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(Recieved February 10, 1976)

1. Introduction and statement of results. When a foliation is given,
the following situation occurs generally. A leaf F, coils a leaf F, and
the leaf F, coils another leaf F, and so on. The purpose of this paper
is to investigate what happens in this situation.

Now, let M be a closed orientable C” manifold, 0 < r < . Let . #
be a transversely orientable C foliation of codimension one on M. We
denote by M/ the set of all leaves of .#. Let us consider the relation <
on M/ defined as follows. We say F, < F, if and only if F,C F,. We
write F, < F, if and only if F;, < F, and F, # F,. We denote by d(F)
the supremum of k£ such that there are k leaves F,, ---, F, of & satis-
fying F;, < +++ < F, = F. Let d(&%) be the supremum of d(F) where
F runs through the set M/ <. We call d(F) or d(# ) the depth of F
or & respectively. Then these numbers represent some complexity of
the leaf F or the foliation &,

A leaf F is called proper if the topology of F as a manifold and
the topology of F' as a subset of M coincide. A leaf F is called locally
dense if the closure of F' contains an interior point. If a leaf F is
neither proper nor locally dense, F' is called exceptional.

The relation < on M/ is clearly reflexive and transitive, but in
many cases < is not asymmetric. We are interested in the case where
(M|, £) is a partially ordered set. In the following cases (M/Z, <)
becomes a partially ordered set.

PROPOSITION 1. (M|, <) is a partially ordered set if d(F) is
finite or if all leaves of F are proper.

We state a property of a foliation &# satisfying that (M/#, <) is
a partially ordered set. A subset K of M is called invariant if K is a
union of some family of leaves of #. A minimal set K is a non-empty
compact invariant subset of M such that if K’ C K is a non-empty compact
invariant subset then K' = K.

PROPOSITION 2. (1) Any non-empty compact invariant subset contains
a minimal set. (2) If (M|, <) is ¢ partially ordered set, then any
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minimal set consists of just one compact leaf.

Since M is a non-empty compact invariant subset of M, we have
the following.

COROLLARY 1. If (M|, £) is a partially ordered set, F has a
compact leaf.

We write down some problems which are interesting in our situations.

PrROBLEM 1. When does d(.%# ) become finite?

PrOBLEM 2. Is a leaf F' proper under the assumption that d(F') is
finite?

PROBLEM 3. Does there exist a codimension-one foliation .# such
that (M/.#, <) is a partially ordered set and d(%") is infinite?

PROBLEM 4. Are all leaves of & proper under the assumption that
(M/<7, £) is a partially ordered set?

ProBLEM 5. How behave the ends of a leaf F' when d(F') is finite?

As to Problems 3 and 4, the author knows nothing about them.
The main theme of this paper concerns to Problems 1,2 and 5.
The foliations .7 satisfying d(# ) = 1, 2 are characterized as follows.

THEOREM 1. (1) d( ) =1 if and only if all leaves of F are compact.
(2) Let & be C'. Then d(F ) <2 1f and only iof (M|, <) is & partially
ordered set and F s almost without holonomy, that is, all holonomy
groups of non-compact leaves of F are trivial.

There are a lot of manifolds which admit codimension-one foliations
of depth 2, see the following.

ExaMPLE. The codimension-one foliations constructed in Tamura [6}
and Mizutani-Tamura [2] by using spinnable structures are of depth 2.

Now we make preparations for treating Problem 1.

We denote by P(F) the set of all continuous maps w: [0, 1] — F. Let
P(F)=U{PWF)|FeM/ ). We denote by LD(R,0) the set of all
orientation-preserving C” diffeomorphisms f: (D(f), 0) — (B(f), 0) where
D(f) and R(f) are open intervals containing 0. Clearly LD(R,0) is a
subpseudogroup of the pseudogroup of the local diffeomorphisms of R.
Let : M X R— M be a C" flow transverse to #.

DEFINITION 1. The global holonomy of (&, @) is the map @: P(&F ) —
LD(R, 0) defined as follows. For each we P(¥), let #, be the foliation
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on [0, 1] X R induced from .# by the composed map
0,1 x RZ%yx r-2 M.

We define @(w)(z) = y if and only if there is a leaf of #, containing the
points (0, 1) and (1, y). The domain D®(w) of &(w) consists of x € R such
that the leaf of .#, containing the point (0, «) intersects {1} x R.

For a sequence w,, «+-, w, € P(# ) such that w,(1) = 0,.,(0), 7 =1, ---,
n~', we define w, % --- ¥ w, e P(%) by the equation

ot to,)=0Mmt—-1+1) if G-t i/n.
ProrosiTION 3. If @, -+, ®,€ P(F) satisfy @w(l) = w,,,(0), then
Ow. % tw,)=0w,)eo - 0(w)
and
DO(w. % -+ w,) = 0(@) (DO, % -+ $®,)) .

DEFINITION 2. The global holonomy @ of (%, @) is called abelian if,

for all w,, w,€ P(%#) satisfying ®,(0) = w,(1) = 0,(0) = w,(1),
@(0)1 tw)(t) = @(0)2 ¥ wl)(t)

for all t € DO(w, £ ®,) N DO(w, & w,).

As to the global holonomy, Imanishi [1] proved the following.

THEOREM 2. (1) Let &# be C' and almost without holonomy. Let
@ be a transverse flow satisfying that, for any nom-compact leaf F of
Z, ® has a closed orbit intersecting F. Then the global holomomy of
(F, @) is abelian. (2) Let F be C' and almost without holonomy. Then
all holonomy groups of & are abelian.

