOF OF PROPOSITION 2. (1) Let K be a non-empty compact invariant
subset of M. Let J^~ be the family of all non-empty compact invariant
subsets Kr c K. It is easy to see that 3ίΓ is inductively ordered by the
relation c . By Zorn's lemma, 3ίΓ has a minimal element, which is a
minimal set.

(2) Suppose that (M\^9 <Ξ) is a partially ordered set. Let K be
a minimal set. At first suppose that K contains a non-compact leaf Fλ.
By Lemma 4, JF\ contains another leaf F2. Since (Λf/^7 ^ ) is a partially
ordered set, J?\ Π F, = 0 . Then F2aF1- F,. Therefore F 2 S if. Since
F 2 is a non-empty compact invariant subset, K is not minimal. This is
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a contradiction. Thus we saw that K does not contain any non-compact
leaf. Secondly let F be a compact leaf contained by K. Since F is a
non-empty compact invariant subset and K is minimal, F' = K. This
completes the proof.

PROOF OF PROPOSITION 3. It is clear.

PROOF OF PROPOSITION 4. We suppose Theorem 1. Suppose that the
global holonomy Φ of ( ^ ψ) is non-abelian and d{J?~) ^ 2. Then there
are ω19 ω2 e P{^) such that ^(0) = ω^l) = α>2(0) = ω2(l) and Φ(ω1 # α>2)(ί) <
Φ(ω2 # α^Xί) for some ί e Z)Φ(ω1 # α>2) Π jDΦ(ω2 # α^). We may suppose that
t > 0. According to Imanishi [1], all holonomy groups of compact leaves
of J^ are abelian if &~ is almost without holonomy. Let

tγ = lim (Φi
%—>oo

Then the leaf JF\ containing ^(ω^O), ίx) is not a compact leaf. In fact,
if Fλ is a compact leaf then we see that the holonomy group of F1 is
non-abelian, which contradicts to the result of Imanishi. By Lemma 4, F1

contains another leaf F2. Then F2 < Fλ. Let FQ be the leaf containing
9(^(0), «)•

In the case where Fo Φ Fλ, Fλ < Fo and d{^) ^ 3, which is a con-
tradiction.

In the case where Fo — Fu F1 is not proper. By Lemma 6, Ft contains
an uncountable number of leaves. By Lemma 7, Fί contains at most a
finite number of compact leaves. Therefore Fx contains a non-compact
leaf F3. By Lemma 4, Fs contains another leaf F±. Then Fλ> Fz> F 4

and d{^) ^ 3, which is a contradiction.
Thus we completed the proof of Proposition 4, by supposing Theorem 1.

3. The proof of Theorem 1. At first we prepare some lemmas.
The following lemma concerns Problem 2.

LEMMA 8. If d(F) <; 2, then F is proper.

PROOF. Suppose that F is not proper. As in the proof of Proposition 4,
F contains another non-compact leaf i\. By Lemma 4, F1 contains another
leaf F2. Therefore F>FX>F2 and d(F)^Z, which completes the proof.

LEMMA 9. Let {Fλ\Xe A] be a family of compact leaves.
is a partially ordered set, then \Jλ&ΛFλ consists of only compact leaves.

PROOF. It is easy to see that \JλeΛFλ is invariant. Let f b e a leaf
satisfying Fc \JλeΛFλ, Fί{Fx\Xe A}. Suppose that F is not compact,
from which we will bring out a contradiction.
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Let xQ 6 F. Let C be a line segment transverse to &~ and containing
x0. There is a sequence xlf x2f ••• eCfl ( U ^ i ^ ) converging to x0. We
denote by F, the compact leaf containing xt. Then Fa f|£U (U^» ^ )

By Proposition 2, F contains a compact leaf F o since F is a non-empty
compact invariant set. Let U be a closed tubular neighborhood of Fo.
We may suppose that there is a locally trivial fibration p:U—>F0 such
that all fibres of p are transverse to ^ . Let C7+ be the union of Fo

and a connected component of U — Fo. We may suppose that i*7 Π U+

contains FQ.
Let y0 e Fo and Z) = (p | U+)-ι(y0). Since F o c F 7 W + C Π - I ( U ^ Λ

there is a sequence z^ z2, e D Π (UΓ=i Ft) converging to y0. We denote
by Gi the compact leaf containing zt. Then for all yeF0 there are a
neighborhood V(y) of # in Fo and a positive integer n(y) such that
(pIU+Y\y') nGtΦ0 for all y' e V(y) and all i ^ n(y). Since Fo = \J,V(y)
and F o is compact, there are ylf ,ykeF0 such that FQ= V(y^ U U V(yk).
Let n0 be the maximum of {n(y^, -—,n(yk)}.

