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Introduction. In the study of even-dimensional Riemannian mani-
folds an almost Hermitian manifold P(J, G) is an almost complex mani-
fold with a Riemannian metric G such that G(JX, Y) = — G(JX, Y) for
any vector fields X and Y. If the Nijenhuis tensor field [J, J] of the
structure tensor field J vanishes on P, the manifold P(J, G) is called to
be Hermitian. A Kahler manifold is a Hermitian manifold with the
closed fundamental 2-form Ω, defined by Ω(X, Y) = G{JX, Y). We
know a familiar result that a necessary and sufficient condition for an
almost Hermitian manifold P(J, G) to be Kahlerian is that VZJ = 0
holds for any vector field X with respect to the Riemannian connection
V of the metric G(e.g.f [7], [15]).

Analogously, we shall consider odd-dimensional Riemannian mani-
folds. Let M(f, E, η, g) be a (2n + l)-dimensional almost contact metric
manifold, on which a set of tensor fields (/, E, η9 g) consisting of a
linear transformation field /, a vector field E, a 1-form η and a
Riemannian metric g satisfies /2 = — I + i}®E, η{E) = 1, fE = 0,
η{fX) = 0, 7){X) = g(X, E), g(fX, Y) = -g(X, fY) for any vector fields
X and Y, where I denotes the identity linear transformation field ([8],
[10]). An almost complex structure Jo can be defined on the product
M x R of M and a real line R by JQ(X, Xd/dt) = {fX+XE, -7}(X)d/dt),
where X is a scalar field on M x R. If the structure Jo is complex
analytic, the almost contact metric structure (/, E, η, g) is called to be
normal. It is shown that a necessary and sufficient condition for an
almost contact metric structure (/, E, rj, g) to be normal is that the
torsion tensor field S, defined by

S(X, Y) = [fX, fY]- f[fX, Y] - f[X, fY] + /2[X, Y] + dη(X, Y)E

for any X and Y, vanishes on the manifold [9]. A quasi-Sasakian
manifold M{f, E, η, g) is a normal almost contact metric manifold with
the closed fundamental 2-form F, defined by F(X, Y) = g(fX, Y)

([1], [12]).
In this paper, our purpose is to prove the following theorem.
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THEOREM. A necessary and sufficient condition for an almost
contact metric manifold M(f, E, η, g) to be quasi-Sasakian is that
there exists a symmetric linear transformation field A on M such
that

( * ) (Vx/) Y = η{ Y)AX - g(AX, Y)E , fAX = AfX ,

for any vector fields X and Y on M with respect to the Riemannian
connection V of the metric g.

A (2n 4- l)-dimensional manifold is said to have a contact structure
if it carries a 1-form η with the property η /\{dη)% ΦQ [5]. It is well
known that on a contact manifold there exists an almost contact metric
structure (/, E, η, g) with a contact form rj defining the contact struc-
ture and dη = 2F ([8], [9], [10]). A normal contact metric manifold is
also called a Sasakian manifold. A normal almost contact metric
manifold is cosymplectic if its fundamental 2-form F and contact form
Ύ] are both closed ([1], [4]). The (2n + l)-dimensional Euclidean space
R2n+1 admits a cosymplectic structure. The sphere S2n+1 admits a
Sasakian structure [10]. And a product manifold of a Sasakian mani-
fold and a Kahler manifold admits a quasi-Sasakian structure [6].

It follows from the condition (*) that VXE = fAX holds for any X.
In fact, differentiating covariantly fΎ= — Y + η(Y)E with respect to
X, we have (Vx/)/ Y + /(Vx/) Y = (Vzη)( Y)E + η( Y)VXE. Putting Y = E
in this equation, we find the desired relation. Then, since dη{X, Y) —
2F(AX, Y), Theorem implies that a necessary and sufficient condition
for an almost contact metric structure (/, E, r], g) on a manifold to be
cosymplectic (resp. Sasakian) is that Vxf = 0 (resp. (Vx/) Y = Ύ]( Y)X —
g(X, Y)E) holds ([1], [10]). In this paper, by Theorem we want to
consider a quasi-Sasakian manifold being locally a product of a Sasakian
manifold and a Kahler manifold, and to see the induced structures on
hypersurfaces in Kahler manifolds.