By using Theorem 2 (2), we obtain the following.

PROPOSITION 4. If d(F ) < 2, then for all transverse flow @ the
global holonomy @ of (F, p) is abelian.

Now we can state the result concerning Problem 1.

THEOREM 3. Let F be a transversely orientable codimension-one
C" foliation on a closed orientable C™ manifold M. Let d be a positive
integer. Suppose that 2 < r £ « and (M| F, <) s a partially ordered
set. Suppose that there is a flow @ transverse to F satisfying the
following conditions (1) and (2).

(1) The global holomomy of (F, @) is abelian.

(2) For all xe M there are s <0 and t > 0 such that o(w, s) and
@(z, t) are on leaves of depth < d.
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Then d(F) =d + 1.

In Theorem 8 the condition that the global holonomy is abelian is
essential. See the following.

THEOREM 4. Let S, be the closed surface of genus 2. For all positive
integer d there is a codimension-one C= foliation F# on S, X [0, 1]
satisfying the following conditions (1), (2) and (3).

(1) Al leaves of F# are proper and transverse to {xz} x [0,1] for
all zeS,. S, x {0} and S, X {1} are compact leaves.

(2) d(&F)=d.

(8) All holonomy groups of F are abelian.

The foliation in the following theorem has the minimal depth as a
foliation having a non-abelian holonomy group. See Proposition 4, too.

THEOREM 5. There is a topological foliation F# of codimension one
on S, x [0, 1] satisfying the following conditions (1), (2) and (3).

(1) Al leaves of F are proper and transverse to {x} x [0, 1] for
all ze8S,.

(2) d(&F)=3.

(8) The holonomy group of the leaf S, X {0} of F 1is non-abelian.

Now we treat Problems 2 and 5. At first we recall the definition
of ends.

DEFINITION 4. Let F be an open manifold. A family ¢ of non-
empty connected open subsets of F is called an end of F if ¢ satisfies
the following conditions (1)-(4).

(1) oU =U*—U is compact for all Uce where ( )* means the
closure with respect to the topology of F.

(2) If U, U’ ce, then there is U’ ce with U"cUNU".

(3) N{U|Uee} = @. ,

(4) € is a maximal family with respect to (1), (2) and (3).

DEFINITION 5. Let ¢ be an end of a non-compact leaf F' of #. Let

L.(F)=N{U|Uce¢} where (" ) means the closure with respect to the
topology of M. We call L (F) the ¢ limit set of F or the limit set of e.

For the fundamental property of L.(F'), see Nishimori [3].

DEFINITION 6. Let F be a non-compact leaf of . An end ¢ of F'is
called a tame end of depth one if ¢ satisfies the following conditions (1),
(2) and (3).

(1) e is isolated, that is, there is U € ¢ such that if an end ¢’ contains
U then ¢ =e.
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(2) L(F)NF=g.

(3) ¢ approaches L.(F) from one side, that is, when some trans-
verse flow ¢ fixed, for all z € L,(F) there are Uee and 6 > 0 such that
o({x} x [0, 0D NU = .

Now we fix a metric d of M. For a tame end & of depth 1, we
define a(e) = sup {d(@U, L(F))|Uce. If Ue¢, then & = ¢}.

By using the induction, we define a tame end of depth greater than
one as follows.

DEFINITION 7. An end ¢ of F' is called a tame end of depth d if ¢
satisfies the following conditions (1)-(4).

(1) d() =d.

(2) L(F)NF = Q.

(3) ¢ approaches L}(F) = L.(F)— Nve: (Uerersv LA(F)) from one
side.

(4) There are Uce and a > 0 such that (i) if an end ¢’ # ¢ contains
U then ¢’ is a tame end of depth < d and a(¢’) > a.

For a tame end ¢ of depth d, we define a(¢) = Sup {d(0U, L.(F))|U €e.
If Uee + ¢ then ¢’ is a tame end of depth < d}.

Now we can state the result concerning Problems 2 and 5.

THEOREM 6. Let F be a transversely orientable C™ foliation of
codimension one on a closed orientable C™ manifold M. Suppose that
2= 7r =< oco. Let F bealeafof & suchthat d = d(F) is finite. Suppose
that all holonomy groups of leaves F'C F are abelian. Then F is a
proper leaf. Moreover F has a finite number of tame ends of depth d — 1
and a countable number of tame ends of depth < d — 1 and satisfies the
following conditions.

(1) F consists of finite leaves of F.

(2) For each end ¢ of F, there is just one leaf F' < F such that
L(F) = F' and d(e) = d(F").

(8) For each leaf F' < F, there is an end ¢ of F such that L (F) =
F' and d(e) = d(F"). If d(F') < d — 1, there are a countable number of
such ¢’s. If d(F') =d — 1, such ¢ is unique.

The proof of Theorem 6 will clarify how the ends ¢ of F' approach

their limit sets L.(F').
The author thanks H. Imanishi for useful discussions.

2. The proofs of Propositions 1, 2, 3 and 4. At first we state some
properties of limit sets. Let F be a non-compact leaf of .. We denote
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by L(F) the set of points y € M such that there is a sequence 2, ,, - -+ € F,
which are discrete with respect to the topology of F as a manifold, and
which converges to y with respect to the topology of M. We call L(F)
the limit set of F.

LEMMA 1. A non-compact leaf F is proper if and only if L(F)N
F = 0.

LeMMA 2. L(F) and L.(F) are non-empty compact invariant subsets
of M.