Let us take x eD f] F and fix it. Then there exists i^ nQ such that
GiΓi{xeD\x is between #0 and x) Φ 0 . Since i ^ w0, GΪ Π (J>|I7+)~1(I/) Φ
0 for all y e Fo. Since Gέ is a compact leaf, G< Π (p | U+)~l{y) is a finite
set. Therefore we can consider the nearest point a(y) of Gt Π (p \ U+)~ι(y)
to y. It is easy to see that {a(y)\y eFQ} is a leaf of ^ 7 Consequently
Gi = {a(y)\yeF0} and a:FQ~+Gi is a Cr diίfeomorphism. Let A =
[Jy {%£(plU+y^lx is between 2/ and a{y)}. Then A is Cr diίfeomorphic

to Fo x [0,1]. Since Ff]U+ contains Fo, there is xf e (Int A) Π ί7. Then
ά and acf belong to different connected components of M — Fo — Gt. This
is a contradiction, which completes the proof of Lemma 9.

The proof of Lemma 9 suggests the following.

COROLLARY 4. If (Λf/^7 ^ ) is a partially ordered set, all compact
leaves are classified into a finite number of Cr diffeomorphic classes of
manifolds.

PROOF. At first we claim that for all xeM there is a neighborhood
U(x) of x such that the compact leaves of &~ intersecting U(x) are Cr

diffeomorphic. In fact for x belonging to non-compact leaves, we can
find a neighborhood U(x) which does not intersect any compact leaf by
Lemma 9. For x belonging to isolated compact leaves, there is a neigh-
borhood U(x) such that if a compact leaf Ff intersects U(x) then F' = F.
For x belonging to non-isolated compact leaves, by the proof of Lemma
9 we obtain a neighborhood U(x) such that the compact leaves intersecting
U(x) is Cr diffeomorphic to the leaf containing x.
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Since M= \JxU(x) a n d M is compact, there are xlf * ,xkeM such
that M = Ufa) U U U(xk). Any compact leaf intersects some of U{%?),
•••, U(xk), so we have a finite number of Cr diffeomorphic classes.

Now we introduce some notations. Let A be a compact Cr manifold
with boundary or without boundary, and B a closed transversely oriented
codimension-one submanifold of A. We denote by C(A, B) the compact
manifold obtained from A — B by attaching two copies Bl9 B2 of B,
where the suffixes 1, 2 depend the transverse orientation of B. Let
/ : [0, ε] -> [0, δ] be a Cr diffeomorphism such that /(0) = 0 and 8 < ε.
We denote by X(A, B, f) the quotient space of C(A, B) x [0, ε] by the
equivalence relation ~ defined by (xίf t) ~ (x2, f(t)) for t e [0, ε] and x1 e B19

x2 6 B2 such that xL — x2 as elements of B. Then X{A, B, f) is a compact
manifold with corner on the boundary. We denote by ^{A, B, f) the
foliation on X(A, B, f) induced from the foliation on C(A, B) x [0, ε] whose
leaves are C(A, B) x {*}, t e [0, ε].

Now we prove Theorem 1.

PROOF OF THEOREM 1. (1) By Corollary 2, it is clear.
(2) Suppose that d(^~)£2. By Proposition 1, (M/^Ί £) is a

partially ordered set. Suppose that the holonomy group of some non-
compact leaf F is not trivial. We will bring out a contradiction.

By assumption, there is an immersion / : [0, 1] x [0, ε] -+ M satisfying
the following conditions (a)-(e).