1. The proof of Theorem. Assume that there exists a symmetric
linear transformation field A satisfying (*) on an almost contact metric
manifold M(f,E,η,g). Since g({Vzf)Y, Z) = (VXF)(Γ, Z) and dF{X,
γf Z) = (VXF)(Y, Z) + (VFF)(Z, X) + (VZF)(X9 Y) are valid, then the 2-
form F is closed. Using the symmetry of the connection V, we may
reduce the bracket [fX, fY] = VfxfY- VfγfX = (Vfxf)Y - {Vfγf)X +
/V/χ Y - fϊfyX = V( Y)AfX - v(X)Af Y - 2g(AfX9 Y)E + fVfx Y - fVfγX.
Hence, we have S = 0.

Conversely, assume that S = 0 and dF = 0. The torsion tensor



QUASI-SASAKIAN MANIFOLDS 229

field S reduces to

S(x, Y) = ( W ) Y + (yΣf)fY - (v/F/)x - (

from which

g(S(X, Y), Z) = dF(fX, Y, Z) - (VzF)(fX, Y) - y(Y)(VxV)(Z)

- dF(fY, X, Z) + {VzF){fY, X) + 7]{X){VY7]){Z)

by virtue of (VZF)(Y, Z) = -(VXF)(Z, Γ). Hence, it follows that

(1.1) 2{VzF){fX, Y) = η{X){Vzη){Y) + η(Y)(VzV)(X)

- y{Y){Vxη){Z) + V(X)(VYV)(Z) .

Replacing X, Y and Z by — fYf Z and X in (1.1) respectively, we
obtain

(1.2) 2(VXF)(Y, Z) = 2η(Y)(VxF)(E, Z) - y(Z)(Vxy)(fΎ)

+ 7]{Z){Vfγη){X) .

Putting X = E in (1.1) and using £(VZJE7, ,&) = 0, we find

(1.8) (

On the other hand, we take notice of the vanishing of the torsion
tensor field again. Define a tensor field T of type (1.3) on M by T(X, Y) =
(V/X/)Γ + (Vzf)fY-η(Y)VzE for any X and Y. Then the relations
S(X, Y) = Γ(X, Γ) - Γ(Γf X), ^(Γ(Z, Z), Y) = -g(T(X, Y), Z) and
g(S(X, Y), Z) - g(S(X, Z), Y) - g(S(Y, Z), X) = 2g{T(X, Y)f Z) hold.
Therefore, we see that S = 0 is valid if and only if T = 0. Conse-
quently, we have VEE = 0, V ^ = 0, VEf = 0, VfxE = fVzE9 (V/zV)(Y) +

ΦzV)(fY) = 0.
Considering (1.2) and (1.3) together with these relations, we see

that E is a Killing vector field, i.e., LEg = 0 where LE denotes the Lie-
derivation with respect to E, and have

(Vχ/) Y=η( Y)AX - g(AX, Y)E , fAX = AfX, g(AXf Y) - g(X, A Y)

for any vector fields X and Y, where we have put AX = —fVxE.
This completes the proof.

2. Definition of a structure indicator tensor field A. We make a
substitution of Y = E in (*). The tensor field A described in Theorem
is written as A = A + kη (x) E for a scalar field k, k = η(AE). Since
g(AX, V(Y)E) = 0 holds for any X and Γ, the subspaces A(TX(M)) and
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η{Tx{M))E are orthogonal in the tangent space TX(M) to M at each
point x. This fact means that the space A(TX(M)) is always contained
in the value — f2{Tx(M)) at x of the 2w-dimensional distribution deter-
mined by — p. If there exists a non-zero element X of the intersec-
tion of the kernel of A and — f\Tx{M)), the vector fX is non-zero and
also belongs to itself. Thus, a relation

even = rank A <̂  rank A <; rank A + 1

holds at each point of M.
Let there be given a symmetric linear transformation field A satis-

fying the condition (*) on an almost contact metric manifold (i.e., a
quasi-Sasakian manifold). Define a linear transformation field A by A=
—f2A + *η (g) E, which means A = A + η ® E. We shall call A a struc-
ture indicator tensor field of a quasi-Sasakian structure. Then the
relation rank A = 2p + 1(0 <L p <L ri) holds at each point of M. The
following conditions are equivalent.