We omit the proofs of Lemmas 1 and 2. The relation between L(F')
and L.(F') is as follows.

LEMMA 3. L(F) = U {L.F)|¢ is an end of F).

Proor. Clearly L(F)D> U.L.(F). From now we will show that
L(F)yc U. L.(F). Choose a sequence K,, K,, - - of subsets of F' such that
(1) K, is a compact connected submanifold of same dimension as F,

(2) F= UT:th,

(3) K,.cIntK,,.

Let y e L(F). Then there is a sequence %, %,, +++ € F' such that {z,}2, is
discrete in F' and {2}, converges to y in M.

We remark that, for each 7, F — K, consists of a finite number of
connected components. We remark also that K, contains at most a finite
number of z.’s. By induction we choose connected components V, of
F — K, as follows. _

(i) Let V, be one of the connected components of F' — K, containing
an infinite number of z,’s.

(ii) Suppose that V,, ---, V, have been already chosen. Let V. be
one of the connected components of V, — K,,, containing an infinite number
of x.’s.

Let ¢ be the family of non-empty connected open subsets V of F' such
that V contains some V, and V* —V is compact where ( )* means the
closure with respect to the topology of F' as a manifold. It is easy to
see that ¢ is an end of F and L.(F) contains y. Thus we obtain
I(F)c . L.(F), which completes the proof of Lemma 3.

LEMMA 4. For any non-compact leaf F, L(F) contains another leaf
F'.

COROLLARY 2. For any non-compact leaf F, there is a leaf F'
satisfying F' < F.

In order to prove Lemma 4, we need the following known lemma.
We give a proof for self-containedness.
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LEMMA 5. A nom-empty perfect subset E of R is an uncountable set.
PrROOF OF LEMMA 5. Since E is perfect, E is closed and, for all

v e K, K — {x} contains x. If the Lebesgue measure of E is positive,
clearly E is uncountable. Suppose that E is measure Zero. Then
R — F is dense. Since R — E is open, R — E is a union of a countable
number of open intervals {I,}; R — E = U, I,. Let (a,b) and (a,, b,) be
two of the intervals I, such that b, < @,. We number the connected
components of [b, a,] — E and we obtain a sequence I, I, --- of open
intervals.

The perfectness of E implies that between any two intervals I, and
I; there is an interval I, which is different from I, and I,.

Now we construct a locally constant monotonely increasing map
i [b, @] — E—{m/2"|m and n are integers}. Let «(x) = 1/2 for xecI.
Let 7, = Min {¢|I, is between (a,, b,) and I} and %, = Min {¢|I, is between
I, and (a,, b,)}. Let y(x) = 1/2* for v eI, and +(») = 3/2* for xeI,,. By
continuing this process we can define + uniquely. Since U7, I, is dense
in [b,, @,], ¥ is naturally extended to a continuous map +:[b,, a,] — [0, 1].
Let A={Minl;|v:=1,2,---}. Then we see that A is a countable set
and : ([b,, @.] N E) — A—][0, 1] is a bijection. Thus E is uncountable.

ProOF OF LEMMA 4. Suppose that L(F) does not contain another
leaf. Since L(F') is non-empty and invariant, L(F) = F. Let C be a
line segment transverse to # and intersecting F. Then L(F)NC =
F N C is a non-empty perfect set. By Lemma 5, FNC is an uncountable
set. On the other hand the standard arguments of foliation theory tell
us that, for any leaf F, F'N C is a countable set. This is a contradiction.

By the same way, we can prove the following.

LEMMA 6. If F is mot proper, F contains an wuncountable number
of leawves.

ProOOF. Suppose that F' is not proper and F contains at most a
countable number of leaves. Let C be a line segment transverse to &
and intersecting F. Since F is not proper, ' N C is a perfect set. By
Lemma 5, F N C is an uncountable set. On the other hand, since F, N C
is a countable set for any leaf F, and F' consists of at most a countable
number of leaves, ' N C is at most a countable set. This is a contradic-
tion, which completes the proof of Lemma 6.

As to the following lemma, recall that M is a compact manifold.

LEMMA 7. Let F be a non-compact leaf. Then F contains at most
o finite number of compact leaves.
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Since L(F') and L.(F) are contained by F, we have the following.

COROLLARY 8. L(F) and L.(F) contain at most a finite number of
compact leaves.

PrOOF OF LEMMA 7. Suppose that F' contains an infinite number of
compact leaves, from which we take an infinite sequence F,, F,, ---. We
will bring out a contradiction.

Since M is compact, 4 = N, (U, F;) is not empty. Let z,€A
and let C be a line segment transverse to .# and containing z,. Then
C intersects an infinite number of compact leaves contained by F. We
can choose infinite sequences a,, a5, *--, b, b,, -+ € C satisfying the follow-
ing conditions (1)-(4).

(1) a, belongs to F.

(2) b; belongs to some compact leaf contained by F.

(8) b, is between @, and a,,,, and between b,_, and b,,,.

(4) a,,., is between b, and b,,,, and between a, and a,,,.

Let C, be the circle consisting of a path from @, to a@,., in F and
the subset {x € C|x is between @, and «,,,}. We renumber the compact
leaves so that F', contains b,., We may suppose that F, = F; if © # j.
As to the intersection numbers of C; and F';, we have that C;-F;, = *+1
and C;-F; =0 if ¢ #* j. Therefore the homology classes [C.] € H,(M, R)
are linearly independent and H,(M, R) is not finitely generated, which
is a contradiction since M is a compact manifold.

Now we prove the propositions.

