Tôhoku Math. Journ. 29 (1977), 227-233.

QUASI-SASAKIAN MANIFOLDS

Shôji Kanemaki

(Received January 16, 1976)

Introduction. In the study of even-dimensional Riemannian manifolds an almost Hermitian manifold P(J, G) is an almost complex manifold with a Riemannian metric G such that G(JX, Y) = -G(JX, Y) for any vector fields X and Y. If the Nijenhuis tensor field [J, J] of the structure tensor field J vanishes on P, the manifold P(J, G) is called to be Hermitian. A Kähler manifold is a Hermitian manifold with the closed fundamental 2-form Ω , defined by $\Omega(X, Y) = G(JX, Y)$. We know a familiar result that a necessary and sufficient condition for an almost Hermitian manifold P(J, G) to be Kählerian is that $\nabla_x J = 0$ holds for any vector field X with respect to the Riemannian connection ∇ of the metric G(e.g., [7], [15]).

Analogously, we shall consider odd-dimensional Riemannian manifolds. Let $M(f, E, \eta, g)$ be a (2n + 1)-dimensional almost contact metric manifold, on which a set of tensor fields (f, E, η, g) consisting of a linear transformation field f, a vector field E, a 1-form η and a Riemannian metric g satisfies $f^2 = -I + \eta \otimes E$, $\eta(E) = 1$, fE = 0, $\eta(fX) = 0$, $\eta(X) = g(X, E)$, g(fX, Y) = -g(X, fY) for any vector fields X and Y, where I denotes the identity linear transformation field ([8], [10]). An almost complex structure J_0 can be defined on the product $M \times R$ of M and a real line R by $J_0(X, \lambda d/dt) = (fX + \lambda E, -\eta(X)d/dt)$, where λ is a scalar field on $M \times R$. If the structure J_0 is complex analytic, the almost contact metric structure (f, E, η, g) is called to be normal. It is shown that a necessary and sufficient condition for an almost contact metric structure (f, E, η, g) to be normal is that the torsion tensor field S, defined by

$$S(X, Y) = [fX, fY] - f[fX, Y] - f[X, fY] + f^{2}[X, Y] + d\eta(X, Y)E$$

for any X and Y, vanishes on the manifold [9]. A quasi-Sasakian manifold $M(f, E, \eta, g)$ is a normal almost contact metric manifold with the closed fundamental 2-form F, defined by F(X, Y) = g(fX, Y) ([1], [12]).

In this paper, our purpose is to prove the following theorem.

S. KANEMAKI

THEOREM. A necessary and sufficient condition for an almost contact metric manifold $M(f, E, \eta, g)$ to be quasi-Sasakian is that there exists a symmetric linear transformation field A on M such that

(*)
$$(\nabla_X f) Y = \eta(Y)AX - g(AX, Y)E$$
, $fAX = AfX$,

for any vector fields X and Y on M with respect to the Riemannian connection ∇ of the metric g.

A (2n + 1)-dimensional manifold is said to have a contact structure if it carries a 1-form η with the property $\eta \wedge (d\eta)^n \neq 0$ [5]. It is well known that on a contact manifold there exists an almost contact metric structure (f, E, η, g) with a contact form η defining the contact structure and $d\eta = 2F$ ([8], [9], [10]). A normal contact metric manifold is also called a Sasakian manifold. A normal almost contact metric manifold is cosymplectic if its fundamental 2-form F and contact form η are both closed ([1], [4]). The (2n + 1)-dimensional Euclidean space R^{2n+1} admits a cosymplectic structure. The sphere S^{2n+1} admits a Sasakian structure [10]. And a product manifold of a Sasakian manifold and a Kähler manifold admits a quasi-Sasakian structure [6].

It follows from the condition (*) that $\nabla_X E = fAX$ holds for any X. In fact, differentiating covariantly $f^2Y = -Y + \eta(Y)E$ with respect to X, we have $(\nabla_X f)fY + f(\nabla_X f)Y = (\nabla_X \eta)(Y)E + \eta(Y)\nabla_X E$. Putting Y = E in this equation, we find the desired relation. Then, since $d\eta(X, Y) = 2F(AX, Y)$, Theorem implies that a necessary and sufficient condition for an almost contact metric structure (f, E, η, g) on a manifold to be cosymplectic (resp. Sasakian) is that $\nabla_X f = 0$ (resp. $(\nabla_X f)Y = \eta(Y)X - g(X, Y)E$) holds ([1], [10]). In this paper, by Theorem we want to consider a quasi-Sasakian manifold being locally a product of a Sasakian manifold and a Kähler manifold, and to see the induced structures on hypersurfaces in Kähler manifolds.