(a) /([0,1] x {0}) is contained in F.
(b) /(0, t) = /(I, ί) for all t e [0, ε].
(c) /|[0,1) x [0, ε] and /|(0,1] x [0, ε] are embeddings.
(d) f\{s) x [0, ε] is transverse to ^~ for all se[0,1].
(e) We define a map g: (U, 0)—>(V, 0), where U and V are some

neighborhoods of 0 in [0, ε], as follows. g(s) = t if and only if there is
a leaf, of the induced foliation f*<^~ on [0,1] x [0, ε], containing the
points (0, s) and (1, t). Then there is a sequence tl9t2,- such that
g(ti) < tt and lim^, tt = 0.

In (e), since the sequence tif g{t^), g\tt), is monotonely decreasing,
it has the limit. Let s, = lim^*, #*(*,). Then the leaf Ft of Jf containing
/(0, tt) is different from the leaf Et of άf containing /(0, s j . In fact if
Fi = Eiy then we see that the leaf Ft is not proper. On the other hand,
by Lemma 8 Ft is proper since d{F^) ̂  2. This is a contradiction.

At most a finite number of the leaves {Elf E2, •••} are compact. In
fact if an infinite number of {E19 E2, } are compact, then F is contained
by the closure of the union of the family of compact leaves. By Lemma
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9, F is a compact leaf, which is a contradiction.
Let EiQ be a non-compact leaf. By Corollary 2, there is a leaf F'

satisfying F' < Eio. Clearly EH < FiQ. Then d(&~) ̂  3, which contradicts
the assumption. Therefore &~ is almost without holonomy, which com-
pletes the half of the proof of Theorem 1 (2).

Conversely suppose that (Λf/^7 SO is a partially ordered set and ^
is almost without holonomy. By Proposition 2, &~ has a compact leaf.
It is sufficient to consider the case where &~. has a non-compact leaf.
Let Ω be a connected component of

M - \J{F\F is a compact leaf of ^ H .

By the same way of the proof of Lemma 7, we can prove that the
closure of Ω contains only a finite number of compact leaves. Therefore
Ω has a finite number of ends and we can attach the boundary. Let Ω
be the compact manifold obtained from Ω by attaching the boundary.
Then Ω is naturally immersed in M. Let F be a connected component
of the boundary of Ω. Then F is a compact leaf of &~\Ω where &~\Ω
means the foliation on Ώ induced from Jf by the immersion Ω-+M. By
Imanishi [1], the holonomy group of F is a free abelian group.

We claim that the holonomy group Φ(F) of F is an infinite cyclic
group. In fact suppose that the rank of Φ(F) is greater than one. We
will bring out a contradiction. There are homeomorphisms / : [0, εj —•
[0, δ,) and g: [0, ε2) —> [0, <52) such that the germes of / and g at 0 are
linearly independent elements of Φ(F).

Remark that / and g have no fixed point except 0. In fact, if
otherwise, some leaf ^ c β has non-trivial holonomy group. Since Ω
consists of only non-compact leaves, F1 is non-compact. This contradicts
the assumption that &~ is almost without holonomy.

Consider the equivalence relation ~ on (0, εj defined by t ~ f(t), t e
(0, £i). The quotient space S = (0, ε j / ^ is a circle. By the commutativity
of / and gy we can define an orientation-preserving homeomorphism
g:S—>S as follows. For t 6(0, εj, let g([t]) = [g(t)] where [t] means the
equivalence class of t. By the way of choosing / and g, gn is not the
identity for all non-zero integer n. If g has a periodic point, there is
a leaf F2aΩ whose holonomy group is non-trivial, which contradicts the
assumption that &~ is almost without holonomy. Therefore the rotation
number of g is irrational.

We need the following theorem, see Nitecki [5] p. 40.

THEOREM 7. Let g:Sι--^*S1 be an orientation-preserving homeomor-
phism whose rotation number τ is irrational. Then there is a surjective
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continuous map h:S1—>S1 such that h°g = r{τ)oh and h~\x) is a point
or closed interval for all xeS1 where r(τ): Sι —> SL is the rotation map
whose rotation number is τ.

By Theorem 7, we see that (Λί/^7 ^ ) is not a partially ordered set,
which is a contradiction. Therefore the holonomy group Φ(F) is infinite
cyclic.