PROOF OF PROPOSITION 1. Suppose that (M/#, <) is not a partially
ordered set. Then we have two leaves F,, F, satisfying F, < F, and
F, < F,. Since we have an infinite sequence F, < F, < F, < F, < F, < ++~,
d(F )=c. F,<F,meansthat F,CL(F,). Since L(F},) is closed and F,<F,,
F,c F,c L(F,). Therefore F,is not proper. Thus we completes the proof.

ProOF OF PROPOSITION 2. (1) Let K be a non-empty compact invariant
subset of M. Let 22" be the family of all non-empty compact invariant
subsets K’ K. It is easy to see that .9 is inductively ordered by the
relation . By Zorn’s lemma, .9 has a minimal element, which is a
minimal set.

(2) Suppose that (M/#, <) is a partially ordered set. Let K be
a minimal set. At first suppose that K contains a non-compact leaf F.,.
By Lemma 4, F, contains another leaf F,. Since (M/.%, <) is a partially
ordered set, F,N F, = @. Then F,c F, — F,. Therefore F, & K. Since
F, is a non-empty compact invariant subset, K is not minimal. This is
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a contradiction. Thus we saw that K does not contain any non-compact
leaf. Secondly let F' be a compact leaf contained by K. Since F'is a
non-empty compact invariant subset and K is minimal, F = K. This
completes the proof.

ProOF OoF ProroOSITION 3. It is clear.

PROOF OF PROPOSITION 4. We suppose Theorem 1. Suppose that the
global holonomy @ of (%, #) is non-abelian and d{(% ) < 2. Then there
are w,, ®, € P(#) such that 0,(0) = w,(1) = w,(0) = @,(1) and (w, & w,)(t) <
O(w, # w,)(t) for some ¢t € DO(w, ¥ w,) N DO{(w, ¥ »,). We may suppose that
t > 0. According to Imanishi [1], all holonomy groups of compact leaves
of # are abelian if & is almost without holonomy. Let

t, = h_g: (¢(wz#w1)_1°@(w1 - wz))n(t) .

Then the leaf F, containing o(w,(0), t,) is not a compact leaf. In fact,
if F', is a compact leaf then we see that the holonomy group of F, is
non-abelian, which contradicts to the result of Imanishi. By Lemma 4, F,
contains another leaf F,. Then F, < F,. Let F, be the leaf containing
P(@,(0), ?).

In the case where F, + F,, F, < F, and d(% ) = 3, which is a con-
tradiction.

In the case where F, = F',, F, is not proper. By Lemma 6, F, contains
an uncountable number of leaves. By Lemma 7, F, contains at most a
finite number of compact leaves. Therefore F, contains a non-compact
leaf F,. By Lemma 4, F, contains another leaf F,. Then F,> F,> F,
and d(% ) = 3, which is a contradiction.

Thus we completed the proof of Proposition 4, by supposing Theorem 1.

3. The proof of Theorem 1. At first we prepare some lemmas.
The following lemma concerns Problem 2.

LEMMA 8. If d(F) < 2, then F is proper.

PrROOF. Suppose that F'is not proper. Asin the proc_>f of Proposition 4,
F contains another non-compact leaf F,. By Lemma 4, F, contains another
leaf F,. Therefore F>F,>F, and d(F')=3, which completes the proof.

LEMMA 9. Let {F;|\ € 4} be a family of compact leaves. Lf (M|, <)
18 @ partially ordered set, then ;.. F; consists of only compact leaves.

ProOF. It is easy to see that J;..F, is invariant. Let F be a leaf
satisfying F C U,es Fh, F ¢ {F;|ne4}. Suppose that F' is not compact,
from which we will bring out a contradiction,
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Let w,e F. Let C be a line segment transverse to .&# and containing
%,. There is a sequence #,, %,, --+ € CN (U;.. F,) converging to z,, We
denote by F, the compact leaf containing »,, Then Fc N, (Uin Fo)-

By Proposition 2, F' contains a compact leaf F, since F' is a non-empty
compact invariant set. Let U be a closed tubular neighborhood of F,.
We may suppose that there is a locally trivial fibration p:U — F, such
that all fibres of p are transverse to .#. Let U, be the union of F,
and a connected component of U — F,. We may suppose that F U,
contains F,.

Let y,e F, and D = (p|U,)"(%,). Since F,C FNU,C N (Uiza F),
there is a sequence z,, z,, -+ € D N (Ui, F,) converging to y,. We denote
by G, the compact leaf containing z,. Then for all y € F, there are a
neighborhood V(y) of ¥ in F, and a positive integer n(y) such that
@ U)'W)NG;# @ for all ¥’ € V(y) and all 2 =n(y). Since F,=U,V(¥)
and F, is compact, there are y,,---,¥, € F, such that F,=V(y,)U - - - U V(¥y).
Let n, be the maximum of {n(y,), ---, n(y,)}.

Let us take e DN F and fix it. Then there exists ¢ = %, such that
G;N{reD|x is between y, and 7} = @. Since i = n, G, N (P|U,)"(y) #=
@ for all ye F,. Since G, is a compact leaf, G, N (p|U,.)"(y) is a finite
set. Therefore we can consider the nearest point a(y) of G, N (p|U,) (%)
to y. It is easy to see that {a(y)|y € F,} is a leaf of . Consequently
G, ={ay|yeF,} and a: F,— G, is a C" diffeomorphism. Let A =
U, {ze@®@|U,)(¥)|x is between y and a(y)}. Then A is C" diffeomorphic
to F, x [0,1]. Since F N U, contains F,, there is & € (Int A)N F. Then
7 and z’ belong to different connected components of M — F, — G,. This
is a contradiction, which completes the proof of Lemma 9.