1. The proof of Theorem. Assume that there exists a symmetric linear transformation field A satisfying (*) on an almost contact metric manifold $M(f, E, \eta, g)$. Since $g((\nabla_x f)Y, Z) = (\nabla_x F)(Y, Z)$ and $dF(X, Y, Z) = (\nabla_x F)(Y, Z) + (\nabla_y F)(Z, X) + (\nabla_z F)(X, Y)$ are valid, then the 2-form F is closed. Using the symmetry of the connection ∇ , we may reduce the bracket $[fX, fY] = \nabla_{fx}fY - \nabla_{fy}fX = (\nabla_{fx}f)Y - (\nabla_{fy}f)X + f\nabla_{fx}Y - f\nabla_{fy}X = \eta(Y)AfX - \eta(X)AfY - 2g(AfX, Y)E + f\nabla_{fx}Y - f\nabla_{fy}X$. Hence, we have S = 0.

Conversely, assume that S = 0 and dF = 0. The torsion tensor

228

field S reduces to

$$S(X, Y) = (
abla_{fx}f)Y + (
abla_{x}f)fY - (
abla_{fy}f)X - (
abla_{y}f)fX - \eta(Y)
abla_{x}E + \eta(X)
abla_{y}E$$
,

from which

$$g(S(X, Y), Z) = dF(fX, Y, Z) - (\nabla_z F)(fX, Y) - \eta(Y)(\nabla_x \eta)(Z) - dF(fY, X, Z) + (\nabla_z F)(fY, X) + \eta(X)(\nabla_x \eta)(Z)$$

by virtue of $(\nabla_x F)(Y, Z) = -(\nabla_x F)(Z, Y)$. Hence, it follows that

(1.1)
$$2(\nabla_z F)(fX, Y) = \eta(X)(\nabla_z \eta)(Y) + \eta(Y)(\nabla_z \eta)(X) \\ - \eta(Y)(\nabla_x \eta)(Z) + \eta(X)(\nabla_y \eta)(Z) .$$

Replacing X, Y and Z by -fY, Z and X in (1.1) respectively, we obtain

(1.2)
$$2(\nabla_x F)(Y, Z) = 2\eta(Y)(\nabla_x F)(E, Z) - \eta(Z)(\nabla_x \eta)(fY) + \eta(Z)(\nabla_{fY}\eta)(X) .$$

Putting X = E in (1.1) and using $g(\nabla_z E, E) = 0$, we find

$$(1.3) \qquad \qquad (\nabla_{_{Y}}\eta)(Z) + (\nabla_{_{Z}}\eta)(Y) = \eta(Y)(\nabla_{_{E}}\eta)(Z) \; .$$

On the other hand, we take notice of the vanishing of the torsion tensor field again. Define a tensor field T of type (1.3) on M by T(X, Y) = $(\nabla_{f_X} f)Y + (\nabla_X f)fY - \eta(Y)\nabla_X E$ for any X and Y. Then the relations S(X, Y) = T(X, Y) - T(Y, X), g(T(X, Z), Y) = -g(T(X, Y), Z) and g(S(X, Y), Z) - g(S(X, Z), Y) - g(S(Y, Z), X) = 2g(T(X, Y), Z) hold. Therefore, we see that S = 0 is valid if and only if T = 0. Consequently, we have $\nabla_E E = 0$, $\nabla_E \eta = 0$, $\nabla_E f = 0$, $\nabla_{f_X} E = f \nabla_X E$, $(\nabla_{f_X} \eta)(Y) +$ $(\nabla_X \eta)(fY) = 0$.

Considering (1.2) and (1.3) together with these relations, we see that E is a Killing vector field, i.e., $L_E g = 0$ where L_E denotes the Liederivation with respect to E, and have

$$(\nabla_{X}f)Y = \eta(Y)\underline{A}X - g(\underline{A}X, Y)E, \quad f\underline{A}X = \underline{A}fX, \ g(\underline{A}X, Y) = g(X, \underline{A}Y)$$

for any vector fields X and Y, where we have put $\underline{A}X = -f\nabla_x E$. This completes the proof.

