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The purpose of this note is to study a decomposition of generalized
S-curvature-like tensor fields on a Sasakian manifold, and to get a certain
relationship among Ricci tensor, Bianchi identity and contact Bochner
curvature tensor.

K. Nomizu [4] studied a decomposition of generalized curvature tensor
fields on a Riemannian manifold, and revealed a certain interesting re-
lationship among the tensors and tensor identities named after Codazzi,
Ricci, Bianchi and Weyl. Studying its Kaehlerian analogy H. Mori [2]
obtained a similar relationship among Bochner tensor (in place of Weyl
tensor), Ricci tensor and the other two tensor identities.

In this paperf first, we define a (φ, ξ, ^-structure on a vector space
with an inner product, and an S-curvature-like tensor on V. As a
component of an orthogonal decomposition of an S-curvature-like tensor
L, we obtain a contact Bochner tensor associated to L. The same de-
composition implies directly a necessary and sufficient condition, obtained
by Tagawa [7], in order that the contact Bochner tensor on a Sasakian
manifold vanishes. Then we define a generalized S-curvature-like tensor
field L on a Sasakian manifold M so that Lp is an S-curvature-like
tensor over the tangent space TP(M) at each point p of M. When we
consider the decomposition of a generalized S-curvature-like tensor field,
a natural question arises: When are the components of the decom-
position proper (i.e., When do they satisfy the second Bianchi identity)?
An answer is given by a certain equation to be satisfied by the Ricci
tensor field. In view of analogy which exists between an S-curvature-
like tensor (resp. a generalized S-curvature-like tensor field) and a in-
curvature tensor (resp. a generalized ϋΓ-curvature tensor field) defined
in [3], all our methods can be applied also to the case when V is a vector
space with a Hermitian inner product (resp. M is a Kaehler manifold)
(cf. [3]). In this case, Tagawa's result mentioned above is reduced to
Chen and Yano's result [1] which gives a necessary and sufficient condi-
tion in order that the Bochner tensor on M vanishes.

1. Statement of results. Let V be a (2n + l)-dimensional real vector
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space with an inner product denoted by < , >. A tensor L of type (1, 3)
over V can be considered as a bilinear mapping

(x, y) 6 V x 7 H L { X , y) eHorn (7, 7) .

Such a tensor L is called a curvature tensor over V if it has the following
properties:

(1.1) L(y, x) = -L(x, y)

L(#, 7/) is a skew-symmetric endomorphism of 7, i.e.,

(1.2) <L(», » K v) + <wf L(s, j/)t;> = 0

(1.3) σ(L(x, y)z) = 0 (the first Bianchi identity) ,

where σ denotes the cyclic sum over x, y, and z.
For a curvature tensor L, the Ricci tensor K = KL of type (1, 1) is

a symmetric endomorphism of 7 defined by

K(x) = trace of the bilinear map:

(y,z)eVx 7 H L ( X , y)zeV .

The trace of the Ricci tensor KL is called the scalar curvature of L.
A (Φ, ξ, ^-structure is defined on V by tensors φ, ξ, and rj of type

(1, 1), (1, 0), and (0,1), respectively, over Vf satisfying the following
conditions:

(1.4) >?(£) = 1

(1.5) τj(φx) = 0

(1.6) φ\x) = -a? + Ύ]{x)ξ

(1.7) <£, £> = l

(1.8) η(χ) = <f, α;>

(1.9) <̂ α;, ^ > = (x, y) - η(x)η{y) .

Let V be a (2^ + l)-dimensional vector space with a (φ, ξ, ^-struc-
ture. A curvature tensor L is called an S-curvature tensor over V if
it has the following properties:

L(x, y)φz = Φ(L(x, y)z) + (φx, z)y - (φy, z)x - (y, z)φx + <&, z)φy

L(ξ, x)y = <», α;>ί - η(y)x .

A curvature tensor L is called an S-curvature-like tensor over V if it
has the following properties:

(1.10) L(x, y)oφ = φo L(x, y)
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(1.11) L(ξ, X) = O.

We denote by Sf(V) the vector space of all S-curvature-like tensors
over V.

Let P be a ^-invariant 2-plane in V and let a; be a unit vector in P.
For an S-curvature like tensor L, we set

k(P) = (L(x, φx)φx, x) .

We call that k(P) is the ^-sectional curvature of L for P.
For x,yeV9 we denote by xΛy and xAy the skew-symmetric endo-

morphisms of V, respectively, defined by

(xΛy)z = (z, y)x - <z, x)y ,

{xΔy)z = (xΛy)z - y(z)(η(y)x - η{x)y)

- (v(χ)<z> v) - v(v)<Zf χ»ξ

REMARK 1. Let Lo be the S-curvature tensor defined by

L0(x, y) = xΛy .

Then L is an S-curvature tensor if and only if L — Lo is an S-curvature-
like tensor. If L is the S-curvature-like tensor corresponding to an S-
curvature tensor L, that is,

L = L - Lo,

and K and K are the Ricci tensors, respectively, for L and L, then

R=K- (2n)I,

where I denotes the identity transformation of V.

