ON THE DECOMPOSITION OF GENERALIZED S-CURVATURE-LIKE TENSOR FIELDS

Yashiro Yoshimatsu

(Received January 28, 1976)
The purpose of this note is to study a decomposition of generalized S-curvature-like tensor fields on a Sasakian manifold, and to get a certain relationship among Ricci tensor, Bianchi identity and contact Bochner curvature tensor.
K. Nomizu [4] studied a decomposition of generalized curvature tensor fields on a Riemannian manifold, and revealed a certain interesting relationship among the tensors and tensor identities named after Codazzi, Ricci, Bianchi and Weyl. Studying its Kaehlerian analogy H. Mori [2] obtained a similar relationship among Bochner tensor (in place of Weyl tensor), Ricci tensor and the other two tensor identities.

In this paper, first, we define a (ϕ, ξ, η)-structure on a vector space with an inner product, and an S-curvature-like tensor on V. As a component of an orthogonal decomposition of an S-curvature-like tensor L, we obtain a contact Bochner tensor associated to L. The same decomposition implies directly a necessary and sufficient condition, obtained by Tagawa [7], in order that the contact Bochner tensor on a Sasakian manifold vanishes. Then we define a generalized S-curvature-like tensor field L on a Sasakian manifold M so that L_{p} is an S-curvature-like tensor over the tangent space $T_{p}(M)$ at each point p of M. When we consider the decomposition of a generalized S-curvature-like tensor field, a natural question arises: When are the components of the decomposition proper (i.e., When do they satisfy the second Bianchi identity)? An answer is given by a certain equation to be satisfied by the Ricci tensor field. In view of analogy which exists between an S-curvaturelike tensor (resp. a generalized S-curvature-like tensor field) and a K curvature tensor (resp. a generalized K-curvature tensor field) defined in [3], all our methods can be applied also to the case when V is a vector space with a Hermitian inner product (resp. M is a Kaehler manifold) (cf. [3]). In this case, Tagawa's result mentioned above is reduced to Chen and Yano's result [1] which gives a necessary and sufficient condition in order that the Bochner tensor on M vanishes.

1. Statement of results. Let V be a $(2 n+1)$-dimensional real vector
space with an inner product denoted by \langle,$\rangle . A tensor L$ of type (1, 3) over V can be considered as a bilinear mapping

$$
(x, y) \in V \times V \mapsto L(x, y) \in \operatorname{Hom}(V, V) .
$$

Such a tensor L is called a curvature tensor over V if it has the following properties:

$$
\begin{equation*}
L(y, x)=-L(x, y) \tag{1.1}
\end{equation*}
$$

$L(x, y)$ is a skew-symmetric endomorphism of V, i.e.,

$$
\begin{equation*}
\langle L(x, y) u, v\rangle+\langle u, L(x, y) v\rangle=0 ; \tag{1.2}
\end{equation*}
$$

where σ denotes the cyclic sum over x, y, and z.
For a curvature tensor L, the Ricci tensor $K=K_{L}$ of type $(1,1)$ is a symmetric endomorphism of V defined by

$$
\begin{aligned}
& K(x)=\text { trace of the bilinear map: } \\
& (y, z) \in V \times V \mapsto L(x, y) z \in V
\end{aligned}
$$

The trace of the Ricci tensor K_{L} is called the scalar curvature of L.
A (ϕ, ξ, η)-structure is defined on V by tensors ϕ, ξ, and η of type $(1,1),(1,0)$, and $(0,1)$, respectively, over V, satisfying the following conditions:

$$
\begin{gather*}
\eta(\xi)=1 \tag{1.4}\\
\eta(\phi x)=0 ; \tag{1.5}\\
\phi^{2}(x)=-x+\eta(x) \xi \tag{1.6}\\
\langle\xi, \xi\rangle=1 ; \tag{1.7}\\
\eta(x)=\langle\xi, x\rangle \tag{1.8}\\
\langle\phi x, \phi y\rangle=\langle x, y\rangle-\eta(x) \eta(y) . \tag{1.9}
\end{gather*}
$$

Let V be a $(2 n+1)$-dimensional vector space with a (ϕ, ξ, η)-structure. A curvature tensor L is called an S-curvature tensor over V if it has the following properties:

$$
\begin{aligned}
& L(x, y) \phi z=\phi(L(x, y) z)+\langle\phi x, z\rangle y-\langle\phi y, z\rangle x-\langle y, z\rangle \phi x+\langle x, z\rangle \phi y ; \\
& L(\xi, x) y=\langle y, x\rangle \xi-\eta(y) x
\end{aligned}
$$

A curvature tensor L is called an S-curvature-like tensor over V if it has the following properties:

$$
\begin{equation*}
L(x, y) \circ \phi=\phi \circ L(x, y) ; \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
L(\xi, x)=0 . \tag{1.11}
\end{equation*}
$$

We denote by $\mathscr{L}(V)$ the vector space of all S-curvature-like tensors over V.

Let P be a ϕ-invariant 2-plane in V and let x be a unit vector in P. For an S-curvature like tensor L, we set

$$
k(P)=\langle L(x, \phi x) \phi x, x\rangle .
$$

We call that $k(P)$ is the ϕ-sectional curvature of L for P.
For $x, y \in V$, we denote by $x \Delta y$ and $x \Delta y$ the skew-symmetric endomorphisms of V, respectively, defined by

$$
\begin{aligned}
(x \Delta y) z= & \langle z, y\rangle x-\langle z, x\rangle y \\
(x \Delta y) z= & (x \Delta y) z-\eta(z)(\eta(y) x-\eta(x) y) \\
& -(\eta(x)\langle\boldsymbol{z}, y\rangle-\eta(y)\langle\boldsymbol{z}, x\rangle) \xi
\end{aligned}
$$

Remark 1. Let L_{0} be the S-curvature tensor defined by

$$
L_{0}(x, y)=x \Lambda y
$$

Then L is an S-curvature tensor if and only if $L-L_{0}$ is an S-curvaturelike tensor. If \tilde{L} is the S-curvature-like tensor corresponding to an S curvature tensor L, that is,

$$
\tilde{L}=L-L_{0}
$$

and K and \widetilde{K} are the Ricci tensors, respectively, for L and \tilde{L}, then

$$
\widetilde{K}=K-(2 n) I
$$

where I denotes the identity transformation of V.
From now on we shall discuss only S-curvature-like tensors, since they are more convenient than S-curvature tensors for our computing.

The following proposition gives examples of S-curvature-like tensors.
Proposition 1. Let A and B be two symmetric endomorphisms of V, each of which commutes with ϕ. If we define $L=L_{A, B}$ by

$$
\begin{align*}
L(x, y)= & A x \Delta B y+B x \Delta A y+\phi A x \Lambda \phi B y+\phi B x \Lambda A y \tag{1.12}\\
& +2\langle A x, \phi y\rangle \phi B+2\langle B x, \phi y\rangle \phi A
\end{align*}
$$

then L is an S-curvature-like tensor.
We define $\mathscr{L}_{1}(V)$ to be the subspace of $\mathscr{L}(V)$ consisting of all S -curvature-like tensors

$$
L=\frac{c}{2} L_{I, I}
$$

where c is an arbitrary constant, i.e.,
$\mathscr{L}_{1}(V)=\{L \in \mathscr{L}(V)$ with constant ϕ-sectional curvature $\}$. Let $\left.\mathscr{L}_{1}^{\perp}(V)\right]$ be the orthogonal complement of $\mathscr{L}_{1}(V)$ in $\mathscr{L}(V)$. Then we have the following propositions:

Proposition 2.

$$
\mathscr{L}_{1}^{\perp}(V)=\{L \in \mathscr{L}(V) \text { with vanishing scalar curvature }\}
$$

and

$$
\mathscr{L}(V)=\mathscr{L}_{1}(V) \oplus \mathscr{L}_{B}(V) \oplus \mathscr{L}_{2}(V) \quad \text { (orthogonal) }
$$

where

$$
\begin{aligned}
& \mathscr{L}_{B}(V)=\{L \in \mathscr{L}(V) \text { with vanishing Ricci tensor }\} \\
& \mathscr{L}_{2}(V)=\text { orthogonal complement of } \mathscr{L}_{B}(V) \text { in } \mathscr{L}_{1}+(V) .
\end{aligned}
$$

Proposition 3. For $L \in \mathscr{L}(V)$, let

$$
L=L_{1}+L_{B}+L_{2},
$$

where $L_{1} \in \mathscr{L}_{1}(V), L_{B} \in \mathscr{L}_{B}(V), L_{2} \in \mathscr{L}_{2}(V)$. Then

$$
\begin{aligned}
L_{1} & =\frac{\operatorname{tr} K}{8 n(n+1)} L_{I, I} \\
L_{2} & =\frac{1}{2(n+2)} L_{K, I}-\frac{\operatorname{tr} K}{4 n(n+2)} L_{I, I} \\
L_{B} & =L-\frac{1}{2(n+2)} L_{K, I}+\frac{\operatorname{tr} K}{8(n+1)(n+2)} L_{I, I}
\end{aligned}
$$

where K is the Ricci tensor of L and $L_{A, B}$ is the tensor defined by (1.12).
For each $L \in \mathscr{L}(V)$, the $\mathscr{L}_{B}(V)$-component L_{B} is called the contact Bochner tensor associated to L.