The proof of Lemma 9 suggests the following.

COROLLARY 4. If (M|, <) is a partially ordered set, all compact

leaves are classified into a finite number of C* diffeomorphic classes of
manifolds.

PROOF. At first we claim that for all # € M there is a neighborhood
U(x) of z such that the compact leaves of % intersecting U(x) are C’
diffeomorphic. In fact for 2 belonging to non-compact leaves, we can
find a neighborhood U(x) which does not intersect any compact leaf by
Lemma 9. For z belonging to isolated compact leaves, there is a neigh-
borhood U(x) such that if a compact leaf F’ intersects U(x) then F' = F.
For # belonging to non-isolated compact leaves, by the proof of Lemma
9 we obtain a neighborhood U(x) such that the compact leaves intersecting
U(x) is C" diffeomorphic to the leaf containing .
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Since M = J,U(x) and M is compact, there are z, ---, x,€ M such
that M =U(x,) U --- UU(z,). Any compact leaf intersects some of U(x,),
«e«, U(z,), so we have a finite number of C" diffeomorphic classes.

Now we introduce some notations. Let A be a compact C” manifold
with boundary or without boundary, and B a closed transversely oriented
codimension-one submanifold of A. We denote by C(A4, B) the compact
manifold obtained from A — B by attaching two copies B, B, of B,
where the suffixes 1,2 depend the transverse orientation of B. Let
f:]0,e]—1[0, 8] be a C" diffeomorphism such that f(0) =0 and ¢ < .
We denote by X(A4, B, f) the quotient space of C(A, B) x [0, €] by the
equivalence relation ~ defined by (x,, t) ~ (x,, f(t)) for ¢t €[0, €] and z, € B,,
%, € B, such that x, = x, as elements of B. Then X(A4, B, f) is a compact
manifold with corner on the boundary. We denote by .# (4, B, f) the
foliation on X(A4, B, f) induced from the foliation on C(A, B) x [0, €] whose
leaves are C(4, B) x {t}, t €0, €].

Now we prove Theorem 1.

ProoF oF THEOREM 1. (1) By Corollary 2, it is clear.

(2) Suppose that d(#) < 2. By Proposition 1, (M/ %, <) is a
partially ordered set. Suppose that the holonomy group of some non-
compact leaf F is not trivial. We will bring out a contradiction.

By assumption, there is an immersion f: [0, 1] x [0, €] — M satisfying
the following conditions (a)-(e).

(@) f([0, 1] x {0}) is contained in F.

() f(,t) = f(Q,t) for all te]0, ¢].

(¢) fI10,1) x [0, €] and f|(0, 1] x [0, €] are embeddings.

(d) fI{s} x [0, €] is transverse to # for all s€]0,1].

(e) We define a map g: (U, 0)—(V,0), where U and V are some
neighborhoods of 0 in [0, ¢], as follows. g¢(s) =¢ if and only if there is
a leaf, of the induced foliation f*# on [0, 1] x [0, €], containing the
points (0,s) and (1,t). Then there is a sequence ¢,t, --- such that
g(t) < t, and lim,...t, = 0.

In (e), since the sequence t,, g(t,), g°(t;), <+ + is monotonely decreasing,
it has the limit. Let s, = lim,_. ¢"(¢,). Then the leaf F, of # containing
f(0, t,) is different from the leaf E; of & containing f(0, s;). In fact if
F, = E,, then we see that the leaf F'; is not proper. On the other hand,
by Lemma 8 F), is proper since d(F’,) < 2. This is a contradiction.

At most a finite number of the leaves {E,, E,, ---} are compact. In
fact if an infinite number of {E,, E,, ---} are compact, then F'is contained
by the closure of the union of the family of compact leaves. By Lemma
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9, F is a compact leaf, which is a contradiction.

Let E,, be a non-compact leaf. By Corollary 2, there is a leaf F”
satisfying F” < E,. Clearly E;, < F;,. Then d(% ) = 3, which contradicts
the assumption. Therefore .# is almost without holonomy, which com-
pletes the half of the proof of Theorem 1 (2).

Conversely suppose that (M/<, <) is a partially ordered set and &
is almost without holonomy. By Proposition 2, % has a compact leaf.
It is sufficient to consider the case where & has a non-compact leaf.
Let 2 be a connected component of

M — U ({F|F is a compact leaf of F#}.

By the same way of the proof of Lemma 7, we can prove that the
closure of 2 contains only a finite number of compact leaves. Therefore
2 has a finite number of ends and we can attach the boundary. Let 2
be the compact manifold obtained from 2 by attaching the boundary.
Then 2 is naturally immersed in M. Let F be a connected component
of the boundary of 2. Then F is a compact leaf of & |2 where & |2
means the foliation on £ induced from .# by the immersion 2 — M. By
Imanishi [1], the holonomy group of F' is a free abelian group.

We claim that the holonomy group @{F') of F is an infinite cyclic
group. In fact suppose that the rank of @(F') is greater than one. We
will bring out a contradiction. There are homeomorphisms f:[0, ¢,) —
[0, 8,) and g: [0, &,) — [0, 0,) such that the germes of f and g at 0 are
linearly independent elements of @(F').

Remark that f and g have no fixed point except 0. In fact, if
otherwise, some leaf F,C 2 has non-trivial holonomy group. Since 2
consists of only non-compact leaves, F, is non-compact. This contradicts
the assumption that # is almost without holonomy.