(a) A2 = A, (b) A2 = A , (c) g((VxA)Y, E) = 0

for any X and Y. In fact, since the covariant derivative yxA of A
with respect to X reduces to (VXA)Γ= #(AX, fAY)E +
fVχVτE + fVizTE + η{Y)VzE, we have </((VxA)Γ, # ) =
Γ). This is used for the verification of "(b)~(c)".

3. A product M of a Sasakian manifold and a Kahler manifold. In
this article we prove (c.f., [1], [12]).

PROPOSITION 1. Let A be a structure indicator tensor field on a
manifold M(f, E, η, g). If A is parallel and has a constant rank
2p + 1(1 <; p <I n — 1) on M, then the manifold M is locally a product
of a Sasakian manifold of dimension 2p + 1 and a Kahler manifold
of dimension 2q, n = p + q.

PROOF. First we put A* = I — A. Then the tensor fields A, A*
determine a (2p + l)-dimensional and a 2#-dimensional distributions
&(A) and ^(A*), which are complementary. If we put ψ = A — A*
again, we see that ψ defines an almost product structure, ψ2 = /, satis-
fying g(ψX, ψ Y) = g(X, Y) for any X and Y. Since the tensor field
ψ is parallel on M, &(A) and ^(A*) are both completely integrable
(13]> I14]> I15])- Denoting the maximal integral manifolds through a
point of M corresponding to &(A) and ^(A*) by Nx and N2 respec-
tively, we find a Sasakian structure on NL and a Kahler structure on
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N2 from the given quasi-Sasakian structure. In practice, we denote by
fif ί = 1, 2, and gt the restrictions of / and g to Nt respectively, and
use the same symbol V as the induced Riemannian connections with
respect to gt on Nt. Since for any vector fields X and Y belonging to
&(A) the conditions (VZ/1)Γ= η(Y)X - g(X, Y)E, &CΛ-3Γ, Y) = - Λ ( X f

fίY)f Ee£P(A) hold on Nίf and for any vector fields X and Y belong-
ing to 3f(A*) the conditions (VX/2)F = 0, &(/,-£, Γ) = -g2(X, f2Y)
hold on JV2, then the sets of tensor fields (flf E, η, gλ) on N1 and (f2, g2)
on N2 define the desired structures. q.e.d.

4. Hypersurfaces in Kahler manifolds. Let P{J, G) be a Kahler
manifold of dimension 2n + 2, and let N be a (2w + l)-dimensional
manifold imbedded in P with imbedding map i:N-+P. With identifica-
tion in mind we express the hypersurface i(N) by N. Take a unit
normal vactor field ζ over the hypersurface N. Then we have the
relations Ji*X = i*fX + ^(X)C, /ζ = — ΐ*2£ for any X on N, where /
is a linear transformation field, η is a 1-form, JE7 is a vector field, and
i* denotes the differential of i. We denote the induced metric of G by
g, G(i*X, i+ Y) — g(X, Y). The equations of Gauss and Weingarten are
Vuzi*Y= uVzY+h(Xf DC (h(X, Y) = h(Y, X)) and V^ζ = -i,H2Γ
{g{HX, Y) = h{X, Y)), where h and H are the second fundamental
tensor fields (of type (0, 2) and (1,1) respectively) on N with respect to
ζ. Then, since (Vx/) Y = η( Y)HX - g(HX, Y)E, a set {f,E,7),g) of
the induced tensor fields defines an almost contact metric structure
satisfying dF = 0. A necessary and sufficient condition for the induced
structure (/, E, η, g) on N in a Kahler manifold P(J, G) to be quasi-
Sasakian is that H commutes with f. In fact, if H commutes with /,
since S(X, Y) = η{X){fH - Hf)Y - η{Y)(fH - Hf)X, then S = 0. Con-
versely, if we have S = 0, then, by dF = 0, VXE = fHX and E is a
Killing vector field. Hence, we obtain Hf = fH. When we specialize
the structure (/, E, η, g) in two cases, we have that the set (/, E, η, g)
defines a cosymplectic structure if and only if H = Xη®E for any
scalar field λ, and that the set (/, E, η, g) defines a Sasakian structure
if and only if H = I + Xη (x) E for any scalar field λ.