Corollary 1. The contact Bochner tensor associated to $L \in \mathscr{L}(V)$ is 0 if and only if

$$
\begin{equation*}
L=L_{A, I} \tag{1.13}
\end{equation*}
$$

for a symmetric endomorphism A of V which commutes with ϕ.
From Corollary 1 we get easily the following fact which is stated in [7] in terms of an S-curvature tensor.

Corollary 2 (Tagawa [7], cf. Chen and Yano [1]). In order that the contact Bochner tensor associated to an S-curvature-like tensor vanishes, it is necessary and sufficient that there exists a (unique) symmetric endomorphisms Q of V which commutes with ϕ and satisfies the following: the ϕ-sectional curvature $k(P)$ for a 2-plane P is the trace
of the restriction Q to P, i.e., $k(P)=$ trace Q / P, the inner product being also restricted to P.

A Sasakian structure $(\dot{\phi}, \xi, \eta)$ is defined on a Riemannian manifold (M, g) by tensor fields ϕ, ξ, and η of type $(1,1),(1,0)$, and $(0,1)$ which give $\left(\phi_{p}, \xi_{p}, \eta_{p}\right)$-structure on the tangent space $T_{p}(M)$ with the inner product g_{p} for each point p of M and satisfy the following conditions:

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) X-\langle X, Y\rangle \xi ; \tag{1.14}
\end{equation*}
$$

(1.15) $\quad \nabla_{X} \xi=\phi(X), \quad$ (which is equivalent to $\left.\left(\nabla_{X} \eta\right) Y=\langle Y, \phi X\rangle\right)$, where X and Y are any vector fields. Here and in the following, we denote $g($,$) by \langle$,$\rangle for brevity.$

A Riemannian manifold with a Sasakian structure is called an Sasakian manifold. A (differentiable) tensor field L of type (1,3) on a Sasakian manifold is called a generalized S-curvature tensor field (resp. a generalized S-curvature-like tensor field) if for each point p the tensor L_{p} is an S curvature tensor (resp. an S-curvature-like tensor) over $T_{p}(M)$. We shall say that L is proper if it satisfies the second Bianchi identity, that is,

$$
\sigma\left(\nabla_{X} L\right)(Y, Z)=0
$$

For vector fields X and Y on M, we denote by $X \Lambda Y$ and $X \Delta Y$ the tensor fields of type $(1,1)$ which map a vector field Z, respectively, into

$$
\langle Z, Y\rangle X-\langle Z, X\rangle Y
$$

and

$$
\begin{aligned}
& \langle Z, Y\rangle X-\langle Z, X\rangle Y-\eta(Z)(\eta(Y) X-\eta(X) Y) \\
& \quad-(\eta(X)\langle Z, Y\rangle-\eta(Y)\langle Z, X\rangle) \xi
\end{aligned}
$$

Remark 2. Let L_{0} be the proper generalized S-curvature tensor field defined by

$$
L_{0}(X, Y)=X \Lambda Y
$$

Then L is a (proper) generalized S-curvature tensor field if and only if $L-L_{0}$ is a (proper) generalized S-curvature-like tensor field.

From now on we shall discuss only generalized S-curvature-like tensor fields, since they are more advantageous than generalized S-curvature tensor fields for our computing.

We see the following fact corresponding to Proposition 1: Let A and B be two tensor fields of type $(1,1)$ which are symmetric as endomorphisms of the tangent space and commute with ϕ. Then

$$
\begin{aligned}
L_{A, B}(X, Y)= & A X \Delta B Y+B X \Delta A Y+\phi A X \Lambda \phi B Y+\phi B X \Lambda \phi A Y \\
& +2\langle A X, \phi Y\rangle \phi B+2\langle B X, \phi Y\rangle \phi A
\end{aligned}
$$

defines a generalized S-curvature-like tensor field.
If L is a generalized S-curvature-like tensor field on a Sasakian manifold M, then applying the decomposition in Proposition 3 at each point p of M we obtain

$$
L=L_{1}+L_{B}+L_{2},
$$

where L_{1}, L_{B}, and L_{2} are generalized S-curvature-like tensor fields which, at each point p, belong to $\mathscr{L}_{1}, \mathscr{L}_{B}$, and \mathscr{L}_{2} over $T_{p}(M)$, respectively.

Theorem 1. On a $(2 n+1)$-dimensional Sasakian manifold M, let

$$
L=L_{1}+L_{B}+L_{2}
$$

be the natural decomposition of a proper generalized S-curvature-like tensor field L. If the Ricci tensor field K of L satisfies the following equation:

$$
\begin{equation*}
\left(\nabla_{X} K\right) Y=-\eta(Y) K \phi X-\langle K \phi X, Y\rangle \xi, \tag{1.16}
\end{equation*}
$$

then L_{1}, L_{B} and L_{2} are proper. Conversely, if L_{1}, L_{B}, and L_{2} are proper and if $n \geqq 2$, then K satisfies the equation (1.16).

Corollary 3. On a Sasakian manifold M of dimension $\geqq 5$ let L be a proper generalized S-curvature-like tensor field whose scalar curvature is constant. Then the associated contact Bochner tensor field L_{B} is proper if and only if the Ricci tensor field K of L satisfies the equation (1.16).

We get Theorem 1 by the help of the following propositions.
Proposition 4. Let L be a proper generalized S-curvature-like tensor field on a Sasakian manifold M, and let K be the Ricci tensor field of L. Then (1.16) is equivalent to the following formula:

$$
\begin{align*}
\left\langle\left(\nabla_{Y} K\right) X-\left(\nabla_{X} K\right) Y, Z\right\rangle= & \eta(Y)\langle\phi K X, Z\rangle-\eta(X)\langle\phi K Y, Z\rangle \tag{1.17}\\
& +2 \eta(Z)\langle Y, \phi K X\rangle .
\end{align*}
$$

Proposition 5. The assumptions and notation being as in Proposition 4, suppose that K satisfies the equation (1.16). Then $\operatorname{tr} K$ is constant on M.

Proposition 6. On a Sasakian manifold M let A be a tensor field of type $(1,1)$ which is symmetric at each point and satisfies

$$
A \phi=\phi A \quad \text { and } \quad A \xi=0
$$

Let L be a generalized S-curvature-like tensor field defined by

$$
L=L_{A, I}
$$

If L is proper and if $\operatorname{tr} A$ is constant, then A satisfies the following equation:

$$
\begin{align*}
\left\langle\left(\nabla_{Y} A\right) X-\left(\nabla_{X} A\right) Y, Z\right\rangle= & \eta(Y)\langle\phi A X, Z\rangle-\eta(X)\langle\phi A Y, Z\rangle \tag{1.18}\\
& +2 \eta(Z)\langle Y, \phi A X\rangle .
\end{align*}
$$

Proposition 7. On a Sasakian manifold M let A be a tensor field of type $(1,1)$ which is symmetric at each point and satisfies

$$
A \phi=\phi A \quad \text { and } \quad A \xi=0
$$

Let L be a generalized S-curvature-like tensor field defined by

$$
L=L_{A, I}
$$

If A satisfies the following equation:

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=-\eta(Y) \phi A X-\langle A \phi X, Y\rangle \xi, \tag{1.19}
\end{equation*}
$$

then L is proper.
Now let $\mathfrak{A}(M)$ be the vector space of all tensor fields A of type $(1,1)$ on a Sasakian manifold which satisfy the following conditions:
i) A is symmetric at each point;
ii) A commutes with ϕ;
iii) $A \xi=0$;
iv) A satisfies the equation (1.19);
v) $\operatorname{tr} A$ is constant.

Let $\mathscr{L}(M)$ denote the vector space of all proper generalized S-curvaturelike tensor fields whose Ricci tensor fields satisfy the equation (1.16). We assume that $\operatorname{dim} M \geqq 5$.