Consider the equivalence relation ~ on (0, ¢,) defined by ¢ ~ f(t),te
(0, €). The quotient space S = (0, ¢,)/~ is a circle. By the commutativity
of f and g, we can define an orientation-preserving homeomorphism
g: S— S as follows. For te€(0, ¢), let g([t]) = [g(t)] where [¢{] means the
equivalence class of t. By the way of choosing f and g, g” is not the
identity for all non-zero integer n. If g has a periodic point, there is
a leaf F,c 2 whose holonomy group is non-trivial, which contradicts the
assumption that & is almost without holonomy. Therefore the rotation
number of g is irrational.

We need the following theorem, see Nitecki [5] p. 40.

THEOREM 7. Let g: S'— S be an orientation-preserving homeomor-
phism whose rotation number T is irrational. Then there is a surjective



LEAVES OF CODIMENSION-ONE FOLIATIONS 267

continuous map h: S'— S* such that hog = r(t)oh and h™(x) is a point
or closed interval for all x € S' where r(7): S'— S' s the rotation map
whose rotation number is .

By Theorem 7, we see that (M/ <, <) is not a partially ordered set,
which is a contradiction. Therefore the holonomy group @(F) is infinite
cyclic.

As in Nishimori [4], from the holonomy homomorphism, we have an
isomorphism wu: H,(F, Z)— Z. Consider the homology class doa(u)e
H, .(F*, Z) where a: Hom (H,(F, Z), Z) — H'(F, Z) is the canonical
isomorphism and d: H(F, Z) — H,_F, Z) is the Poincaré duality. There
is a closed C" submanifold N of F such that [N] = d-a(u) e H,_(F, Z).
For some C* diffeomorphism f:[0, e]—[0, 0] there is a C” embedding
h: X(F, N, f)— such that h*& = & (F, N, f). We do the same for all
connected components of the boundary of 2. By subtracting #(X(F, N, f))’s
from 2 and taking the closure, we obtain 2, Remark that all holonomy
groups of & |2, are trivial. By Proposition 2 in a somewhat generalized
formulation, & |2, has a compact leaf. Therefore all leaves of & |2,
are compact. Thus we have d(¥ ) < 2. This completes the proof of
Theorem 1.

4. The proof of Theorem 3. In order to prove Theorem 3, we need
the following.

THEOREM 8 (Nishimori [4]). Let # be a transversely orientable
codimension-one C™ foliation on an orientable C™ manifold and F a
compact leaf of F#. Suppose that 2<1r < . Let T be a tubular
neighborhood of F and let U, be the union of F and a connected component
of T — F. Suppose that the one-sided holonomy group of F defined by
F U, s abeltan. Then only one of the following three cases occurs.

(1) For all neighborhoods V of F, the restricted foliation Z# |V N U,
has a compact leaf which is mot F.

(2) For all neighborhoods V of F, there is a meighborhood V, of
F such that V,CV and all leaves of F |V,NU, excent F are dense in
vV.nU,.

(8) There are a transversely orientable codimension-one C™ submani-
fold N of F, a C" diffeomorphism f:[0, €] — [0, 6] satisfying that f(t) <t
Jor all te(0, €], and a C" embedding h: X(F, N, f)—U, such that
MC(F, N) x {0})) = F and h*# = # (F, N, f).

Now let us consider a foliation % on a manifold M and a transverse
flow ¢ satisfying the conditions of Theorem 3.
By Proposition 2, # has a compact leaf. If all leaves of .# are
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compact, then d(# ) =1=d and the proof is finished. Suppose that
& has a non-compact leaf. Let 2' be a connected component of

M — U{F|F is a compact leaf of & }.

It is sufficient to prove that d(¥ |2') <d + 1 for all connected com-
ponents £'.

As Lemma 7, we see that the closure of 2' contains a finite number
of compact leaves. Therefore 2' has a finite number of ends and we
can attach the boundary. Let 2' be the compact manifold obtained from
2' by attaching the boundary. ' is naturally immersed in M. We
denote by & |2' the foliation induced from .# by the immersion.

Let F,, ---, F, be the compact leaves of & |2', that is, connected
components of 32'. For each F,, the conditions of Theorem 8 are satisfied.
By the way of defining 2', (1) does not occur. If (2) occurs, then (M/.#, <)
is not a partially ordered set. Therefore (8) of Theorem 8 occurs and
there are N, fi:[0,&]—1[0,0,] and h;: X(F,, N, f)— 2" for i =1, .-+, k
as in Theorem 8. We may suppose that, for each x e F,, h,({z} x [0, &])
is contained by some orbit of . Let Qi = 2* — U, h(Int X(F,, N,, 1)) —

¥, F,., Then 2} is a compact manifold with corner.

Clearly (2i/( |2}, <) is a partially ordered set. We can generalize
Proposition 2 so that we can apply it in this case. Therefore # |2} has
a compact leaf. If all leaves of & |2} are compact, then d(F |2") =1
and the proof is finished. Suppose that & |2; has a non-compact leaf.
We can also generalize Theorem 8 so that we can repeat the same process.

We denote by 2! a connected component of

Qi — U{F|F is a compact leaf of &7 |2}

for some £2¢. If the process ends before obtaining 2¢, then d(& ) < d.
Thus it is sufficient to consider the case where we have Q%

Let F, -+, F, be the compact leaves of % |2¢. Remark that the
leaf of .# containing F, has depth d and all leaves of .# passing 2¢ have
depth greater than d. By reversing the direction of ¢ if necessary, we
may suppose that for each x ¢ F), there is ¢ > 0 such that p({z} x (0, ¢)) C
2%, For 1=2, -+, k, let

There is ¢t > 0 such that }

= {weFl p(fe} X (0,¢) c2* and o(v,t)eF,.