As in Nishimori [4], from the holonomy homomorphism, we have an
isomorphism u: Ht(F, Z)-+ Z. Consider the homology class doa(u)e
Hn_2(Fn-\ Z) where a: Horn {H^F, Z), Z)-+Hγ{F, Z) is the canonical
isomorphism and d: Hι(F, Z)-+Hn_2{F, Z) is the Poincare duality. There
is a closed Cr submanif old N of F such that [N] = d o a(u) e Hn_2{F, Z).
For some Cr diffeomorphism / : [0, ε] —• [0, δ] there is a Cr embedding
h: X(F, N, f)->Ω such that h*&* = J^iF^N, / ) . We do the same for all
connected components of the boundary of Ω. By subtracting h(X(F, N, /))'s
from Ω and taking the closure, we obtain ΩQ. Remark that all holonomy
groups of ^~\Ω0 are trivial. By Proposition 2 in a somewhat generalized
formulation, ^~\Ω0 has a compact leaf. Therefore all leaves of ^~\ΩQ

are compact. Thus we have d(&~) ̂  2. This completes the proof of
Theorem 1.

4. The proof of Theorem 3. In order to prove Theorem 3, we need
the following.

THEOREM 8 (Nishimori [4]). Let J^~ be a transversely orientable
codimension-one Cr foliation on an orientable Cr manifold and F a
compact leaf of j^~. Suppose that 2 ^ r 5j oo. Let T be a tubular
neighborhood of F and let U+ be the union of F and a connected component
of T — F. Suppose that the onesided holonomy group of F defined by
J^\U+ is abelian. Then only one of the following three cases occurs.

(1) For all neighborhoods V of F, the restricted foliation &~ \ V Π U+

has a compact leaf which is not F.
(2) For all neighborhoods V of F, there is a neighborhood Vγ of

F such that ^ c F and all leaves of &~|VΊ Π 17+ except F are dense in

+

(3) There are a transversely orientable codimension-one Cr submani-
fold N of F, a Cr diffeomorphism f: [0, ε] —> [0, δ] satisfying that f(t) < t
for all t e (0, ε], and a Cr embedding h:X(F, N, f)—+U+ such that
h(C(F, N) x {0}) = F and h*^~ = ^~(F, N, f).

Now let us consider a foliation &~ on a manifold M and a transverse
flow φ satisfying the conditions of Theorem 3.

By Proposition 2, &~ has a compact leaf. If all leaves of ^ are
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compact, then d(&~) = 1 = d and the proof is finished. Suppose that
&~ has a non-compact leaf. Let Ω1 be a connected component of

M - U {F\F is a compact leaf of J^} .

It is sufficient to prove that d{Jr\ Ω1) < d + 1 for all connected com-
ponents Ω\

As Lemma 7, we see that the closure of Ω1 contains a finite number
of compact leaves. Therefore Ω1 has a finite number of ends and we
can attach the boundary. Let Ω1 be the compact manifold obtained from
Ω1 by attaching the boundary. Ωι is naturally immersed in M. We
denote by ^{Ω1 the foliation induced from J?~ by the immersion.

Let F19 >—,Fk be the compact leaves of ^\Ω\ that is, connected
components of dΩ\ For each Fif the conditions of Theorem 8 are satisfied.
By the way of defining Ω\ (1) does not occur. If (2) occurs, then (Jlf/^7 ^ )
is not a partially ordered set. Therefore (3) of Theorem 8 occurs and
there are Nif /,: [0, ε,] -> [0, δt] and A,: X(Fif Nt, Λ) — δ 1 for i = 1, . -, k
as in Theorem 8. We may suppose that, for each x e Fif hj^x) x [0, εj)
is contained by some orbit of φ. Let Ω\ = Ωι — UίU Λ^Int X ^ , iSΓ̂ , /J) —
(JLi Fi. Then flj is a compact manifold with corner.

Clearly (Ωι

0/(^\Ωl)f <£) is a partially ordered set. We can generalize
Proposition 2 so that we can apply it in this case. Therefore &~ \ Ω\ has
a compact leaf. If all leaves of ^ \ Ω\ are compact, then
and the proof is finished. Suppose that ^~\Ω\ has a non-compact leaf.
We can also generalize Theorem 8 so that we can repeat the same process.

We denote by Ωi+1 a connected component of

Ω\-\J{F\F is a compact leaf of

for some Ω\ If the process ends before obtaining Ωd, then d(^) <̂  d.
Thus it is sufficient to consider the case where we have Ωd.