We have a linear mapping $A \in \mathfrak{H}(M) \mapsto L_{A} \in \mathscr{L}(M)$ given by

$$
\begin{equation*}
L_{A}=\frac{1}{2(n+2)} L_{A, I}-\frac{\operatorname{tr} A}{8(n+1)(n+2)} L_{I, l} \tag{1.20}
\end{equation*}
$$

We get the following theorem:
Theorem 2. If $\operatorname{dim} M \geqq 5, A \mapsto L_{A}$ is a linear isomorphism of $\mathfrak{Y}(M)$ onto the subspace

$$
\left\{L \in \mathscr{L}(M) \mid L_{B}=0\right\}
$$

2. Proof of propositions.

Proof of Proposition 1. It follows from (1.5), (1.6), and (1.9) that
ϕ is skew-symmetric. Making use of this fact, we can show easily that L has the properties (1.1), (1.2), and (1.3). We prove that L has the properties (1.10) and (1.11). We see that

$$
\begin{equation*}
\phi((x \Delta y) z)=(\dot{\phi} x \Lambda \phi y) \dot{\phi} z \tag{2.1}
\end{equation*}
$$

holds for x, y and $z \in V$. Since

$$
\begin{equation*}
(\xi \Delta y) z=0, \tag{2.2}
\end{equation*}
$$

we get, making use of (1.6) and (2.1),

$$
\begin{align*}
\phi((\phi x A \phi y) z) & =\phi((\phi x \Delta \phi y) z)=\left(\phi^{2} x \Lambda \phi^{2} y\right) \phi z \tag{2.3}\\
& =\left(\phi^{2} x \Delta \phi^{2} y\right) \phi z \\
& =((-x+\eta(x) \xi) \Delta(-y+\eta(y) \xi)) \phi z \\
& =(x \Delta y) \phi z .
\end{align*}
$$

By (2.1) and (2.3) we see that L has the property (1.10).
From (1.4), (1.7), and (1.9) we get

$$
\begin{equation*}
\phi \xi=0 . \tag{2.4}
\end{equation*}
$$

Since A commutes with ϕ, we have, making use of (1.6), (1.8), and (2.4),

$$
\langle A \xi, x\rangle=\left\langle A \xi, \eta(x) \xi-\phi^{2} x\right\rangle=\eta(x)\langle A \xi, \xi\rangle=\langle\langle A \xi, \xi\rangle \xi, x\rangle,
$$

for all $x \in V$, and therefore $A \xi=\langle A \xi, \xi\rangle \xi$. From this equality and (2.2) we get $A \xi \Delta B y=0$. We also get $B \xi \Delta A y=0$. It follows from (2.4) that $\phi A \xi \Lambda \phi B y=0, \phi B \xi \Lambda \phi A y=0,\langle A \xi, \phi y\rangle=0$ and $\langle B \xi, \phi y\rangle=0$ hold. Thus we get $L(\xi, y)=0$, which completes the proof of Proposition 1.

Let L be an S-curvature-like tensor defined by (1.12). Then the Ricci tensor K of L is given by

$$
\begin{align*}
K x= & (\operatorname{tr} B-b) A x+(\operatorname{tr} A-a) B x+2(B A x+A B x) \tag{2.5}\\
& -a(\operatorname{tr} B) \eta(x) \xi-b(\operatorname{tr} A) \eta(x) \xi-2 a b \eta(x) \xi,
\end{align*}
$$

and the scalar curvature of L is given by

$$
\begin{equation*}
\operatorname{tr} K=2 \operatorname{tr} A \operatorname{tr} B+4 \operatorname{tr}(A B)-2(b \operatorname{tr} A+a \operatorname{tr} B)-2 a b, \tag{2.6}
\end{equation*}
$$

where a and b are constants defined by $a=\langle\xi, A \xi\rangle$ and $b=\langle\xi, B \xi\rangle$. As special cases of Proposition 1, we obtain the following examples:

Example 1. Take $A=(c / 2) I, B=I$, where c is a constant. Then L is given by

$$
L(x, y)=c\{x \Delta y+\phi x \Lambda \phi y+2\langle x, \phi y\rangle \phi\} .
$$

The Ricci tensor and the scalar curvature are

$$
K x=2(n+1) c\{x-\eta(x) \xi\}, \quad \operatorname{tr} K=4 n(n+1) c
$$

And the ϕ-sectional curvature $k(P)$ for all ϕ-invariant planes P in V is identically equal to $4 c$. Conversely, if $L \in \mathscr{L}(V)$ has constant ϕ-sectional curvature, say, $4 c$, then it is of the above form (Ogiue [5]).

Example 2. Take $B=I$ and a symmetric endomorphism A which commutes with ϕ. Then L is given by

$$
\begin{aligned}
L(x, y)= & A x \Lambda y+x \Lambda A y+\phi A x \Lambda \phi y+\phi x \Lambda \phi A y \\
& +2\langle A x, \phi y\rangle \phi+2\langle x, \phi y\rangle \phi A
\end{aligned}
$$

The Ricci tensor K and the scalar curvature are

$$
\begin{aligned}
K x & =2(n+2)(A x-a \eta(x) \xi)+(\operatorname{tr} A-a)(x-\eta(x) \xi), \\
\operatorname{tr} K & =4(n+1)(\operatorname{tr} A-a) .
\end{aligned}
$$

Lemma 1. Let L be an S-curvature-like tensor, and let K be the Ricci tensor of L, then we have the following identities:

$$
\begin{equation*}
\langle L(x, y) z, w\rangle=0 \tag{2.7}
\end{equation*}
$$

if at least one of x, y, z, and w is equal to ξ;

$$
\begin{align*}
& K \xi=0 \tag{2.8}\\
& K \phi=\phi K \tag{2.9}
\end{align*}
$$

And if $\left\{e_{1}, \cdots, e_{2 n+1}\right\}$ is an orthonormal basis of V, then

$$
\begin{align*}
2\langle L(x, y) v, u\rangle & =\sum_{i, j}\left\langle L(x, y) e_{j}, e_{i}\right\rangle\left\langle(u \Lambda v) e_{j}, e_{i}\right\rangle \tag{2.10}\\
& =\sum_{i, j}\left\langle L(x, y) e_{j}, e_{i}\right\rangle\left\langle(\phi u \Lambda \phi) e_{j}, e_{i}\right\rangle
\end{align*}
$$

We make use of these formulas for the proof of Propositions 2 and 3.
Proof of Proposition 2. It is sufficient to show that $\mathscr{L}_{1}^{1}(V)$ consists of all $L \in \mathscr{L}(V)$ whose scalar curvature is $0 . \quad L^{\prime} \in \mathscr{L}_{1}(V)$ can be expressed by definition of $\mathscr{L}_{1}(V)$ as follows

$$
\begin{aligned}
L^{\prime}(x, y) z= & c\{(x \Lambda y) z-\eta(z)(\eta(y) x-\eta(x) y) \\
& -\xi(\langle z, y\rangle \eta(x)-\langle z, x\rangle \eta(y))+(\phi x \Lambda \phi y) z+2\langle x, \phi y\rangle \phi z\}
\end{aligned}
$$

Let $\left\{e_{1}, \cdots, e_{2 n+1}\right\}$ be an orthonormal basis of V, then

$$
\begin{align*}
\left\langle L^{\prime}\left(e_{k}, e_{m}\right) e_{j}, e_{i}\right\rangle= & c\left\{\left\langle\left(e_{k} \Lambda e_{m}\right) e_{j}, e_{i}\right\rangle\right. \tag{2.11}\\
& -\left\langle\eta\left(e_{j}\right)\left(\eta\left(e_{m}\right) e_{k}-\eta\left(e_{k}\right) e_{m}\right), e_{i}\right\rangle \\
& -\left\langle\xi, e_{i}\right\rangle\left(\left\langle e_{j}, e_{m}\right\rangle \eta\left(e_{k}\right)-\left\langle e_{j}, e_{k}\right\rangle \eta\left(e_{m}\right)\right) \\
& \left.+\left\langle\left(\phi e_{k} \Lambda \phi e_{m}\right) e_{j}, e_{i}\right\rangle+2\left\langle e_{k}, \phi e_{m}\right\rangle\left\langle\phi e_{j}, e_{i}\right\rangle\right\} .
\end{align*}
$$

Let L be an S-curvature-like tensor.
From (2.7) follows

$$
\begin{align*}
\sum_{i, j, k, m} & \left\langle L\left(e_{k}, e_{m}\right) e_{j}, e_{i}\right\rangle\left\{\left\langle\eta\left(e_{j}\right)\left(\eta\left(e_{m}\right) e_{k}-\eta\left(e_{k}\right) e_{m}\right), e_{i}\right\rangle\right. \tag{2.12}\\
& \left.+\left\langle\xi, e_{i}\right\rangle\left(\left\langle e_{j}, e_{m}\right\rangle \eta\left(e_{k}\right)-\left\langle e_{j}, e_{k}\right\rangle \eta\left(e_{m}\right)\right)\right\}=0 .
\end{align*}
$$