Consider hypersurfaces in a Kahler manifold P0(J, G) of constant
holomorphic sectional curvature c. It is shown that the complex pro-
jective space Pn{C), the complex w-space Cn and the open unit ball Dn

in Cn are simply-connected complete Kahler manifolds of constant
holomorphic sectional curvature according as to be positive, zero and
negative ([7], [11]). Denoting the curvature tensor fields on Po and on
N by R and R respectively, we have
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R(X, Y, Z, W) = ^{G(X, Z)G(Y, W) - G(X, W)G(Y, Z)

+ Ω{X, Z)Ω(Y, W) - Ω(X, W)Ω(Y, Z) + 2Ω(X, Y)Ω(Z, W)}

for any vector fields X, Y, Z and W on Po. It follows that for any
vector fields X, Y, Z and W on N

R^X, i.Y, ύZ, i*W) = Ug{X, Z)g(Y, W) - g(X, W)g(Y, Z)
4

+ F{X, Z)F{Y, W) - F(X, W)F(Y, Z) + 2F(X, Y)F(Z, W)} ,

where c denotes the restriction of c to N. By the equations of Gauss
and Codazzi we obtain

R{X, Y,Z,W) = h(X, Z)h(Y, W) - h(X, W)h(Y, Z)

+ Ug{X, Z)g(Y, W) - g(X, W)g(Y, Z) + F(X, Z)F(Y, W)
4

- F(X, W)F(Y, Z) + 2F(X, Y)F(Z, W)} ,

{Vxh)(Y, Z) - (VYh)(X, Z) = Uη{X)F{Y, Z) - η{Y)F{X, Z)
4

- 2η(Z)F(Σ, Y)} .

Let A be a structure indicator tensor field on a hypersurface N in Po.
Since the tensor field H is written as H = A + aη (x) E for a scalar field
a on N, a totally umbilic (H — I) hypersurface N imbedded in Po

imposes the induced structure (/, E, η, g) to be Sasakian and N to be
of constant curvature 1, and a totally geodesic hypersurface N imbedd-
ed in Po imposes the structure (/, E, ηf g) to be cosymplectic and N to
be flat.

Making a comparision with this fact, we have the following result.

PROPOSITION 2. On an induced quasi-Sasakian hypersurface N(f,
E, 7], g) in a Kahler manifold PQ(J, G) of constant holomorphic sectional
curvature c if the structure indicator tensor field A is parallel, then
the second fundamental tensor field H must have the form H = A —
(c/i)y (g) E or H = λ^ (g) E for any scalar field λ, hence the curvature
tensor field R is determined by the structure tensor fields.

PROOF, Differentiating covariantly H = A + aη (x) E with respect to
X, we have (Vxh)(Y9 Z) =
It follows that
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, Z) - η{Y)F{Xy Z) - 2η(Z)F(X, Y)}

= η(Y)η(Z)Xa - η(X)η(Z)Ya + a[η(Y)(Vzη)(Z) -

Putting Y — Z — E in this equation, we find Xa = Ύ](X)Ea, which
is used to see that the terms η(Y)η(Z)Xa — η(X)η(Z)Ya vanish. Putt-
ing Z = E again in the above, hence, we have afA + (c/4)/ = 0. Tak-
ing account of A2 = A, we obtain (a + c/A)fA — 0. q.e.d

COROLLARY 3. On a hypersurface N in a Kdhler manifold P0(J, G)
of constant holomorphic sectional curvature c the set (/, E, η, g) of the
induced tensor fields defines a Sasakian structure if and only if H
has the form H = I — (c/4)^ (g) E.
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