From now on we shall discuss only S-curvature-like tensors, since
they are more convenient than S-curvature tensors for our computing.

The following proposition gives examples of S-curvature-like tensors.

PROPOSITION 1. Let A and B be two symmetric endomorphisms of
V, each of which commutes with φ. If we define L = LAtB by

(1.12) L(x, y) = AxABy + BxΔAy + φAxΛφBy + φBxΛAy

+ 2(Ax, φy)φB + 2(Bx, φy)φA ,

then L is an S-curvature-like tensor.

We define -S^(V) to be the subspace of £f(V) consisting of all S-
curvature-like tensors
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where c is an arbitrary constant, i.e.,
SeSY) = {Le £f(V) with constant ^-sectional curvature}. Let £?

be the orthogonal complement of SfSY) i n Sf(V). Then we have the
following propositions:

PROPOSITION 2.

^fi(V) = {Lei^(F) with vanishing scalar curvature)

and

&(V) = J^(V) e &B(V) Θ J2ϊ(V) {orthogonal) ,

where

JϊfB(V) = {LeSf{V) with vanishing Ricci tensor} ,

Jϊf2(V) = orthogonal complement of J?fB(V) in ^ + (V) .

PROPOSITION 3. For LeSf(V), let

L = L1 + Lβ -l~ L2 ,

), LBe£?B{V), L2e£?z(V). Then

t τ K
 T

Sn(n + 1)

LT trϋΓ j
z 4n(n + 2 p r '

7- triJT Γ

2) «•' + 8(n + l)(n + 2)Ia '

where K is the Ricci tensor of L and LAtB is the tensor defined by (1.12).

For each L e i f ( F ) , the .^(F)-component LB is called the contact
Bochner tensor associated to L.

COROLLARY 1. The contact Bochner tensor associated to Le^f(V)
is 0 if and only if

(1.13) L = LAtI

for a symmetric endomorphism A of V which commutes with φ.

From Corollary 1 we get easily the following fact which is stated in
[7] in terms of an S-curvature tensor.

COROLLARY 2 (Tagawa [7], cf. Chen and Yano [1]). In order that
the contact Bochner tensor associated to an S-curvature-like tensor
vanishes, it is necessary and sufficient that there exists a (unique)
symmetric endomorphisms Q of V which commutes with φ and satisfies
the following: the φ-sectional curvature k(P) for a 2-plane P is the trace
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of the restriction Q to P, i.e., k(P) = trace Q/Pr the inner product being
also restricted to P.

A Sasakian structure (φ, ξ, η) is defined on a Riemannian manifold
(Λf, g) by tensor fields φ, ζ, and η of type (1,1), (1, 0), and (0,1) which
give (φ9f ξpf ^-structure on the tangent space TP(M) with the inner
product gp for each point p of M and satisfy the following conditions:

(1.14) (VzΦ)Y=y(Y)X- (X, Y)ζ

(1.15) Vjξ = φ(X) , (which is equivalent to (Vxη)Y= < Y, φX)) ,

where X and Y are any vector fields. Here and in the following, we
denote g( , ) by < , > for brevity.

A Riemannian manifold with a Sasakian structure is called an Sasakian
manifold. A (differentiable) tensor field L of type (1, 3) on a Sasakian
manifold is called a generalized S-curvature tensor field (resp. a generalized
S-curvature-like tensor field) if for each point p the tensor Lp is an S~
curvature tensor (resp. an S-curvature-like tensor) over TP(M). We shall
say that L is proper if it satisfies the second Bianchi identity, that is,

σ<yzL)(Y, Z) = 0 .

For vector fields X and Y on M, we denote by XΛ Y and XΔ Y the
tensor fields of type (1, 1) which map a vector field Z, respectively, into

<Z, Y)X-(ZfX)Y

and

<Z, Y)X - (Z, X)Y- 7](Z)(V(Y)X - η(X)Y)

- (y(XKZ, Y> - y(YKZ, X»ξ .

REMARK 2. Let Lo be the proper generalized S-curvature tensor
field defined by

L0(X, Y) = XΛY.

Then L is a (proper) generalized S-curvature tensor field if and only if
L — Lo is a (proper) generalized S-curvature-like tensor field.

From now on we shall discuss only generalized S-curvature-like tensor
fields, since they are more advantageous than generalized S-curvature
tensor fields for our computing.

We see the following fact corresponding to Proposition 1: Let A
and B be two tensor fields of type (1, 1) which are symmetric as endomor-
phisms of the tangent space and commute with φ. Then
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LAtB(X, Y) = AXΔBY + BXΔAY + φAXΛφBY + φBXΛφAY

+ 2(AX, φY)φB + 2{BX, φY)φA

defines a generalized S-curvature-like tensor field.
If L is a generalized S-curvature-like tensor field on a Sasakian

manifold M, then applying the decomposition in Proposition 3 at each
point p of M we obtain

L = Lx + LB + L2 y

where Lίf LBf and L2 are generalized S-curvature-like tensor fields which,
at each point p, belong to ^flf j*fB, and £f2 over TP(M), respectively.