Let Fίf " ,Fk be the compact leaves of Jr\Ώδ>. Remark that the
leaf of &~ containing Fi has depth d and all leaves of J^~ passing Ωd have
depth greater than d. By reversing the direction of φ if necessary, we
may suppose that for each x e F1 there is ε > 0 such that φ({x] x (0, ε)) c
Ωd. For i = 2, •••,&, let

( There is t > 0 such that
K ί = \ x e Fl ({x) x (o, ί)) c Ωd and φ(x, t) e Ft

Here we use confused notations since Ωd and F/s are not subsets of M.
It is easy to see that Kt is an open subset of Fγ. By the condition (2)
of Theorem 3, for all x e Fί there is t > 0 such that φ(x, t) $ Ωd. Therefore
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Fι = Ui=2 Ki- Clearly KtΓ\Kά= (d if i Φ j . Since i*\ is connected, only-
one of K/s is non-empty. By renumbering Ft

9a, we may suppose that
K2 — F19

Let Ω = {φ(x, t)eΩd\xeFlft^0, φ{{x] x (0, t)) c Ωd}. Then we see
that Ω is a non-empty open closed subset of Ωd. By the connectivity
of Ωd, we have Ω = Ωd. Therefore there is a Cr diίfeomorphism h: Fx x
[0, 1] - - Ωd. The induced foliation K*jr on i^ x [0, 1] satisfying the
following.

( 1 ) F1 x {0} and Fx x {1} are compact leaves of
( 2 ) The other leaves of fe*^ are non-compact.
( 3 ) For all x e Fιy {x} x [0,1] is transverse to h*

Such foliation was studied in Nishimori [4], Since the global holonomy
of (^7 φ) is abelian and r *> 2, we can apply Theorem 1* of Nishimori
[4] to h*J?~. Thus we see that d(^~\Ωd) = 2 and d ( J O = d + 1. This
completes the proof of Theorem 3.

5 The proofs of Theorems 4 and 5. At first we give a method to
construct a Cr foliation J?" on S2x [0, 1], whose leaves are all C°° submani-
folds and transverse to {x} x [0,1] for all x e S2, from given orientation-
preserving Cr diffeomorphisms /„ /2: [0,1] —• [0, 1], 0 ^ r ^ oo.

Take disjoint circles Clf C2 in S2 such that S2 — Gγ U C2 is connected.
Let J7lf U2 be disjoint closed tubular neighborhoods of d , C2. There are
C°° diffeomorphisms λt: C, x [ - 1 , 1] -*Ui9 i = 1, 2. Let α: [-1,1] - - [0,1]
be a C°° map such that

( 1 ) a(t) = 0 in a neighborhood of — 1 ,
( 2 ) α(ί) = 1 in a neighborhood of 1.

Let ^l be the foliation on U x [0,1] whose leaves are

{(&,(*, s), t) I a? e Ct, s e [ - 1 , 1 ] , t = a(s)t0 + (1 - a(8))ft(t0)}910 e [0,1] .

Let ^l be the foliation on (S2 — I n t ^ U Uz)) x [0, 1] whose leaves are
(S2 - Int (Ux U U2)) x {*}, t 6 [0,1]. By connecting ^ J^T, and ^ together,
we have a foliation J ^ on S2 x [0, 1] which clearly has the desired
property.

Let / : [0,1] -»[0,1] be a C°° diffeomorphism such that f(t) < t for
all t e (0,1) and h: (0,1) — R a C°° diffeomorphism such that h(fn(x)) =
h(x) — n for all integer n. We will construct C°° diffeomorphisms gif gδ:
R-+R. Let gt\ [0, 1] -> [0,1] be a map defined by

gt(0) = 0, ft(l) = 1, ^1(0, 1) = λ- ι o Λ ofc .

Then (/4 will be a C°° diffeomorphism and ^5 a homeomorphism. The
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foliation ^\ obtained by using / and gt will be the example of Theorem
ί, i — 4, 5.

Now choose a sequence a19 α2, , ad-lf blf b2, , b^ e R such that
0 = αx < a2 < < αd_! < bd^ < < 62 < 6L = 1. Take g4: R-+R such
that

( 1 ) g4(x) = x if # ^ 1 + dι or if d — 1 + 6d_i ^ a?.
( 2 ) For w = 1, •••, d - 2,

gjix) = x if w + 6 w ^ a ; < ^ w + l + an+ι .