2. Definition of a structure indicator tensor field \overline{A} . We make a substitution of Y = E in (*). The tensor field A described in Theorem is written as $A = \underline{A} + k\eta \otimes E$ for a scalar field k, $k = \eta(AE)$. Since $g(\underline{A}X, \eta(Y)E) = 0$ holds for any X and Y, the subspaces $\underline{A}(T_x(M))$ and

 $\eta(T_x(M))E$ are orthogonal in the tangent space $T_x(M)$ to M at each point x. This fact means that the space $\underline{A}(T_x(M))$ is always contained in the value $-f^2(T_x(M))$ at x of the 2n-dimensional distribution determined by $-f^2$. If there exists a non-zero element X of the intersection of the kernel of \underline{A} and $-f^2(T_x(M))$, the vector fX is non-zero and also belongs to itself. Thus, a relation

$$even = rank A \leq rank A \leq rank A + 1$$

holds at each point of M.

Let there be given a symmetric linear transformation field A satisfying the condition (*) on an almost contact metric manifold (i.e., a quasi-Sasakian manifold). Define a linear transformation field \overline{A} by $\overline{A} =$ $-f^2A + \eta \otimes E$, which means $\overline{A} = \underline{A} + \eta \otimes E$. We shall call \overline{A} a structure indicator tensor field of a quasi-Sasakian structure. Then the relation rank $\overline{A} = 2p + 1(0 \leq p \leq n)$ holds at each point of M. The following conditions are equivalent.

(a)
$$\underline{A}^2 = \underline{A}$$
, (b) $\overline{A}^2 = \overline{A}$, (c) $g((\nabla_X \overline{A})Y, E) = 0$

for any X and Y. In fact, since the covariant derivative $\nabla_X \overline{A}$ of \overline{A} with respect to X reduces to $(\nabla_X \overline{A}) Y = g(\overline{A}X, f\overline{A}Y)E + (\nabla_X \eta)(Y)E - f\nabla_X \nabla_Y E + f\nabla_{\nabla_X Y}E + \eta(Y)\nabla_X E$, we have $g((\nabla_X \overline{A})Y, E) = g(f(\overline{A} - \overline{A}^2)X, Y)$. This is used for the verification of "(b) \Leftrightarrow (c)".

3. A product M of a Sasakian manifold and a Kähler manifold. In this article we prove (c.f., [1], [12]).

PROPOSITION 1. Let \overline{A} be a structure indicator tensor field on a manifold $M(f, E, \eta, g)$. If \overline{A} is parallel and has a constant rank $2p + 1(1 \le p \le n - 1)$ on M, then the manifold M is locally a product of a Sasakian manifold of dimension 2p + 1 and a Kähler manifold of dimension 2q, n = p + q.

PROOF. First we put $\overline{A}^* = I - \overline{A}$. Then the tensor fields \overline{A} , \overline{A}^* determine a (2p + 1)-dimensional and a 2q-dimensional distributions $\mathscr{D}(\overline{A})$ and $\mathscr{D}(\overline{A}^*)$, which are complementary. If we put $\psi = \overline{A} - \overline{A}^*$ again, we see that ψ defines an almost product structure, $\psi^2 = I$, satisfying $g(\psi X, \psi Y) = g(X, Y)$ for any X and Y. Since the tensor field ψ is parallel on M, $\mathscr{D}(\overline{A})$ and $\mathscr{D}(\overline{A}^*)$ are both completely integrable ([3], [14], [15]). Denoting the maximal integral manifolds through a point of M corresponding to $\mathscr{D}(\overline{A})$ and $\mathscr{D}(\overline{A}^*)$ by N_1 and N_2 respectively, we find a Sasakian structure on N_1 and a Kähler structure on

230

 N_2 from the given quasi-Sasakian structure. In practice, we denote by f_i , i = 1, 2, and g_i the restrictions of f and g to N_i respectively, and use the same symbol ∇ as the induced Riemannian connections with respect to g_i on N_i . Since for any vector fields X and Y belonging to $\mathscr{D}(\bar{A})$ the conditions $(\nabla_x f_1) Y = \eta(Y) X - g(X, Y) E$, $g_1(f_1X, Y) = -g_1(X, f_1Y)$, $E \in \mathscr{D}(\bar{A})$ hold on N_1 , and for any vector fields X and Y belonging to $\mathscr{D}(\bar{A}^*)$ the conditions $(\nabla_x f_2) Y = 0$, $g_2(f_2X, Y) = -g_2(X, f_2Y)$ hold on N_2 , then the sets of tensor fields (f_1, E, η, g_1) on N_1 and (f_2, g_2) on N_2 define the desired structures.