THEOREM 1. On a (2n + ΐ)-dimensional Sasakian manifold M, let

L = Lx + LB + L2

6e ί^e natural decomposition of a proper generalized S-curvature-like
tensor field L. If the Ricci tensor field K of L satisfies the following
equation:

(1.16) ΦzK)Y= -η(Y)KφX - (KφX, Y)ξ ,

then L19 LB and L2 are proper. Conversely, if L19 LB, and L2 are proper
and if n ^ 2, then K satisfies the equation (1.16).

COROLLARY 3. On a Sasakian manifold M of dimension ^ 5 let L
be a proper generalized S-curvature-like tensor field whose scalar curva-
ture is constant. Then the associated contact Bochner tensor field LB is
proper if and only if the Ricci tensor field K of L satisfies the equa-
tion (1.16).

We get Theorem 1 by the help of the following propositions.

PROPOSITION 4. Let L be a proper generalized S-curvature-like tensor
field on a Sasakian manifold M> and let K be the Ricci tensor field of
L. Then (1.16) is equivalent to the following formula:

(1.17) ((VYK)X - (VXK)Y, Z) = r){Y)(φKX, Z) - 7){X)(φKY, Z)

PROPOSITION 5. The assumptions and notation being as in Proposi-
tion 4, suppose that K satisfies the equation (1.16). Then tr K is con-
stant on M.

PROPOSITION 6. On a Sasakian manifold M let A be a tensor field
of type (1, 1) which is symmetric at each point and satisfies

Aφ = φA and Aξ = 0 .
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Let L be a generalized S-curvature-like tensor field defined by

L = LAtI .

If L is proper and if tr A is constant, then A satisfies the following
equation:

(1.18) <(VFA)X - (VZA)Y, Z) = y(YKφAX, Z) - η{X)(φAY, Z}

+ 2y(Z)(Y, φAX) .

PROPOSITION 7. On a Sasakian manifold M let A be a tensor field
of type (1, 1) which is symmetric at each point and satisfies

Aφ = φA and Aξ = 0 .

Let L be a generalized S-curvature-like tensor field defined by

L = LAiI .

If A satisfies the following equation:

(1.19) (VXA) r = - ? ( n μ i - <A^X, r>?,

then L is proper.

Now let 8ί(Λf) be the vector space of all tensor fields A of type (1, 1)
on a Sasakian manifold which satisfy the following conditions:

i) A is symmetric at each point;
ii) A commutes with φ;

iii) Aξ = 0;
iv) A satisfies the equation (1.19);
v) tr A is constant.

Let £f(M) denote the vector space of all proper generalized S-curvature-
like tensor fields whose Ricci tensor fields satisfy the equation (1.16).
We assume that dim M ^ 5.

We have a linear mapping A e5ί(M) H L A G £ f ( M ) given by

( 1 2 0 ) LA = 2 ( ^ T 2 ) L w " 8(n+ l)ΐn + 2)L" '

We get the following theorem:

THEOREM 2. // dim M^ 5, Av^LA is a linear isomorphism of
SΆ{M) onto the subspace

2. Proof of propositions.

PROOF OF PROPOSITION 1. It follows from (1.5), (1.6), and (1.9) that
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φ is skew-symmetric. Making use of this fact, we can show easily that
L has the properties (1.1), (1.2), and (1.3). We prove that L has the
properties (1.10) and (1.11). We see that

(2.1) Φ{{xAy)z) = (φxΛφy)φz

holds for x, y and zeV. Since

(2.2) (ξΔy)z = 0 ,

we get, making use of (1.6) and (2.1),

(2.3) φ((φxΛφy)z) = φ{{φxAφy)z) = (φ2xΛφ9y)φz

= (φ2xΔφ2y)φz

= ((-x + η(x)ξ)A~V + V(v)ξ))Φ*
= (xΔy)φz .

By (2.1) and (2.3) we see that L has the property (1.10).
From (1.4), (1.7), and (1.9) we get

(2.4) ψξ = O.

Since A commutes with φ, we have, making use of (1.6), (1.8), and
(2.4),

(Aξ, x) = (Aξ, φ)ξ - φ2x) = y(x)(Aξ, ξ) = «Af, f>f, x) ,

for all xeV, and therefore Aξ — (Aξ, ξ)ξ. From this equality and (2.2)
we get AξABy = 0. We also get BξΔAy = 0. It follows from (2.4) that
φAξΛφBy = 0, φBξΛφAy = 0, (Aζ, φy) = 0 and (Bξ, φy) = 0 hold. Thus we
get L(ξ, y) = 0, which completes the proof of Proposition 1.