From (2.10) follows

$$
\begin{align*}
\sum_{i, j, k, m} & \left\langle L\left(e_{k}, e_{m}\right) e_{j}, e_{i}\right\rangle\left\{\left\langle\left(e_{k} \Lambda e_{m}\right) e_{j}, e_{i}\right\rangle+\left\langle\left(\phi e_{k} \Lambda \phi e_{m}\right) e_{j}, e_{i}\right\rangle\right\} \tag{2.13}\\
& \left.=4 \sum_{k, m}\left\langle L\left(e_{k}, e_{m}\right) e_{m}, e_{k}\right\rangle=4 \text { (scalar curvature of } L\right)
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\sum_{i, j, k, m} & \left\langle L\left(e_{k}, e_{m}\right) e_{j}, e_{i}\right\rangle\left\langle e_{k}, \phi e_{m}\right\rangle\left\langle\phi e_{j}, e_{i}\right\rangle \tag{2.14}\\
& =\sum_{m, j}\left\langle L\left(\phi e_{m}, e_{m}\right) e_{j}, \phi e_{j}\right\rangle \\
& =-\sum_{m, j}\left(\left\langle L\left(e_{m}, e_{j}\right) \phi e_{m}, \phi e_{j}\right\rangle+\left\langle L\left(e_{j}, \phi e_{m}\right) e_{m}, \phi e_{j}\right\rangle\right) \\
& =\sum_{m, j}\left(\left\langle L\left(e_{j}, e_{m}\right) \phi e_{m}, \phi e_{j}\right\rangle+\left\langle L\left(e_{j}, \phi e_{m}\right) \phi e_{m}, e_{j}\right\rangle\right) \\
& =\sum_{m, j}\left\langle L\left(e_{j}, e_{m}\right) e_{m}, e_{j}\right\rangle+\sum_{m}\left\langle K \phi e_{m}, \phi e_{m}\right\rangle \\
& =\sum_{m, j}\left\langle L\left(e_{j}, e_{m}\right) e_{m}, e_{j}\right\rangle+\sum_{m}\left\langle K e_{m}, e_{m}\right\rangle \\
& =2 \text { (scalar curvature of } L) .
\end{align*}
$$

From (2.11), (2.12), (2.13), and (2.14) we get

$$
\begin{aligned}
\left\langle L, L^{\prime}\right\rangle & =\sum_{i, j, k, m}\left\langle L\left(e_{k}, e_{m}\right) e_{j}, e_{i}\right\rangle\left\langle L^{\prime}\left(e_{k}, e_{m}\right) e_{j}, e_{i}\right\rangle \\
& =8 c \text { (scalar curvature of } L) .
\end{aligned}
$$

This proves our assertion.
Proof of Proposition 3. By Examples 1 and 2 we can show easily that tensors L_{1}, L_{B}, and L_{2} belong, respectively, to $\mathscr{L}_{1}(V), \mathscr{L}_{B}(V)$, and $\mathscr{L}_{1}^{1}(V)$. So it is sufficient to show that tensor L_{2} is orthogonal to $\mathscr{L}_{B}(V)$. Since $L_{I, I}$ is orthogonal to $\mathscr{L}_{B}(V)$, we have only to show that $L_{K, I}$ is orthogonal to $\mathscr{L}_{B}(V)$. Let L^{\prime} be a tensor which belongs to $\mathscr{L}_{B}(V)$. Making use of (2.7) and (2.10), we get

$$
\begin{align*}
\sum_{k, m, j, i} & \left\langle L^{\prime}\left(e_{k}, e_{m}\right) e_{j}, e_{i}\right\rangle\left\{\left\langle\left(K e_{k} \Delta e_{m}\right) e_{j}, e_{i}\right\rangle+\left\langle\left(\phi K e_{k} \Lambda \phi e_{m}\right) e_{j}, e_{i}\right\rangle\right\} \tag{2.15}\\
& =\sum_{k, m, j, i}\left\langle L^{\prime}\left(e_{k}, e_{m}\right) e_{j}, e_{i}\right\rangle\left\{\left\langle\left(K e_{k} \Lambda e_{m}\right) e_{j}, e_{i}\right\rangle+\left\langle\left(\phi K e_{k} \Lambda \phi e_{m}\right) e_{j}, e_{i}\right\rangle\right\} \\
& =4 \sum_{k, m}\left\langle L^{\prime}\left(e_{k}, e_{m}\right) e_{m}, K e_{k}\right\rangle=0 ;
\end{align*}
$$

$$
\begin{align*}
\sum_{k, m, j, i} & \left\langle L^{\prime}\left(e_{k}, e_{m}\right) e_{j}, e_{i}\right\rangle\left\{\left\langle\left(e_{k} \Delta K e_{m}\right) e_{j}, e_{i}\right\rangle+\left\langle\left(\phi e_{k} \Lambda \phi K e_{m}\right) e_{j}, e_{i}\right\rangle\right\} \tag{2.16}\\
& =0
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\sum_{k, m, j, i} & \left\langle L^{\prime}\left(e_{k}, e_{m}\right) e_{j}, e_{i}\right\rangle\left\langle K e_{k}, \phi e_{m}\right\rangle\left\langle\phi e_{j}, e_{i}\right\rangle \tag{2.17}\\
& =\sum_{m, j}\left\langle L^{\prime}\left(K \phi e_{m}, e_{m}\right) e_{j}, \phi e_{j}\right\rangle \\
& =-\sum_{m, j}\left(\left\langle L^{\prime}\left(e_{m}, e_{j}\right) K \phi e_{m}, \phi e_{j}\right\rangle+\left\langle L^{\prime}\left(e_{j}, K \phi e_{m}\right) e_{m}, \phi e_{j}\right\rangle\right) \\
& =-\sum_{m, j}\left(\left\langle L^{\prime}\left(e_{m}, e_{j}\right) K e_{m}, e_{j}\right\rangle-\left\langle L^{\prime}\left(e_{j}, K \phi e_{m}\right) \phi e_{m}, e_{j}\right\rangle\right) \\
& =\sum_{m, j}\left(\left\langle K e_{m}, L^{\prime}\left(e_{m}, e_{j}\right) e_{j}\right\rangle+\left\langle\phi e_{m}, L^{\prime}\left(K \phi e_{m}, e_{j}\right) e_{j}\right\rangle\right)=0 ; \\
& \sum_{k, m, j, i}\left\langle L^{\prime}\left(e_{k}, e_{m}\right) e_{j}, e_{i}\right\rangle\left\langle e_{k}, \phi e_{m}\right\rangle\left\langle\phi K e_{j}, e_{i}\right\rangle=0 . \tag{2.18}
\end{align*}
$$

From (2.15), (2.16), (2.17), and (2.18) we get

$$
\left\langle L^{\prime}, L_{K, I}\right\rangle=0 .
$$

This proves our assertion.
Example 3. Corresponding to Example 1 we consider

$$
L=f L_{I, I}
$$

where f is a (differentiable) function. If $\operatorname{dim} M \geqq 5, L$ is proper if and only if f is a constant function.

Lemma 2. Let L be a proper generalized S-curvature-like tensor field on M and let K be its Ricci tensor field. Then we have the following formulas:

$$
\begin{align*}
\left\langle\left(\nabla_{\phi X} K\right) \phi Y, Z\right\rangle= & -\left\langle\left(\nabla_{Y} K\right) Z, X\right\rangle+\left\langle\left(\nabla_{Z} K\right) X, Y\right\rangle \tag{2.19}\\
- & \eta(Y)\langle K \phi X, Z\rangle+2 \eta(X)\langle K \phi Z, Y\rangle ; \\
& \nabla_{\xi} K=0 ; \tag{2.20}
\end{align*}
$$

$$
\begin{equation*}
\text { trace of }\left\{X \mapsto\left(\nabla_{X} K\right) Y\right\}=\frac{1}{2} Y(\operatorname{tr} K) \tag{2.21}
\end{equation*}
$$

Proof. (2.20) follows directly from (2.19): If we put $Y=\xi$ in (2.19), then we have

$$
-\left\langle\left(\nabla_{\xi} K\right) Z, X\right\rangle+\left\langle X,\left(\nabla_{Z} K\right) \xi\right\rangle+\langle X, K \phi Z\rangle=0
$$

From $K \xi=0$ follows

$$
\begin{equation*}
\left(\nabla_{Z} K\right) \xi=-K\left(\nabla_{Z} \xi\right)=-K \phi Z \tag{2.22}
\end{equation*}
$$

Therefore we get $\nabla_{\xi} K=0$. (2.21) is proved in [4]. We shall prove (2.19). Let $\left\{e_{1}, \cdots, e_{2 n+1}\right\}$ be an orthonormal basis of the tangent space $T_{p}(M)$ at a point $p \in M$. We see

$$
\begin{aligned}
\langle K Y, Z\rangle & =\sum_{i}\left\langle L\left(Y, e_{i}\right) e_{i}, Z\right\rangle=\sum_{i}\left\langle L\left(\phi Y, \phi e_{i}\right) e_{i}, Z\right\rangle \\
& =-\sum_{i}\left\langle L\left(\phi Y, \phi e_{i}\right) Z, e_{i}\right\rangle \\
& =-\sum_{i}\left\langle\left(L e_{i}, \phi Z\right) \phi Y, e_{i}\right\rangle+\sum_{i}\left\langle\phi L(Z, \phi Y) e_{i}, e_{i}\right\rangle \\
& =-\langle K \phi Z, \phi Y\rangle+\sum_{i}\left\langle\phi L(Z, \phi Y) e_{i}, e_{i}\right\rangle \\
& =-\langle K Z, Y\rangle+\sum_{i}\left\langle\phi L(Z, \phi Y) e_{i}, e_{i}\right\rangle .
\end{aligned}
$$