Here we use confused notations since 2¢ and F’s are not subsets of M.
It is easy to see that K, is an open subset of F,. By the condition (2)
of Theorem 3, for all z € F, there is t > 0 such that (=, t) ¢ 2°. Therefore
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F, = Ui.K,. Clearly K,N K; = @ if 1 # j. Since F, is connected, only
one of K,’s is non-empty. By renumbering F’s, we may suppose that
K,=F,. :

Let 2 = {p(x,t)e2?|xecF,t =0, o({z} x (0,t)) = 2%. Then we see
that 2 is a non-empty open closed subset of 2¢. By the connectivity
of 2¢, we have 2 = 2°. Therefore there is a C" diffeomorphism %: F, X
[0, 1] — 2%, The induced foliation h*%# on F, x [0, 1] satisfying the
following.

(1) F, x {0} and F, x {1} are compact leaves of A* .

(2) The other leaves of h*# are non-compact.

(3) For all zeF, {x} x [0, 1] is transverse to h* #.

Such foliation was studied in Nishimori [4]. Since the global holonomy
of (&, p) is abelian and » = 2, we can apply Theorem 1* of Nishimori
[4] to h*<. Thus we see that d(¥ |2%) =2 and d(¥ ) =d + 1. This
completes the proof of Theorem 3.

5. The proofs of Theorems 4 and 5. At first we give a method to
construct a C foliation .# on S,X%|[0, 1], whose leaves are all C~ submani-
folds and transverse to {z} x [0, 1] for all z € S,, from given orientation-
preserving C* diffeomorphisms f, f;: [0, 1] —[0,1],0 < » < .

Take disjoint circles C,, C, in S, such that S, — C, U C, is connected.
Let U,, U, be disjoint closed tubular neighborhoods of C,, C,. There are
C> diffeomorphisms k;:C; X [—-1,1]—-U, 7 =1,2. Let a:[—1,1]—][0,1]
be a C* map such that

(1) a(t) =0 in a neighborhood of —1,

(2) a(t) =1 in a neighborhood of 1.

Let .+, be the foliation on U x [0, 1] whose leaves are

{(hiz, 9), 1) |2 C,y se[—1, 1], t = a(s)t, + 1 — ()it} te[0, 1] .

Let &, be the foliation on (S, — Int (U, U U,)) x [0, 1] whose leaves are
(S, —Int (U,U U,)) x {t}, t €[0, 1]. By connecting .#,, #,, and &, together,
we have a foliation % on S, x [0, 1] which clearly has the desired
property.

Let f:[0,1]—]0, 1] be a C> diffeomorphism such that f(t) <t for
all te(0,1) and %:(0,1)— R a C~ diffeomorphism such that A(f"(x)) =
h(z) — n for all integer m. We will construct C* diffeomorphisms g,, g,
R— R. Let g.:[0,1]—[0, 1] be a map defined by

9.0)=0,5(1) =1, 3[(0,1) = h7'og,oh .

Then g, will be a C~ diffeomorphism and g, a homeomorphism. The
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foliation .#; obtained by using f and §, will be the example of Theorem
1, 1 = 4, 5.

Now choose a sequence a,, @, **°, @4y, b, by, +++, by, € R such that
0=0, << vos <@gy < by < +ee <b,<b, =1. Take g,: R— R such
that

(1) g@)=zifx<1l+d orifd—1+0b,_, <.

(2) Forn=1,---,d — 2,

g@)=2 if n+b, 2x=n+1+a,.,.
(83) Forn=1,-.-.,d—1,
g@ <z if nt+a, <z<n-+bd,.
(4) Forn=2,.--,d — 1,
gn—1+b)=n—-1+a,.
Then clearly g, is C~ diffeomorphism. The holonomy groups of S, x {0},
S; x {1} and the leaves F'; of &, containing (S, — Int (U, U U,)) X {h Y (a,)},
1=1,.--,d — 2 are infinite cyclic groups. The other leaves of &, have
trivial holonomy groups. The relation < is as follows.
SZX {0}’S2>< {1}<F1<F2< e <Fd—2<F

where F is an arbitrary leaf different from S, x {0}, S, x {1}, F\, «++, F,_,.
Therefore d(,) = d, so &, has the desired property.

Let g: R— R be a C~ diffeomorphism such that g|(— o, 0JU[1, =) is
the identity and g{(zx) <« for all 2€(0,1). Take g;: R— R such that for
all integer n

g@)=2 if 2n<2x=<2n+1,
g@)=2n+1+ge—2n—1) if 2n+1<a<2n+2.

Then the holonomy group of the compact leaves S; x {0}, S, x {1} are not
abelian. The relation < is as follows.

S, x {0, S, x {l} <F, < F

where F, is the leaf of .#; containing (S, — Int (U,U U,)) X {,"'(0)} and F
is an arbitrary leaf of &, different from S, x {0}, S, x {1} and F,.
Therefore d(%;) = 8 and %, has the desired property.