Let L be an S-curvature-like tensor defined by (1.12). Then the
Ricci tensor K of L is given by

(2.5) Kx = (tr B - b)Ax + (tr A - a)Bx + 2{BAx + ABx)

- α(tr B)η{x)ξ - 6(tr A)η(x)ξ - 2abrj(x)ξ ,

and the scalar curvature of L is given by

(2.6) tr K = 2 tr A tr B + 4 tr (AB) - 2(6 tr A + a tr B) - 2ab ,

where a and b are constants defined by a = <£, Af> and 6 = <£, U£>. As
special cases of Proposition 1, we obtain the following examples:

EXAMPLE 1. Take A = (c/2)I, B = 7, where c is a constant. Then
L is given by

L(x, y) = c{xΔy + φxΛφy + 2(x, φy)φ} .

The Ricci tensor and the scalar curvature are
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Kx = 2(n + l)c{x - η{x)ζ) , tr K = 4n(n + l)c .

And the ^-sectional curvature k(P) for all ^-invariant planes P in V is
identically equal to 4c. Conversely, if Le£f(V) has constant ^-sectional
curvature, say, 4c, then it is of the above form (Ogiue [5]).

EXAMPLE 2. Take B = I and a symmetric endomorphism A which
commutes with φ. Then L is given by

L(x, y) = AxΛy + xΛAy + φAxΛφy + φxΛφAy

+ 2<Aα;, 0y>0 + 2<a;, ̂ > M .

The Ricci tensor K and the scalar curvature are

Kx = 2(n + 2)(Aa? - aη{x)ξ) + (tr A — a)(x -

tr K = 4(Λ + l)(tr it - α) .

LEMMA 1. Lei L be an S-curvature-like tensor, and let K be the
Ricci tensor of L, then we have the following identities:

(2.7) (L(x, y)z, w) = 0

if at least one of x, y, z, and w is equal to ξ;

(2.8) Kξ = 0;

(2.9) Kφ^φK.

And if {e19 , e2n+ί} is an orthonormal basis of V, then

(2.10) 2(L(x, y)v, u} - Σ <L(x, y)eif eίX(uΛv)ej9 e,)

, y)ej9 eί)((φuΛφv)ej9 et) .

We make use of these formulas for the proof of Propositions 2 and 3.

PROOF OF PROPOSITION 2. It is sufficient to show that Sfi(V)
consists of all Lej5?{V) whose scalar curvature is 0. L ' e ^ ( F ) can
be expressed by definition of &i(V) as follows

L\x9 y)z = c{{xΛy)z - η(z)(r}(y)x - η(x)y)

- £(<*, V>Φ) - & *>V(V)) + (Φ%Λφy)z + 2(x9 φy)φz}.

Let {βlf •••, e2n+1} be an orthonormal basis of V9 then

(2.11) (L'(ek9 em)ejf et) = c{((ekΛem)eJ9 e,)

if em)η{ek) - (ej9 ek)η(em))

{{φekΛφem)eά9 e,) + 2(ek9 φem)(φej9 e,)} .
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Let L be an S-curvature-like tensor.
From (2.7) follows

(2.12) Σ <L(ek, em)eJf β^KflfoX^βJβ*
i,j,k,m

+ <ξ9 βi>«β y , em)7](ek) - <βy, eA>i7(βJ)} = 0 .

From (2.10) follows

(2.13) Σ <L(ek, em)ej9 β i>{<(e^βm)e i, e,> + ((φekΛφem)ejf et)
i j k

— 4 Σ (L(ek, em)em, ek) = 4 (scalar curvature of L) .
k,m

On the other hand,

(2.14) Σ (L(ek, em)ejf ety(ek
i,j,k,m

= Σ <L(φem, em)eit

= - Σ
= Σ
= Σ

m,j m

= Σ <L(eΛ em)em, es) + Σ <^em, em)

= 2 (scalar curvature of L) .

From (2.11), (2.12), (2.13), and (2.14) we get

<L,L')= Σ <L(ek, em)es, β(><L'(βt, em)e,, e,>

= 8c (scalar curvature of L) .

This proves our assertion.

PROOF OF PROPOSITION 3. By Examples 1 and 2 we can show easily
that tensors Llf LB, and L2 belong, respectively, to SfAY)* ^B(V), and
£fi(V). So it is sufficient to show that tensor L2 is orthogonal to <£fB(V).
Since LItI is orthogonal to i ^ ( F ) , we have only to show that LKJ is
orthogonal to £fB(V). Let V be a tensor which belongs to
Making use of (2.7) and (2.10), we get

(2.15) Σ <L'(ek, em)es, ety{<(KekJem)ej9 e,) + ((φKekΛφem)ejf e,)}
k,m,j,i

= Σ <L'(ek, ejejt e.XdKe.ΛeJej, e,) + {{φKekAφem)ejy e()
k j i

k,m
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(2.16) Σ <L'{ek, βjβ y , eύUiβuΔKβ^s, «,> + {{φekΛφKem)es, e{)}
k,m,j,i

= 0 .