( 3 ) For w = 1, . . . , d - 1,

#4(α0 <α; if ^ + α M < α ? < ? ι + δ w .

( 4 ) For n = 2, . . . , d - 1,

#4(w — 1 + bn) = n — 1 + an .

Then clearly g4 is C°° diίfeomorphism. The holonomy groups of S2 x {0},
S2 x {1} and the leaves Ft of ^ c o n t a i n i n g (S2 — Int ( ^ U U2)) x {fe"1^)},
1 = 1, , d — 2 are infinite cyclic groups. The other leaves of &\ have
trivial holonomy groups. The relation fg is as follows.

S2 x {0}, S2 x {1} < F, < F2 < < Fd_2 < F

where F is an arbitrary leaf different from S2 x {0}, S2 x {1}, F19 , Fd_2.
Therefore d(^\) = d, so ^ 7 has the desired property.

Let g:R—*R be a C°° diffeomorphism such that g\(— ©o, 0]U[l, °°) is
the identity and #(#) < a; for all a;e(0,1). Take gδ: R-+R such that for
all integer n

gδ(x) = x if 2n ^ x ^ 2n + 1 ,

gδ(x) = 2n + 1 + g(x - 2n - 1) if 2n + 1 < a? < 2n + 2 .

Then the holonomy group of the compact leaves S2 x {0}, S2 x {1} are not
abelian. The relation <̂  is as follows.

S 2 x {0}, S2 x{l}<F0<F

where FQ is the leaf of &\ containing (S2 - Int (U.U U2)) x {̂ "'(O)} and F
is an arbitrary leaf of &\ different from S2 x {0}, S2 x {1} and FQ.
Therefore d(^l) = 3 and &\ has the desired property.

6 The proof of Theorem 6. Let F be a leaf of &~ whose depth
d — d(F) is finite. If d = 1, F is a compact leaf by Corollary 2 and the
proof is finished. Suppose that d ^ 2. There is a sequence i*\, •", Fd

of leaves such that F1 < F2 < < Fd = F. Then we see that d(i^) = i
and ί7! is a compact leaf. Thus F contains a compact leaf and &" has
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a compact leaf. Let Ω1 be the connected component of

M-\J{F'\F' is a compact leaf}

containing F. As in the proof of Theorem 3, the closure of Ω1 contains
a finite number of compact leaves and we can consider the compact
manifold Ω1 obtained from Ωι by attaching the boundary. Ω1 is naturally
immersed in M. Then F can be considered a leaf of the foliation
^{Ω1 on Ω1 induced from &~ by the immersion. Let F[, *- ,F'k be
the compact leaves of ^\Ώι contained by F. Since the conditions of
Theorem 8 are satisfied for F[, •**, F'k and the condition (3) of Theorem
8 occurs, we have codimension-one submanifolds Nt of F'if Cr diffeomor-
phisms /*: [0, εj — [0, <?<] satisfying ft(t) < t for all ίe(0, et], and Cr

immersions &,: X(F» Nif /,) — Ω1 such that h^C^u Nt) x {0}) = F[ and
\, Ni9 /<), for i = 1, , k. Let

Ωl = & - U h<(hA X(Fi9 Ni9 fd) - U F< .

Then Ω\ is a compact manifold with corner on the boundary. Remark
that Ωl contains still compact leaves of ^\Ωι which are not contained
by F. By the way of constructing Ωl, the intersection of Ωl and a leaf
of ^\Ώι is empty or a leaf of the restricted foliation &~\Ω\.

Let G be anon-compact leaf of &~ \ Ω1 contained by F. Then d(G) ^
d(F) < oo and G contains a compact leaf of J^~\ΏX as above. We claim
d(G n Ωl) = d{G) - 1. In fact, let G,< G2 < < Gd, = G where d' = d(G).
Since Gι is a compact leaf of ^~\Ωι and G^cGcF, Gt Π ΛJ = 0 . We
see also that G2 Π Ωl is a compact leaf of ^ \ Ωl and that G2 Π ΰj < G3 Π
ώj < < Gd, Π Ωl = G n ΛJ. Therefore d(G Π ΰj) ^ d' - 1. Now suppose
that d(G Π βj) > d' — 1. Then there is a sequence fflf , Hd, of leaves
of ^ ^ | ώ ; such that H, < H2 < < Hd, = G Π ΰj. Let GJ be the leaf
of J H β 1 containing Ht. Then GJ < < G\, = G and G; contains another
leaf Go of ^\Ωι since G[ is a non-compact leaf of ^{ΩK Thus we have
d(G) > d\ which is a contradiction. Therefore d(G Π Ωl) = d' - 1.