6. The proof of Theorem 6. Let F be a leaf of .# whose depth
d = d(F) is finite. If d =1, F is a compact leaf by Corollary 2 and the
proof is finished. Suppose that d = 2. There is a sequence F,, ---, F,
of leaves such that F, < F, < --- < F; = F. Then we see that d(F,) =
and F, is a compact leaf. Thus F contains a compact leaf and % has
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a compact leaf. Let 2' be the connected component of
M — U{F'|F' is a compact leaf}

containing F. As in the proof of Theorem 3, the closure of 2' contains
a finite number of compact leaves and we can consider the compact
manifold 2' obtained from 2! by attaching the boundary. 2' is naturally
immersed in M. Then F can be considered a leaf of the foliation
Z |2 on 2 induced from &% by the immersion. Let F7, ---, F} be
the compact leaves of .# |2' contained by F. Since the conditions of
Theorem 8 are satisfied for F7,-.-, F, and the condition (8) of Theorem
8 occurs, we have codimension-one submanifolds N, of F';, C™ diffeomor-
phisms f:: [0, &]— [0, ;] satisfying fi(t) <t for all £€(0, ], and C~
immersions h;: X(F, N, f;)) — 2' such that h(C(F}, N, x {0}) = F; and
h¥tg = F(F, N, f), for i =1, -+, k. Let

_ k
2 = 2 — J h(Int X(F, N, £)) - UF..

Then Q) is a compact manifold with corner on the boundary. Remark
that Q! contains still compact leaves of & |2' which are not contained
by F. By the way of constructing 2, the intersection of 2! and a leaf
of & |2 is empty or a leaf of the restricted foliation .7 | Q..

Let G be a non-compact leaf of & |2' contained by F. Then d(G) <
d(F) < o and G contains a compact leaf of .7 |2' as above. We claim
dGN2) =d(G) —1. In fact,let G, < G, <++-< Gy = G where d’ = d(G).
Since G, is a compact leaf of # |2' and G,cGcCF,GNRA=p. We
see also that G, N 2} is a compact leaf of & |2} and that G, N 2} < G, N
Q< s <Gy N 2= GN Q2. Therefore d(G N 2!) = d — 1. Now suppose
that d(GN 2)) >d — 1. Then there is a sequence H,, ---, H; of leaves
of # |2 such that H < H, < +-+ < H;, =GN 2i. Let G; be the leaf
of & |@' containing H,. Then G| <---< Gy = G and G, contains another
leaf G; of 7 |2' since G is a non-compact leaf of % |2'. Thus we have
d(G) > d’, which is a contradiction. Therefore d(G N 2}) =d" — 1.

Let U be a connected component of h,(Int X(F'i, N, f,)) N G for some
1. It is easy to see that there is uniquely an end ¢ of G containing U
and that ¢ is isolated. Furthermore L.(G) = F'; and clearly ¢ approaches
to L,(G) from one side. Therefore ¢ is a tame end of depth 1.

Since d(FN2}) =d(F) — 1< =, FN £ contains a compact leaf of
Z |2, Any compact leaf of & |2} contained by F N 2, has the form
G N 2 where G is a leaf % contained by F and d(G) = 2. Let £2* be
the connected component of
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Q2 — U{F'|F' is a compact leaf of & |2}

containing F'N 2i. As before the closure of 2° contains a finite number
of compact leaves of # |2, and we can consider the compact manifold
2* obtained from ©2* by attaching the boundary and & |2?. We can
apply Theorem 8 to the compact leaves G, -+, G} of # |2°. Thus we
obtain N,cC G}, f/:[0, €] — [0, 8] and h}: X(G}, N, f}) — 2* such that
R(C(G;, N}) x {0})) = G and (h)*&F = F (Gi, N}, fi). Let

2 = 2 — U iInt X(G}, N, £)) — U G

Then 2? be the compact manifold with corner. Let G’ be a leaf of &
contained by F such that G’ N 2% is a non-compact leaf of & |2°. We
can prove that a connected component U’ of G' N (M — 2% belongs to
unique end ¢ of G and ¢ is a tame end of depth 2. As to the condition
(1) of Definition 7, take U’ as U and, as a,

Min {d@(U’' N (M — 2¥), FiU +--- U F}), d@U’, G, U -+ UG)} .

Furthermore d(G' N 2}) = d(G') — 2.

We can repeat this process and we obtain sequences £2*, --+, 297 and
Qi -+, 247 of submanifolds of M such that

(1) DD D ... DRI QY

(2) FNQ'# @.
Since d(F) = d, FN Q¢ is a compact leaf of & |2¢' and our process
is finished.

F is a proper leaf. In fact, if F' is not proper then we can show
that FN R is a non-compact leaf of & |Q2¢~!, which is a contradiction.

Since F N 2¢* is a compact leaf of & |22, FN (M — Q2¢7') consists
of a finite number of connected components. Let V be a connected
component of FFN (M — 2¢). Then we see that V belongs to unique
end ¢* of F and ¢* is a tame end of depth d — 1. As to the condition
(1) of Definition 7, it is sufficient to take V as U and, as «a,

Min {d(@(V N (M — 23), 02, d@(V N (M — 2)), 32 ,
o0, dE(V N (M — 257Y), 02°7Y} .

Therefore F' has a finite number of tame ends of depth d — 1. In the
same way, a connected component of F'N (M — 2%) corresponds to a tame
end of depth ¢ for ¢ =1, .--,d — 2. For ¢ <d — 1, clearly there are a
countable number of such connected components. ‘

Now we show (1) of Theorem 6. Remark that a leaf F' of &
contained by F contains a connected component of the image of 82 by
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the natural immersion: 2! — M for some_i. Since there are only a finite
number of such connected components, F' contains only a finite number
of leaves of .

By the above arguments, (2) and (8) of Theorem 6 are clear, which
completes the proof of Theorem 6.
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