On the other hand,

(2.17) Σ <L\eh, βjβy. ««><£»», φeuXφeit β«>
k,m,j,i

= Σ <L'(Kφem, em)e5, φes)

= - Σ «L'(em, es)Kφem, φed) + <£,'(«„ Kφem)em, φe>>)

= - Σ «L'(«« βJ-)ϋCem, ej) - <L'(eΛ i Γ ^ J ^ , β,»

= Σ «Kem> L'(em, βy)e,> + <?>em, L\Kφem, «,)«,» = 0

(2.18) Σ <Ir'(β», β.)β,, ««><«», φem){φKβjt e{) = 0 .

From (2.15), (2.16), (2.17), and (2.18) we get

<L', L*,r> = 0 .

This proves our assertion.

EXAMPLE 3. Corresponding to Example 1 we consider

L = fLia ,

where / is a (differentiate) function. If dim M ^ 5, L is proper if and
only if / is a constant function.

LEMMA 2. Let L be a proper generalized S-curvature-Wce tensor
field on M and let K be its Ricci tensor field. Then we have the following
formulas:

(2.19) <<SΦXK)φY, Z) = -{{VYK)Z, X) + ({VZK)X, Y)

- η{Y){KφX, Z} + 2y(X)(KφZ, Y)

(2.20) VfίΓ = 0

(2.21) trace of [X H- (VXK) Y) = i - Γ(tr K) .

PROOF. (2.20) follows directly from (2.19): If we put Y = ξ in (2.19),
then we have

, X) + <X, {VzK)ξ} + <X, KφZ) = 0 .

From Kξ = θ follows

(2.22) (VzK)ξ - -K(Vzξ) = -KφZ .
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Therefore we get VξK = 0. (2.21) is proved in [4]. We shall prove (2.19).
Let {elf , e2n+1} be an orthonormal basis of the tangent space TP(M) at
a point peM. We see

(KY, Z) = Σ <L(Y, e%)eiy Z) = Σ <L(φY, fa)et9 Z)
i i

= - Σ <(Let, φZ)φY,ei) + Σ <ΦUZ, φY)eί> e,)
i i

= - (KφZ, φYy + Σ, (φL(Z, φY)ef, e,)

= -(KZ, Y) + Σ <ΦL(Z, φY)eit et) .

Thus we

(2.23)

From this

<(V*Z)]

Replacing

get

\ equation

Yby

' 2

+
. 1

φY

(KY,Z

follows

ΣK(v.

<ΦL(Z,

Σ <!*(V
i

' in this

> = \%<ΦUZ,

xΦ){L{Z,φY)eι),e

(^xΦ)Y)ei,ei)}

XL)(Z, φY)et, et)

, we get

φY)ei,ei).

••ty + <Φ(yxL)(z, φY)et,

+ \v(Y)Σl(ΦL(Z,x

(2.24) (ΦxK)φY, Z) = — ί Σ <ί»(V,L)(Z, Y)et, et)
Δ i

From (2.7) follows

(V*L)(Γ, ξ) = -L(Γ, V f̂) = -L(Y, φZ) .

Putting this into (2.24) and making use of (2.23), we get

((VxK)φY, Z} = - i - Σ (Φ&xLKZ, Y)eit ed - (KX, Z)rj(Y)
Δ

Since L is proper, we get

= -(v(γχκx, z) + v(zχκγ, xy + y(xχκz, r » .
Replacing X by -̂X" in this, we get
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(2.25) ((VφxK)φY, Z) + <(VrK)φZ, φX) + ((VZK)(-X + η(X)ξ), Y)

= -MYKKφX, zy + v(zχκγ, ΦX)) .

From Kφ = φK follows

(2.26) (VγK)φZ = -K(Vγφ)Z + <yγφ)KZ + φ{VγK)Z

= -η{Z)KY- (Y, KZ)ξ + φ(VrK)Z .

Putting this and (2.22) into (2.25), we get

{(VΦXK)ΦY, zy - v(zχκγ, ΦX) + <Φ(VYK)Z, ΦX) - <(vzκ)x, r>

- y{X)(KφZ, Y) = -(V(Y)(KφX, Z) + v(ZKKY, φX)).

Since (φ{VγK)Z, φX) = {{VYK)Z, X) + 7){X){KφY, Z), we get (2.19).

Now we can prove Propositions 4 and 5.

PROOF OF PROPOSITION 4. It is now easy to show that (1.17) follows
from (1.16). So we shall prove (1.16) under the assumption that (1.17)
holds. Interchanging X and Z in (1.17), we have

{{vγκ)z - (yzκ)Y, X) = v(Y)<φKZ, xy - V(Z)(ΦKY, xy
+ 2y(XKY, φKZ} .

Putting this into (2.19), we get

{{VΦXK)ΦY, zy = v(z)<φκγ, xy.

Replacing Xand Fin this, respectively, by — φX and — φY, and making
use of (2.20) and (2.22), we get (1.16).

PROOF OF PROPOSITION 5. From (1.16) we can easily get

trace of {X^{VXK)Y} = 0 .

In view of (2.21), we see

Γ(tr K) = 0 ,

which proves our assertion.