Thus we get

$$
\begin{equation*}
\langle K Y, Z\rangle=\frac{1}{2} \sum_{i}\left\langle\phi L(Z, \phi Y) e_{i}, e_{i}\right\rangle \tag{2.23}
\end{equation*}
$$

From this equation follows

$$
\begin{aligned}
\left\langle\left(\nabla_{X} K\right) Y, Z\right\rangle= & \frac{1}{2} \sum_{i}\left\{\left\langle\left(\nabla_{X} \phi\right)\left(L(Z, \phi Y) e_{i}\right), e_{i}\right\rangle+\left\langle\phi\left(\nabla_{X} L\right)(Z, \phi Y) e_{i}, e_{i}\right\rangle\right. \\
& \left.+\left\langle\phi L\left(Z,\left(\nabla_{X} \phi\right) Y\right) e_{i}, e_{i}\right\rangle\right\} \\
= & \frac{1}{2} \sum_{i}\left\langle\phi\left(\nabla_{X} L\right)(Z, \phi Y) e_{i}, e_{i}\right\rangle+\frac{1}{2} \eta(Y) \sum_{i}\left\langle\phi L(Z, X) e_{i}, e_{i}\right\rangle .
\end{aligned}
$$

Replacing Y by ϕY in this, we get

$$
\begin{align*}
\left\langle\left(\nabla_{X} K\right) \phi Y, Z\right\rangle= & -\frac{1}{2} \sum_{i}\left\langle\phi\left(\nabla_{X} L\right)(Z, Y) e_{i}, e_{i}\right\rangle \tag{2.24}\\
& -\frac{1}{2} \sum_{i}\left\langle\phi\left(\nabla_{Z} L\right)(Y, \xi) e_{i}, e_{i}\right\rangle
\end{align*}
$$

From (2.7) follows

$$
\left(\nabla_{z} L\right)(Y, \xi)=-L\left(Y, \nabla_{z} \xi\right)=-L(Y, \phi Z)
$$

Putting this into (2.24) and making use of (2.23), we get

$$
\left\langle\left(\nabla_{X} K\right) \phi Y, Z\right\rangle=-\frac{1}{2} \sum\left\langle\phi\left(\nabla_{X} L\right)(Z, Y) e_{i}, e_{i}\right\rangle-\langle K X, Z\rangle \eta(Y)
$$

Since L is proper, we get

$$
\begin{aligned}
& \left\langle\left(\nabla_{X} K\right) \phi Y, Z\right\rangle+\left\langle\left(\nabla_{Y} K\right) \phi Z, X\right\rangle+\left\langle\left(\nabla_{Z} K\right) \phi X, Y\right\rangle \\
& \quad=-(\eta(Y)\langle K X, Z\rangle+\eta(Z)\langle K Y, X\rangle+\eta(X)\langle K Z, Y\rangle) .
\end{aligned}
$$

Replacing X by ϕX in this, we get

$$
\begin{align*}
& \left\langle\left(\nabla_{\phi X} K\right) \phi Y, Z\right\rangle+\left\langle\left(\nabla_{Y} K\right) \phi Z, \phi X\right\rangle+\left\langle\left(\nabla_{Z} K\right)(-X+\eta(X) \xi), Y\right\rangle \tag{2.25}\\
& \quad=-(\eta(Y)\langle K \phi X, Z\rangle+\eta(Z)\langle K Y, \phi X\rangle)
\end{align*}
$$

From $K \phi=\phi K$ follows

$$
\begin{align*}
\left(\nabla_{Y} K\right) \phi Z & =-K\left(\nabla_{Y} \phi\right) Z+\left(\nabla_{Y} \phi\right) K Z+\dot{\phi}\left(\nabla_{Y} K\right) Z \tag{2.26}\\
& =-\eta(Z) K Y-\langle Y, K Z\rangle \xi+\dot{\phi}\left(\nabla_{Y} K\right) Z
\end{align*}
$$

Putting this and (2.22) into (2.25), we get

$$
\begin{gathered}
\left\langle\left(\nabla_{\phi X} K\right) \phi Y, Z\right\rangle-\eta(Z)\langle K Y, \phi X\rangle+\left\langle\phi\left(\nabla_{Y} K\right) Z, \phi X\right\rangle-\left\langle\left(\nabla_{Z} K\right) X, Y\right\rangle \\
-\eta(X)\langle K \phi Z, Y\rangle=-(\eta(Y)\langle K \phi X, Z\rangle+\eta(Z)\langle K Y, \phi X\rangle)
\end{gathered}
$$

Since $\left\langle\phi\left(\nabla_{Y} K\right) Z, \phi X\right\rangle=\left\langle\left(\nabla_{Y} K\right) Z, X\right\rangle+\eta(X)\langle K \dot{\phi} Y, Z\rangle$, we get (2.19).
Now we can prove Propositions 4 and 5.
Proof of Proposition 4. It is now easy to show that (1.17) follows from (1.16). So we shall prove (1.16) under the assumption that (1.17) holds. Interchanging X and Z in (1.17), we have

$$
\begin{aligned}
\left\langle\left(\nabla_{Y} K\right) Z-\left(\nabla_{Z} K\right) Y, X\right\rangle= & \eta(Y)\langle\phi K Z, X\rangle-\eta(Z)\langle\phi K Y, X\rangle \\
& +2 \eta(X)\langle Y, \phi K Z\rangle .
\end{aligned}
$$

Putting this into (2.19), we get

$$
\left\langle\left(\nabla_{\phi X} K\right) \phi Y, Z\right\rangle=\eta(Z)\langle\phi K Y, X\rangle .
$$

Replacing X and Y in this, respectively, by $-\phi X$ and $-\phi Y$, and making use of (2.20) and (2.22), we get (1.16).

Proof of Proposition 5. From (1.16) we can easily get

$$
\text { trace of }\left\{X \mapsto\left(\nabla_{X} K\right) Y\right\}=0
$$

In view of (2.21), we see

$$
Y(\operatorname{tr} K)=0
$$

which proves our assertion.
Lemma 3. Under the same assumptions as in Proposition 6, we have the following formulas:

$$
\begin{gather*}
\text { trace of }\left\{X \mapsto\left(\nabla_{X} A\right) Y\right\}=0 ; \tag{2.27}\\
\left(\nabla_{Z} A\right) \phi X+\eta(X) A Z=-\langle Z, A X\rangle \xi+\phi\left(\left(\nabla_{Z} A\right) X\right) \tag{2.28}\\
\left(\nabla_{Z} A\right) \xi=-A \phi Z ; \tag{2.29}\\
\left(\nabla_{\phi Y} A\right) \phi X-\left(\nabla_{\phi X} A\right) \phi Y \tag{2.30}\\
=\left(\nabla_{Y} A\right) X-\left(\nabla_{X} A\right) Y+(A \phi Y) \eta X-(A \phi X) \eta Y
\end{gather*}
$$

$$
\begin{equation*}
\nabla_{\xi} A=0 ; \tag{2.31}
\end{equation*}
$$

$$
\begin{gather*}
\text { trace of }\left\{Z \mapsto \phi\left(\nabla_{Z} A\right) X\right\}=(\operatorname{tr} A) \eta(X) ; \tag{2.32}\\
\sum_{i} \phi\left(\left(\nabla_{e_{i}} A\right) e_{i}\right)=0 \tag{2.33}\\
\operatorname{tr}\left(\phi\left(\nabla_{Z} A\right)\right)=0 \tag{2.34}
\end{gather*}
$$

Proof. Let K be the Ricci tensor of L, then from Example 2 we get

$$
\begin{gather*}
K X=2(n+2) A X+\operatorname{tr} A(X-\eta(X) \xi) ; \tag{2.35}\\
\operatorname{tr} K=4(n+1) \operatorname{tr} A \tag{2.36}
\end{gather*}
$$

From (2.35) follows

$$
\begin{align*}
\left(\nabla_{X} K\right) Y & =2(n+2)\left(\nabla_{X} A\right) Y-\operatorname{tr} A\left(\left(\nabla_{X} \eta\right)(Y) \xi+\eta(Y) \nabla_{X} \xi\right) \tag{2.37}\\
& =2(n+2)\left(\nabla_{X} A\right) Y-\operatorname{tr} A(\langle Y, \phi X\rangle \xi+\eta(Y) \phi X)
\end{align*}
$$

Therefore

$$
\text { trace of } \begin{aligned}
\left\{X \mapsto\left(\nabla_{X} A\right) Y\right\} & =\frac{1}{2(n+2)} \text { trace of }\left\{X \mapsto\left(\nabla_{X} K\right) Y\right\} \\
& =\frac{1}{4(n+2)} Y(\operatorname{tr} K)
\end{aligned}
$$

the second identity of which comes from (2.21). We see by (2.36) that $\operatorname{tr} K$ is constant. So we get (2.27). Making use of (2.35) and (2.37), we can rewrite the formula (2.19) into the following:

$$
\begin{aligned}
\left\langle\left(\nabla_{\phi X} A\right) \phi Y, Z\right\rangle= & -\left\langle\left(\nabla_{Y} A\right) Z, X\right\rangle+\left\langle\left(\nabla_{Z} A\right) X, Y\right\rangle \\
& -\eta(Y)\langle A \phi X, Z\rangle+2 \eta(X)\langle A \phi Z, Y\rangle .
\end{aligned}
$$