Let !7 be a connected component of /^(Int X(Fό Nit ft)) Π G for some
i. It is easy to see that there is uniquely an end ε of G containing U
and that ε is isolated. Furthermore Lε(G) = F[ and clearly ε approaches
to Le(G) from one side. Therefore ε is a tame end of depth 1.

Since d(F Π Ωl) = d(F) - 1 < oo, F n Ωl contains a compact leaf of

Any compact leaf of ^\Ωl contained by F d Ωl has the form
G Π Ωl where G is a leaf &~ contained by F and d(G) = 2. Let Ω2 be
the connected component of
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Ω\ - U {F'\Ff is a compact leaf of

containing F Π Ω\. As before the closure of Ω2 contains a finite number
of compact leaves of &~\Ω\ and we can consider the compact manifold
Ώ2 obtained from Ω2 by attaching the boundary and ̂ r\Ω2. We can
apply Theorem 8 to the compact leaves G[, , G[ of JΓ \ Ω2. Thus we
obtain N't c G'if //: [0, ε't] — [0, δ't] and h't: X(G'iy N'if fl) — Ω2 such that
K(C(G't9 N't) x {0}) - G\ and ( Λ ί ) * ^ = ^ ( G ί , # ; , //). Let

£0

2 - Ω2 - U Λ{(Int X(GJf JV{, /,')) - U Gί .
ί = l ΐ = l

Then i2§ be the compact manifold with corner. Let Gf be a leaf of
contained by F such that G' f) Ω2 is a non-compact leaf of Jr\Ω2. We
can prove that a connected component U' of G' Π (Λf — Ω\) belongs to
unique end s' of G and ε' is a tame end of depth 2. As to the condition
(1) of Definition 7, take U' as Ϊ7 and, as a,

Min {d(9(C7' Π (Λf - i2J)), Fί U U K ) , d(dU', G[ U U GJ)} .

Furthermore d{G' n ώj) - d(G') - 2.
We can repeat this process and we obtain sequences Ω1, •••, Ωd~ι and

Ωι

0, , i^o"1 of submanifolds of M such that
( 1 ) Ω1 D i3J =) i22 z> flj =)•••=) ώ ^ 1 =) ί??-1,

( 2 ) F Π ΰ ί " 1 ^ 0 .
Since d(F) = d, F Π i2o-1 is a compact leaf of &~ \ Ωi~ι and our process
is finished.

F is a proper leaf. In fact, if F is not proper then we can show
that FftΩf1 is a non-compact leaf of ^{Ωi"1, which is a contradiction.

Since F f] Ωt1 is a compact leaf of ^\Ωt\ Ff)(M - Ωt1) consists
of a finite number of connected components. Let V be a connected
component of F Π (M — Ωt'1). Then we see that V belongs to unique
end ε* of F and ε* is a tame end of depth d — 1. As to the condition
(1) of Definition 7, it is sufficient to take V as U and, as α,

Min {d(d(V Π (Λf - Λi)), d^1), d(3( V Π (Λf - i20

2)), 3^2) ,

. . ^ d(3(F n (M - β*"1)), di^"1)}

Therefore ί 7 has a finite number of tame ends of depth d — 1. In the
same way, a connected component of i*7 Π (M — Ωι

0) corresponds to a tame
end of depth i for i = 1, , d — 2. For i < ώ — 1, clearly there are a
countable number of such connected components.

Now we show (1) of Theorem 6. Remark that a leaf F' of ^
contained by F contains a connected component of the image of dΩ1 by
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the natural immersion: Ω* —• M for some %. Since there are only a finite
number of such connected components, F contains only a finite number
of leaves of ^ 7

By the above arguments, (2) and (3) of Theorem 6 are clear, which
completes the proof of Theorem 6.
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