LEMMA 3. Under the same assumptions as in Proposition 6, we
have the following formulas:

(2.27) trace of {X i— (VXA) Y} = 0

(2.28) (VzA)φX + η{X)AZ = -(Z, AXyξ + φ((VzA)X)

(2.29) (VzA)ζ = -AφZ

(2.30) {VΦYA)φX-{VφxA)φY

= (VyA)X - (VXA)Y + {AφY)ηX - {AφX)ηY
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(2.31) V,A = 0

(2.32) trace of {Z ι-» φ{VzA)X) = (tr A)η(X)

(2.33) Σ
(2.34) t r (Φ(VZA)) = 0 .

PROOF. Let K be the Ricci tensor of L, then from Example 2 we
get

(2.35) KX = 2(n + 2)AX + tr A(X - η(X)ξ)

(2.36) tr K = i(n + 1) tr A .

From (2.35) follows

(2.37) (VXK) Y=2(n + 2){VXA) Y - tr A((V^)( Γ)f + η{ Y)Vxξ)

= 2(n + 2)(VXA)Y- tr A((Y, φX)ξ + η{Y)φX) .

Therefore

trace of {X\-^(VXA)Y} = trace of {X ^ (VXK) Y)
2(n + 2)

4(% + 2)

the second identity of which comes from (2.21). We see by (2.36) that
tr K is constant. So we get (2.27). Making use of (2.35) and (2.37), we
can rewrite the formula (2.19) into the following:

{{VφxA)φY, Z) = -<&τA)Z, X) + <{VZA)X, Y)

- V(Y)(AφX, Z} + 2η(X)(AφZ, Y) .

From this (2.30) follows directly. (2.28), (2.29), and (2.31) can be proved
in the same way, respectively, as (2.26), (2.22), and (2.20). (2.32) follows
directly from (2.27) and (2.28). Since (X, φ{VwA)Z) = -{(VwA)φX, Z),
we get (2.33) by virtue of (2.27). Let {Et} be locally defined parallel
orthonormal fields. Then

= 0 ,
ί i

which proves (2.34).

PROOF OF PROPOSITION 6. By the definition of L, we see

L(X, Y)W = (W, Y)AX - (W, AX)Y - η{W)η(<Y)AX + (W, AX)η{Y)ξ

+ (W, AY)X - (W, X)AY+ η{W)η{X)AY
, AY)TJ(X) + (W, φY)φAX - (W, φAX)φY
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+ (W, φAY)φX - (W, φX)φAY
+ 2{AX, φY)φW + 2(X, φY)φAW .

From this follows

(VZL)(X, Y)W = (W, Y)(VZA)X - (W, (VZA)X)Y

- (Vzy)(W)y(Y)AX - y{W){(Vzy)(Y)AX + y(Y){VzA)X)

+ {W, AX)y(Y)Vzξ + «TF, (VzA)X)η(Y) + <W, AXχvzη)(Y))ξ
+ (W, (VZA)Y)X- (W, X)(VZA)Y
+ (Vzv)(W)v(X)AY+y(W)((yzy)AY+y(X)(yzA)Y)
- (W, AY)y(X)Vzξ - «W, (VzA)Y)y(X) + (W, AY)(Vzy)(X))ξ
+ <W, (Vzφ)Y)φAX + (W, φY)(Vzφ)AX + (W, φY)φ(VzA)X

- <W, (Vzφ)AX)φY-(W, φ(VzA)X>φY - <W, φAX}(Vzφ)Y
+ (W, (Vzφ)AY)φX + (W, φ(VzA)Y)φX + (W, φAY)(Vzφ)X
- <W, (Vzφ)X)φAY - (W, φXχvzφ)AY - (W, φX)φ(VzA)Y
+ 2((VZA)X, φY)φW+ 2(AX, (Vzφ)Y)φW + 2(AX, φYχvzφ)W
+ 2{X, (Vzφ)Y}φAW + 2{X, φYχvzφ)AW + 2{X, φY)φ(VzA)W .

Applying (1.14) and (1.15) to this, we obtain

(2.38) (VZL)(X, Y)W = (W, YXVZA)X - (W, {VZA)X)Y

- (W, φZ)y{Y)AX - y(W)«Y, φZ)AX + y{J){VzA)X)
+ (W, AX)y(Y)φZ + ((W, (VzA)X}y(Y) + {W, AX){Y, φZ})ξ

+ (W, (VZA)Y)X - (W, XXVZA)Y

+ {W, φZ)y(X)AY + y(W)«X, φZ}AY + y{X)(yzA)Y)
- <W, AY)y(X)φZ - ({W, (VzA)Y)y(X) + (W, AY)(X, φZ))ξ
+ (W, y(Y)Z - (Z, Y)i)φAX - (W, φY){Z, AX)ζ + (W, φY)φ(VzA)X
+ (W, (Z, AX)ξ)φY - (W, φ(VzA)X)φY - (W, φAXXy{Y)Z - (Z, Y)ξ)
- (W, (Z, AY)ξ)φX + (W, φ(VzA)Y)φX + {W, φAYXy(X)Z - {Z, X)ξ)
- (W, y{X)Z - (Z, X)ξ)φAY + (W, φX)(Z, AY)ξ - (W, φX)φ(VzA)Y
+ 2{(yzA)X, φY)φW + 2{AX, y(Y)Z)φW + 2(AX, φYXy(W)Z - (Z, W)ξ)
+ 2(X,y(Y)Z- (Z,Y}ξ}φAW-2(X,φYχZ,AW)ξ + 2(X, φY)φ(VzA)W .