From this (2.30) follows directly. (2.28), (2.29), and (2.31) can be proved in the same way, respectively, as (2.26), (2.22), and (2.20). (2.32) follows directly from (2.27) and (2.28). Since $\left\langle X, \phi\left(\nabla_{W} A\right) Z\right\rangle=-\left\langle\left(\nabla_{W} A\right) \phi X, Z\right\rangle$, we get (2.33) by virtue of (2.27). Let $\left\{E_{i}\right\}$ be locally defined parallel orthonormal fields. Then

$$
\sum_{i}\left\langle E_{i}, \phi\left(\nabla_{z} A\right) E_{i}\right\rangle=\sum_{i}\left(\nabla_{z}\left\langle E_{i}, \phi A E_{i}\right\rangle-\left\langle E_{i},\left(\nabla_{z} \phi\right) A E_{i}\right\rangle\right)=0
$$

which proves (2.34).
Proof of Proposition 6. By the definition of L, we see

$$
\begin{aligned}
L(X, Y) W= & \langle W, Y\rangle A X-\langle W, A X\rangle Y-\eta(W) \eta(Y) A X+\langle W, A X\rangle \eta(Y) \xi \\
& +\langle W, A Y\rangle X-\langle W, X\rangle A Y+\eta(W) \eta(X) A Y \\
& -\xi\langle W, A Y\rangle \eta(X)+\langle W, \phi Y\rangle \phi A X-\langle W, \phi A X\rangle \phi Y
\end{aligned}
$$

$$
\begin{aligned}
& +\langle W, \phi A Y\rangle_{\phi} X-\langle W, \phi X\rangle \phi A Y \\
& +2\langle A X, \phi Y\rangle_{\phi} W+2\langle X, \phi Y\rangle \phi A W
\end{aligned}
$$

From this follows

$$
\begin{aligned}
\left(\nabla_{z} L\right. & (X, Y) W=\langle W, Y\rangle\left(\nabla_{Z} A\right) X-\left\langle W,\left(\nabla_{z} A\right) X\right\rangle Y \\
& -\left(\nabla_{z} \eta\right)(W) \eta(Y) A X-\eta(W)\left(\left(\nabla_{z} \eta\right)(Y) A X+\eta(Y)\left(\nabla_{z} A\right) X\right) \\
& +\langle W, A X\rangle \eta(Y) \nabla_{z} \xi+\left(\left\langle W,\left(\nabla_{z} A\right) X\right\rangle \eta(Y)+\langle W, A X\rangle\left(\nabla_{z} \eta\right)(Y)\right) \xi \\
& +\left\langle W,\left(\nabla_{z} A\right) Y\right\rangle X-\langle W, X\rangle\left(\nabla_{z} A\right) Y \\
& +\left(\nabla_{z} \eta\right)(W) \eta(X) A Y+\eta(W)\left(\left(\nabla_{z} \eta\right) A Y+\eta(X)\left(\nabla_{z} A\right) Y\right) \\
& -\langle W, A Y\rangle \eta(X) \nabla_{z} \xi-\left(\left\langle W,\left(\nabla_{z} A\right) Y\right\rangle \eta(X)+\langle W, A Y\rangle\left(\nabla_{z} \eta\right)(X)\right) \xi \\
& +\left\langle W,\left(\nabla_{z} \phi\right) Y\right\rangle \phi A X+\langle W, \phi Y\rangle\left(\nabla_{z} \phi\right) A X+\langle W, \phi Y\rangle \phi\left(\nabla_{z} A\right) X \\
& -\left\langle W,\left(\nabla_{z} \phi\right) A X\right\rangle \phi Y-\left\langle W, \phi\left(\nabla_{z} A\right) X\right\rangle \phi Y-\langle W, \phi A X\rangle\left(\nabla_{z} \phi\right) Y \\
& +\left\langle W,\left(\nabla_{z} \phi\right) A Y\right\rangle \phi X+\left\langle W, \phi\left(\nabla_{z} A\right) Y\right\rangle \phi X+\langle W, \phi A Y\rangle\left(\nabla_{z} \phi\right) X \\
& -\left\langle W,\left(\nabla_{z} \phi\right) X\right\rangle \phi A Y-\langle W, \phi X\rangle\left(\nabla_{z} \phi\right) A Y-\langle W, \phi X\rangle \phi\left(\nabla_{z} A\right) Y \\
& +2\left\langle\left(\nabla_{z} A\right) X, \phi Y\right\rangle \phi W+2\left\langle A X,\left(\nabla_{z} \phi\right) Y\right\rangle \phi W+2\langle A X, \phi Y\rangle\left(\nabla_{z} \phi\right) W \\
& +2\left\langle X,\left(\nabla_{z} \phi\right) Y\right\rangle \phi A W+2\langle X, \phi Y\rangle\left(\nabla_{z} \phi\right) A W+2\langle X, \phi Y\rangle \phi\left(\nabla_{z} A\right) W .
\end{aligned}
$$

Applying (1.14) and (1.15) to this, we obtain

$$
(2.38) \quad\left(\nabla_{Z} L\right)(X, Y) W=\langle W, Y\rangle\left(\nabla_{Z} A\right) X-\left\langle W,\left(\nabla_{Z} A\right) X\right\rangle Y
$$

$$
-\langle W, \phi Z\rangle \eta(Y) A X-\eta(W)\left(\langle Y, \phi Z\rangle A X+\eta(Y)\left(\nabla_{Z} A\right) X\right)
$$

$$
+\langle W, A X\rangle \eta(Y) \phi Z+\left(\left\langle W,\left(\nabla_{Z} A\right) X\right\rangle \eta(Y)+\langle W, A X\rangle\langle Y, \phi Z\rangle\right) \xi
$$

$$
+\left\langle W,\left(\nabla_{Z} A\right) Y\right\rangle X-\langle W, X\rangle\left(\nabla_{Z} A\right) Y
$$

$$
+\langle W, \phi Z\rangle \eta(X) A Y+\eta(W)\left(\langle X, \phi Z\rangle A Y+\eta(X)\left(\nabla_{Z} A\right) Y\right)
$$

$$
-\langle W, A Y\rangle \eta(X) \phi Z-\left(\left\langle W,\left(\nabla_{Z} A\right) Y\right\rangle \eta(X)+\langle W, A Y\rangle\langle X, \phi Z\rangle\right) \xi
$$

$$
+\langle W, \eta(Y) Z-\langle Z, Y\rangle \xi\rangle \phi A X-\langle W, \phi Y\rangle\langle Z, A X\rangle \xi+\langle W, \phi Y\rangle_{\phi}\left(\nabla_{z} A\right) X
$$

$$
+\langle W,\langle Z, A X\rangle \xi\rangle \phi Y-\left\langle W, \phi\left(\nabla_{Z} A\right) X\right\rangle \phi Y-\langle W, \phi A X\rangle(\eta(Y) Z-\langle Z, Y\rangle \xi)
$$

$$
-\langle W,\langle Z, A Y\rangle \xi\rangle \phi X+\left\langle W, \phi\left(\nabla_{Z} A\right) Y\right\rangle \phi X+\langle W, \phi A Y\rangle(\eta(X) Z-\langle Z, X\rangle \xi)
$$

$$
-\langle W, \eta(X) Z-\langle Z, X\rangle \xi\rangle \phi A Y+\langle W, \phi X\rangle\langle Z, A Y\rangle \xi-\langle W, \phi X\rangle \phi\left(\nabla_{Z} A\right) Y
$$

$$
+2\left\langle\left(\nabla_{Z} A\right) X, \phi Y\right\rangle \phi W+2\langle A X, \eta(Y) Z\rangle_{\phi} W+2\langle A X, \phi Y\rangle(\eta(W) Z-\langle Z, W\rangle \xi)
$$

$$
+2\langle X, \eta(Y) Z-\langle Z, Y\rangle \xi\rangle \phi A W-2\langle X, \phi Y\rangle\langle Z, A W\rangle \xi+2\langle X, \phi Y\rangle \phi\left(\nabla_{Z} A\right) W
$$

Making use of (2.27), (2.31), (2.32), (2.33), and (2.38), we get
(2.29)

$$
\begin{aligned}
\sum_{i}\left(\nabla_{e_{i}} L\right)(X, Y) e_{i}= & \left(\nabla_{Y} A\right) X-\left(\nabla_{X} A\right) Y+2(2 n+3)\langle Y, \phi A X\rangle \xi \\
& +2(n+2) \eta(Y) \phi A X-2(n+1) \eta(X) \phi A Y \\
& +\phi\left(\left(\nabla_{\phi Y} A\right) X\right)-\dot{\phi}\left(\left(\nabla_{\phi X} A\right) Y\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\operatorname{tr} A(\eta(Y) \phi X-\eta(X) \phi Y)-2\langle X, \phi Y\rangle(\operatorname{tr} A) \xi \\
& +2 \sum_{i}\left\langle\left(\nabla_{e_{i}} A\right) X, \phi Y\right\rangle \phi e_{i} .
\end{aligned}
$$