Making use of (2.27), (2.31), (2.32), (2.33), and (2.38), we get

(2.29) Σ (V. X)(X, Y)et = (VYA)X - (VXA) Y + 2(2n + 3)< Y, φAX)ξ

+ 2(n + 2)y{Y)φAX - 2(n + ΐ)y(X)φAY
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+ tr A(y(Y)φX - η{X)φY) - 2{X, φY){tΐ A)ξ

Making use of (2.38) and (2.34), we get

Σ (V*L)(X, et)β( = (2n + 1)(VZA)X - 3(VZA)X + (ξ, {VzA)X)ξ

- 5(φZ, AX)ξ - 2y(X)φAZ + y{X){VzA)ξ

- (tr A)η{X)φZ - tr A(X, φZ)ζ - 3φ\VzA)X

- Zφ{{VzA)φX) .

Applying (2.29) to this, we get

(2.40) Σ (VZL)(Z, φ, = (2n + 1){VZA)X - 3<AX, φZ)ξ - Zη{X)φAZ

- (tr A)η{X)φZ - tr A(X, φZ)ξ - Sφ((VzA)φX) .

Since L is proper, we see

(2.41) Σ (Vβ<L)(X, Y)et = - Σ (V^L)(Γ, φ t + Σ (VrL)(X, β<)β4 .
i i <

On the basis of (2.39), (2.40), and (2.41), we obtain

(2.42) 2n{(VrA)X - (VXA) Y) = φ((VφrA)X) - φ{{VφxA) Y)

+ Zφ((yγA)φX - (VxA)φY) + An(Y, φAX}ξ + (2n + l)η(Y)φAX

- (2n - l)y(X)φAY + 2Σ((V I j A)I, φT>φβt .

By virtue of (2.28) and (2.29), we get

- φ{{VφxA)Y) = (VφrA)φX - (VφxA)φY

+ y{X)AφY - η(Y)AφX + 2(φY, AX)ξ

- φ((VxA)φY) = η{Y)φAX - y(X)φAY

+ (VXA) Y - (VrA)X + 2<A Y, φX}ξ .

Putting these two formulas into (2.42), we get

(2n + Z){(VYA)X - (VXA)Y) = (VφΐA)φX -
+ (2n + Z)η(Y)φAX - (2n + ΐ)η(X)φAY

+ 4(« + iχr,

Putting (2.30) into this, we obtain

(n + ΐ){(VrA)X - (VXA)Y) = -nη(X)φAY + (n + l)η{Y)φAX

+ 2{n + 1)<F, φAX}ξ + Σ <(VeiA)X, φY}φβt ,

that is,



GENERALIZED S-CURVATURE-LIKE TENSOR FIELDS 251

(2.43) (n + 1)(Z, (VYA)X - (VXA)Y) = -nη{X)(φAY, Z)

+ (n+l)η{Y)(φAX, Z) + 2(n+l)V(Z)(Y, φAX) - ((V ΦZA)X, φY) .

We see easily

σ(Z, (VrA)X-(VxA)Y) = 0;

σ(-nη(X)(φAY, Z) + (n + l)η(Y)(φAX, Z)

+ 2(n + l)η{Z)( Y, φAX)) = σ(η{X)(φA Y, Z)) .

By virtue of these two formulas and (2.43), we obtain

0 = -σ(v(Y)<AφX, Z» - σ(((VφzA)X, φY)) ,

that is,

(2.44) <(V,yA)φX, Z) - (φ({VφxA)Y), Z} = -<(VΦZA)X, φY)

- (v(YKAφX, Z) + η(ZKAφY, X) + η{X){AφZ, Γ » .

Replacing X and Z in (2.28), respectively, with Y and φX, we get

(VφxA)φY = -v(Y)AφX - (φX, AY}ξ + φ{{VφxA)Y) .

Putting this into (2.30), we get

(VφγA)φX - φ((VφxA)Y) = -2y(Y)AφX - (φX, AY)ξ + η{X)AφY

Putting this into (2.44), we get

-((VΦZA)X, φT> = <(VrA)Z - (VZA)Y, Z)

- 2η(ZKφX, AY)- η{Y)(AφX, Z} .

Putting this into (2.43), we get

<(VYA)X - (VXA)Y, Z} = -viXKφAY, Z) + v(Y)(φAX, Z)

+ 2η(Z)(Y, φAX} ,

which proves our assertion.

PROOF OF PROPOSITION 7. By virtue of (1.19), we can easily prove

-η{W)y(Y){VzA)X+ξ(W, (VzA)X)η(Y) + y{W)η{X){VzA)Y

- {W, (VzA)Y)v(X)ξ = 0 .

The following formulas can be proved easily:

σ((W, AXXY, φZ) - (W, AYXX, φZ) - 2{X, ΦY)(AW, Z » = 0

σ(-(W, (Z, Y)ξ)φAX + (W, (X, Z)ξ)φAY) = 0

σ(-(W, φY}(AX, Z) + (W, ΦX)(AY, Z)) = 0

σ((W, (AX, Z}ξ)φY - (W, (AY, Z)ξ}φX) = 0
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σ«W, φAXXY, Z)-(W, φAY){X, Z)) = 0
σ((X,V(Y)Z-(Y,Z}ξ)) = 0,

where σ denotes the cyclic sum over X, Y, and Z. Applying these
formulas to the cyclic sum of (2.38) over X, Y, and Z, we obtain

(2.45) σ((VzL)(X, Y)W)
= σ((W, YXVSA)X - (W, (VZA)X)Y- (W, φZ)η(Y)AX

- V(W)(Y, φZ)AX + (W, AX)η(Y)φZ
+ (W, (VZA)Y)X - (W, X)(VZA)Y

+ (W, φZ)η(X)AY + V(WKX, φZ)AY
- {W, AY)η(X)φZ + (W, 7](Y)Z)φAX

+ (W, φY)φ{(VzA)X) - {W, φ(VzA)X)φY - (W, φAX)η(Y)Z
+ <W, φ(VzA)Y)φX + (W, φAY)v(X)Z

- (W, v(X)Z)φAY - (W, φX)φ((VzA)Y)
+ 2((VZA)X, φT)φW + 2{AX, η(Y)Z)φW

+ 2{AX, φYXη(W)Z - {Z, W)ξ)
+ 2(X,φY)φ((VzA)W)).

By virtue of (1.19), we can prove the following:

σ«W, φ(VzA)Y)φX - (W, AY)η(X)φZ) = 0
σ((W, Y)(VZA)X + (W, ZXAY, φX)ξ + η(Y)(W, Z)φAX) = 0
σ(η(X)(W, φZ)AY - (W, φX)φ((VzA)Y) = 0
σ((W, (VZA)X)Y+ ViWKAY, φX)Z + (W, φAX)τ)(Y)Z) = 0

, φZ)AX + η{W)(X, φZ)AY + 2<X, φY)φ((VzA)W) = 0 ,

and we get the counterparts, respectively, of these formulas by inter-
changing X and Y. We get also

σ(((VzA)X, φY) + (AX, V(Y)Z)) = 0 .

Applying this and the above ten formulas to (2.45), we obtain

σ((VzL)(X, D) = 0 ,

which proves our assertion.

3. Proof of theorems and corollaries.

PROOF OF COROLLARY 1. If the contact Bochner tensor associated
to LeJί?(V) is 0, then we see by Proposition 3
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L = —λ—L - t τ K L
2(n + 2) XtI 8(n + l){n + 2) />z '

where if is the Ricci tensor of L. By setting,

K trig
A =

2(n + 2) 8(n + l)(n + 2)

we may write as (1.13). By Example 2 and Proposition 3, the converse
is easy to see.

PROOF OF COROLLARY 2. Let A be a symmetric endomorphism of V
which commutes with φ, and let L be an S-curvature-like tensor defined
by (1.13). Then

(3.1) k{P) = 8(x, x)(Ax, x)

for xeV such that η(x) — 0, where P is a 2-plane spanned by x and φx.
Conversely if L is an S-curvature-like tensor whose ^-sectional curvature
for P is given by (3.1), then L satisfies the equality (1.13) (cf. Chapter
IX, Proposition 7.1 in [2]). Putting Q = 4A, the following follows from
(3.1) and vice versa:

k(P) = <&, x)((Qx, x) + (Qφxf φx))

for xeV such that η(x) = 0. This proves our assertion, since LB = 0 if
and only if L is given by (1.13).

PROOF OF THEOREM 1. First assume that K satisfies (1.16). By
Proposition 5, tr K is constant on M. Then L : defined by

L t τ K L
1 8n(n + 1) / f /

is proper as in Example 3. Also L2 defined by

L = 1 L - t τ K L
2
 2(Λ + 2) *'7 4w(w + 2) IyI

is proper, L' defined by

is proper by Proposition 7. It follows that LB is proper.
Conversely, assume that Lί9 LBy and L2 are proper and that dim M ^ 5.

From the assumption on Li we see that tr k is constant on M (see Ex-
ample 3). Since L2 is proper, we see that 1/ defined above is also proper.
By Propositions 4 and 6 we conclude that K satisfies the equation (1.16).
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This completes the proof of Theorem 1.
We see by Example 3 that Corollary 2 is an immediate consequence

of Theorem 1.
The linear mapping defined by (1.20) is one-to-one, because the Ricci

tensor field of LA is precisely A. Noting this, Theorem 2 is now easy
to prove.
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