Making use of (2.38) and (2.34), we get

$$
\begin{aligned}
\sum_{i}\left(\nabla_{z} L\right)\left(X, e_{i}\right) e_{i}= & (2 n+1)\left(\nabla_{z} A\right) X-3\left(\nabla_{Z} A\right) X+\left\langle\xi,\left(\nabla_{Z} A\right) X\right\rangle \xi \\
& -5\langle\phi Z, A X\rangle \xi-2 \eta(X) \phi A Z+\eta(X)\left(\nabla_{Z} A\right) \xi \\
& -(\operatorname{tr} A) \eta(X) \phi Z-\operatorname{tr} A\langle X, \phi Z\rangle \xi-3 \phi^{2}\left(\nabla_{Z} A\right) X \\
& -3 \phi\left(\left(\nabla_{Z} A\right) \phi X\right)
\end{aligned}
$$

Applying (2.29) to this, we get

$$
\begin{gather*}
\sum_{i}\left(\nabla_{Z} L\right)\left(X, e_{i}\right) e_{i}=(2 n+1)\left(\nabla_{Z} A\right) X-3\langle A X, \phi Z\rangle \xi-3 \eta(X) \phi A Z \tag{2.40}\\
-(\operatorname{tr} A) \eta(X) \phi Z-\operatorname{tr} A\langle X, \phi Z\rangle \xi-3 \phi\left(\left(\nabla_{Z} A\right) \phi X\right)
\end{gather*}
$$

Since L is proper, we see

$$
\begin{equation*}
\sum_{i}\left(\nabla_{e_{i}} L\right)(X, Y) e_{i}=-\sum_{i}\left(\nabla_{X} L\right)\left(Y, e_{i}\right) e_{i}+\sum_{i}\left(\nabla_{Y} L\right)\left(X, e_{i}\right) e_{i} \tag{2.41}
\end{equation*}
$$

On the basis of (2.39), (2.40), and (2.41), we obtain

$$
\begin{align*}
& 2 n\left\{\left(\nabla_{Y} A\right) X-\left(\nabla_{X} A\right) Y\right\}=\phi\left(\left(\nabla_{\phi Y} A\right) X\right)-\phi\left(\left(\nabla_{\phi X} A\right) Y\right) \tag{2.42}\\
& \quad+3 \phi\left(\left(\nabla_{Y} A\right) \phi X-\left(\nabla_{X} A\right) \phi Y\right)+4 n\langle Y, \phi A X\rangle \xi+(2 n+1) \eta(Y) \phi A X \\
& \quad-(2 n-1) \eta(X) \phi A Y+2 \sum_{i}\left\langle\left(\nabla_{e_{i}} A\right) X, \phi Y\right\rangle \phi e_{i} .
\end{align*}
$$

By virtue of (2.28) and (2.29), we get

$$
\begin{aligned}
\phi\left(\left(\nabla_{\phi Y} A\right) X\right)-\phi\left(\left(\nabla_{\phi X} A\right) Y\right)= & \left(\nabla_{\phi Y} A\right) \phi X-\left(\nabla_{\phi X} A\right) \phi Y \\
& +\eta(X) A \phi Y-\eta(Y) A \phi X+2\langle\phi Y, A X\rangle \xi ; \\
\phi\left(\left(\nabla_{Y} A\right) \phi X\right)-\phi\left(\left(\nabla_{X} A\right) \phi Y\right)= & \eta(Y) \phi A X-\eta(X) \phi A Y \\
& +\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X+2\langle A Y, \phi X\rangle \xi
\end{aligned}
$$

Putting these two formulas into (2.42), we get

$$
\begin{aligned}
(2 n+3) & \left\{\left(\nabla_{Y} A\right) X-\left(\nabla_{X} A\right) Y\right\}=\left(\nabla_{\phi Y} A\right) \phi X-\left(\nabla_{\phi X} A\right) \phi Y \\
& +(2 n+3) \eta(Y) \phi A X-(2 n+1) \eta(X) \phi A Y \\
& +4(n+1)\langle Y, \phi A X\rangle \xi+2 \sum_{i}\left\langle\left(\nabla_{e_{i}} A\right) X, \phi Y\right\rangle \phi e_{i} .
\end{aligned}
$$

Putting (2.30) into this, we obtain

$$
\begin{gathered}
(n+1)\left\{\left(\nabla_{Y} A\right) X-\left(\nabla_{X} A\right) Y\right\}=-n \eta(X) \phi A Y+(n+1) \eta(Y) \phi A X \\
+2(n+1)\langle Y, \phi A X\rangle \xi+\sum_{i}\left\langle\left(\nabla_{e_{i}} A\right) X, \phi Y\right\rangle \phi e_{i}
\end{gathered}
$$

that is,

$$
\begin{align*}
& (n+1)\left\langle Z,\left(\nabla_{Y} A\right) X-\left(\nabla_{X} A\right) Y\right\rangle=-n \eta(X)\langle\phi A Y, Z\rangle \tag{2.43}\\
& \quad+(n+1) \eta(Y)\langle\phi A X, Z\rangle+2(n+1) \eta(Z)\langle Y, \phi A X\rangle-\left\langle\left(\nabla_{\phi Z} A\right) X, \phi Y\right\rangle
\end{align*}
$$

We see easily

$$
\begin{aligned}
& \sigma\left\langle Z,\left(\nabla_{Y} A\right) X-\left(\nabla_{X} A\right) Y\right\rangle=0 ; \\
& \sigma(-n \eta(X)\langle\phi A Y, Z\rangle+(n+1) \eta(Y)\langle\phi A X, Z\rangle \\
& \quad+2(n+1) \eta(Z)\langle Y, \phi A X\rangle)=\sigma(\eta(X)\langle\phi A Y, Z\rangle) .
\end{aligned}
$$

By virtue of these two formulas and (2.43), we obtain

$$
0=-\sigma(\eta(Y)\langle A \phi X, Z\rangle)-\sigma\left(\left\langle\left(\nabla_{\phi Z} A\right) X, \phi Y\right\rangle\right)
$$

that is,

$$
\begin{align*}
& \left\langle\left(\nabla_{\phi Y} A\right) \phi X, Z\right\rangle-\left\langle\phi\left(\left(\nabla_{\phi X} A\right) Y\right), Z\right\rangle=-\left\langle\left(\nabla_{\phi Z} A\right) X, \phi Y\right\rangle \tag{2.44}\\
& \quad-(\eta(Y)\langle A \phi X, Z\rangle+\eta(Z)\langle A \phi Y, X\rangle+\eta(X)\langle A \phi Z, Y\rangle) .
\end{align*}
$$

Replacing X and Z in (2.28), respectively, with Y and ϕX, we get

$$
\left(\nabla_{\phi X} A\right) \phi Y=-\eta(Y) A \phi X-\langle\phi X, A Y\rangle \xi+\phi\left(\left(\nabla_{\phi X} A\right) Y\right) .
$$

Putting this into (2.30), we get

$$
\begin{aligned}
\left(\nabla_{\phi Y} A\right) \phi X-\phi\left(\left(\nabla_{\phi X} A\right) Y\right)= & -2 \eta(Y) A \phi X-\langle\phi X, A Y\rangle \xi+\eta(X) A \phi Y \\
& +\left(\nabla_{Y} A\right) X-\left(\nabla_{X} A\right) Y .
\end{aligned}
$$

Putting this into (2.44), we get

$$
\begin{aligned}
-\left\langle\left(\nabla_{\phi Z} A\right) X, \phi Y\right\rangle= & \left\langle\left(\nabla_{Y} A\right) X-\left(\nabla_{X} A\right) Y, Z\right\rangle \\
& -2 \eta(Z)\langle\phi X, A Y\rangle-\eta(Y)\langle A \phi X, Z\rangle .
\end{aligned}
$$

Putting this into (2.43), we get

$$
\begin{aligned}
\left\langle\left(\nabla_{Y} A\right) X-\left(\nabla_{X} A\right) Y, Z\right\rangle= & -\eta(X)\langle\phi A Y, Z\rangle+\eta(Y)\langle\phi A X, Z\rangle \\
& +2 \eta(Z)\langle Y, \phi A X\rangle,
\end{aligned}
$$

which proves our assertion.
Proof of Proposition 7. By virtue of (1.19), we can easily prove

$$
\begin{aligned}
& -\eta(W) \eta(Y)\left(\nabla_{z} A\right) X+\xi\left\langle W,\left(\nabla_{z} A\right) X\right\rangle \eta(Y)+\eta(W) \eta(X)\left(\nabla_{z} A\right) Y \\
& \quad-\left\langle W,\left(\nabla_{z} A\right) Y\right\rangle \eta(X) \xi=0 .
\end{aligned}
$$

The following formulas can be proved easily:

$$
\begin{aligned}
& \sigma(\langle W, A X\rangle\langle Y, \phi Z\rangle-\langle W, A Y\rangle\langle X, \phi Z\rangle-2\langle X, \phi Y\rangle\langle A W, Z\rangle)=0 ; \\
& \sigma(-\langle W,\langle Z, Y\rangle \xi\rangle \phi A X+\langle W,\langle X, Z\rangle \xi\rangle \phi A Y)=0 ; \\
& \sigma(-\langle W, \phi Y\rangle\langle A X, Z\rangle+\langle W, \phi X\rangle\langle A Y, Z\rangle)=0 ; \\
& \sigma(\langle W,\langle A X, Z\rangle \xi\rangle \phi Y-\langle W,\langle A Y, Z\rangle \xi\rangle \phi X)=0 ;
\end{aligned}
$$

$$
\begin{aligned}
& \sigma(\langle W, \phi A X\rangle\langle Y, Z\rangle-\langle W, \phi A Y\rangle\langle X, Z\rangle)=0 ; \\
& \sigma(\langle X, \eta(Y) Z-\langle Y, Z\rangle \xi\rangle)=0
\end{aligned}
$$

where σ denotes the cyclic sum over X, Y, and Z. Applying these formulas to the cyclic sum of (2.38) over X, Y, and Z, we obtain

$$
\begin{align*}
& \sigma\left(\left(\nabla_{z} L\right)(X, Y) W\right) \tag{2.45}\\
& =\sigma\left(\langle W, Y\rangle\left(\nabla_{Z} A\right) X-\left\langle W,\left(\nabla_{Z} A\right) X\right\rangle Y-\langle W, \phi Z\rangle \eta(Y) A X\right. \\
& -\eta(W)\langle Y, \phi \boldsymbol{Z}\rangle A X+\langle W, A X\rangle \eta(Y) \phi Z \\
& +\left\langle W,\left(\nabla_{Z} A\right) Y\right\rangle X-\langle W, X\rangle\left(\nabla_{Z} A\right) Y \\
& +\langle W, \phi Z\rangle \eta(X) A Y+\eta(W)\langle X, \phi Z\rangle A Y \\
& -\langle W, A Y\rangle \eta(X) \phi Z+\langle W, \eta(Y) Z\rangle_{\phi} A X \\
& +\langle W, \phi Y\rangle \phi\left(\left(\nabla_{Z} A\right) X\right)-\left\langle W, \phi\left(\nabla_{Z} A\right) X\right\rangle \phi Y-\langle W, \phi A X\rangle \eta(Y) Z \\
& +\left\langle W, \phi\left(\nabla_{Z} A\right) Y\right\rangle \phi X+\langle W, \phi A Y\rangle \eta(X) Z \\
& -\langle W, \eta(X) Z\rangle \phi A Y-\langle W, \phi X\rangle \phi\left(\left(\nabla_{Z} A\right) Y\right) \\
& +2\left\langle\left(\nabla_{Z} A\right) X, \phi Y\right\rangle_{\phi} W+2\langle A X, \eta(Y) Z\rangle_{\phi} W \\
& +2\langle A X, \phi Y\rangle(\eta(W) Z-\langle Z, W\rangle \xi) \\
& \left.+2\langle X, \phi Y\rangle \phi\left(\left(\nabla_{Z} A\right) W\right)\right) .
\end{align*}
$$

By virtue of (1.19), we can prove the following:

$$
\begin{aligned}
& \sigma\left(\left\langle W, \phi\left(\nabla_{Z} A\right) Y\right\rangle \phi X-\langle W, A Y\rangle \eta(X) \phi Z\right)=0 ; \\
& \sigma\left(\langle W, Y\rangle\left(\nabla_{Z} A\right) X+\langle W, Z\rangle\langle A Y, \phi X\rangle \xi+\eta(Y)\langle W, Z\rangle \phi A X\right)=0 ; \\
& \sigma\left(\eta(X)\langle W, \phi Z\rangle A Y-\langle W, \phi X\rangle \phi\left(\left(\nabla_{Z} A\right) Y\right)=0 ;\right. \\
& \sigma\left(\left\langle W,\left(\nabla_{Z} A\right) X\right\rangle Y+\eta(W)\langle A Y, \phi X\rangle Z+\langle W, \phi A X\rangle \eta(Y) Z\right)=0 ; \\
& \sigma\left(-\eta(W)\langle Y, \phi Z\rangle A X+\eta(W)\langle X, \phi Z\rangle A Y+2\langle X, \phi Y\rangle \phi\left(\left(\nabla_{Z} A\right) W\right)=0,\right.
\end{aligned}
$$

and we get the counterparts, respectively, of these formulas by interchanging X and Y. We get also

$$
\sigma\left(\left\langle\left(\nabla_{Z} A\right) X, \phi Y\right\rangle+\langle A X, \eta(Y) Z\rangle\right)=0 .
$$

Applying this and the above ten formulas to (2.45), we obtain

$$
\sigma\left(\left(\nabla_{Z} L\right)(X, Y)\right)=0
$$

which proves our assertion.
3. Proof of theorems and corollaries.

Proof of Corollary 1. If the contact Bochner tensor associated to $L \in \mathscr{L}(V)$ is 0 , then we see by Proposition 3

$$
L=\frac{1}{2(n+2)} L_{K, I}-\frac{\operatorname{tr} K}{8(n+1)(n+2)} L_{I, I},
$$

where K is the Ricci tensor of L. By setting,

$$
A=\frac{K}{2(n+2)}-\frac{\operatorname{tr} K}{8(n+1)(n+2)} I
$$

we may write as (1.13). By Example 2 and Proposition 3, the converse is easy to see.

Proof of Corollary 2. Let A be a symmetric endomorphism of V which commutes with ϕ, and let L be an S-curvature-like tensor defined by (1.13). Then

$$
\begin{equation*}
k(P)=8\langle x, x\rangle\langle A x, x\rangle \tag{3.1}
\end{equation*}
$$

for $x \in V$ such that $\eta(x)=0$, where P is a 2 -plane spanned by x and ϕx. Conversely if L is an S-curvature-like tensor whose ϕ-sectional curvature for P is given by (3.1), then L satisfies the equality (1.13) (cf. Chapter IX, Proposition 7.1 in [2]). Putting $Q=4 A$, the following follows from (3.1) and vice versa:

$$
k(P)=\langle x, x\rangle(\langle Q x, x\rangle+\langle Q \phi x, \phi x\rangle)
$$

for $x \in V$ such that $\eta(x)=0$. This proves our assertion, since $L_{B}=0$ if and only if L is given by (1.13).

Proof of Theorem 1. First assume that K satisfies (1.16). By Proposition 5, $\operatorname{tr} K$ is constant on M. Then L_{1} defined by

$$
L_{1}=\frac{\operatorname{tr} K}{8 n(n+1)} L_{I, I}
$$

is proper as in Example 3. Also L_{2} defined by

$$
L_{2}=\frac{1}{2(n+2)} L_{K, I}-\frac{\operatorname{tr} K}{4 n(n+2)} L_{I, I}
$$

is proper, L^{\prime} defined by

$$
L^{\prime}=\frac{1}{2(n+2)} L_{K, I}
$$

is proper by Proposition 7. It follows that L_{B} is proper.
Conversely, assume that L_{1}, L_{B}, and L_{2} are proper and that $\operatorname{dim} M \geqq 5$. From the assumption on L_{1} we see that $\operatorname{tr} k$ is constant on M (see Example 3). Since L_{2} is proper, we see that L^{\prime} defined above is also proper. By Propositions 4 and 6 we conclude that K satisfies the equation (1.16).

This completes the proof of Theorem 1.
We see by Example 3 that Corollary 2 is an immediate consequence of Theorem 1.

The linear mapping defined by (1.20) is one-to-one, because the Ricci tensor field of L_{A} is precisely A. Noting this, Theorem 2 is now easy to prove.

References

[1] B.-y. Chen and K. Yano, Manifolds with vanishing Weyl or Bochner curvature tensor, J. Math. Soc. Japan, 27 (1975), 106-112.
[2] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, II, Interscience, 1969.
[3] H. Mori, On the decomposition of generalized K-curvature tensor fields, Tôhoku Math. J., 25 (1973), 225-235.
[4] K. Nomizu, On the decomposition of generalized curvature tensor fields, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, (1972), 335-345.
[5] K. Ogive, On almost contact manifolds admitting axiom of planes or axiom of free mobility, Kôdai Math. Sem. Rep., 16 (1964), 223-232.
[6] M. Sitaramayya, Curvature tensors in Kaehler manifolds, Trans. Amer. Math. Soc., 183 (1973), 341-353.
[7] M. Tagawa, Sasakian manifolds with vanishing C-Bochner tensor, (unpublished).
Central Research Laboratory
Mitsubishi Electric Corp.
Amagasaki-shi, Japan