Hypersurfaces in Kähler manifolds. Let P(J, G) be a Kähler 4. manifold of dimension 2n + 2, and let N be a (2n + 1)-dimensional manifold imbedded in P with imbedding map $i: N \rightarrow P$. With identification in mind we express the hypersurface i(N) by N. Take a unit normal vactor field ζ over the hypersurface N. Then we have the relations $Ji_*X = i_*fX + \eta(X)\zeta$, $J\zeta = -i_*E$ for any X on N, where f is a linear transformation field, η is a 1-form, E is a vector field, and i_* denotes the differential of *i*. We denote the induced metric of G by g, $G(i_*X, i_*Y) = g(X, Y)$. The equations of Gauss and Weingarten are $abla_{i_*X}i_*Y = i_*
abla_XY + h(X, Y)\zeta$ (h(X, Y) = h(Y, X)) and $abla_{i_*X}\zeta = -i_*HX$ (g(HX, Y) = h(X, Y)), where h and H are the second fundamental tensor fields (of type (0, 2) and (1, 1) respectively) on N with respect to ζ . Then, since $(\nabla_X f) Y = \eta(Y) H X - g(H X, Y) E$, a set (f, E, η, g) of the induced tensor fields defines an almost contact metric structure satisfying dF = 0. A necessary and sufficient condition for the induced structure (f, E, η, g) on N in a Kähler manifold P(J, G) to be quasi-Sasakian is that H commutes with f. In fact, if H commutes with f, since $S(X, Y) = \eta(X)(fH - Hf)Y - \eta(Y)(fH - Hf)X$, then S = 0. Conversely, if we have S = 0, then, by dF = 0, $\nabla_x E = fHX$ and E is a Killing vector field. Hence, we obtain Hf = fH. When we specialize the structure (f, E, η, g) in two cases, we have that the set (f, E, η, g) defines a cosymplectic structure if and only if $H = \lambda \eta \otimes E$ for any scalar field λ , and that the set (f, E, η, g) defines a Sasakian structure if and only if $H = I + \lambda \eta \otimes E$ for any scalar field λ .

Consider hypersurfaces in a Kähler manifold $P_0(J, G)$ of constant holomorphic sectional curvature \tilde{c} . It is shown that the complex projective space $P^n(C)$, the complex *n*-space C^n and the open unit ball D^n in C^n are simply-connected complete Kähler manifolds of constant holomorphic sectional curvature according as to be positive, zero and negative ([7], [11]). Denoting the curvature tensor fields on P_0 and on N by \tilde{R} and R respectively, we have S. KANEMAKI

$$\begin{split} \widetilde{R}(X, Y, Z, W) &= \frac{\widetilde{c}}{4} \{ G(X, Z) G(Y, W) - G(X, W) G(Y, Z) \\ &+ \Omega(X, Z) \Omega(Y, W) - \Omega(X, W) \Omega(Y, Z) + 2\Omega(X, Y) \Omega(Z, W) \} \end{split}$$

for any vector fields X, Y, Z and W on P_0 . It follows that for any vector fields X, Y, Z and W on N

$$egin{aligned} &\widetilde{R}(i_*X,\,i_*Y,\,i_*Z,\,i_*W) = rac{c}{4}\{g(X,\,Z)g(Y,\,W) - g(X,\,W)g(Y,\,Z) \ &+ F(X,\,Z)F(Y,\,W) - F(X,\,W)F(Y,\,Z) + 2F(X,\,Y)F(Z,\,W)\}\,, \end{aligned}$$

where c denotes the restriction of \tilde{c} to N. By the equations of Gauss and Codazzi we obtain

$$\begin{split} R(X, \ Y, \ Z, \ W) &= h(X, \ Z)h(Y, \ W) - h(X, \ W)h(Y, \ Z) \\ &+ \frac{c}{4} \{g(X, \ Z)g(Y, \ W) - g(X, \ W)g(Y, \ Z) + F(X, \ Z)F(Y, \ W) \\ &- F(X, \ W)F(Y, \ Z) + 2F(X, \ Y)F(Z, \ W)\} , \\ (\nabla_{x}h)(Y, \ Z) - (\nabla_{Y}h)(X, \ Z) &= \frac{c}{4} \{\eta(X)F(Y, \ Z) - \eta(Y)F(X, \ Z) \\ &- 2\eta(Z)F(X, \ Y)\} . \end{split}$$

Let \overline{A} be a structure indicator tensor field on a hypersurface N in P_0 . Since the tensor field H is written as $H = \overline{A} + a\eta \otimes E$ for a scalar field a on N, a totally umbilic (H = I) hypersurface N imbedded in P_0 imposes the induced structure (f, E, η, g) to be Sasakian and N to be of constant curvature 1, and a totally geodesic hypersurface N imbedded ed in P_0 imposes the structure (f, E, η, g) to be cosymplectic and N to be flat.

Making a comparision with this fact, we have the following result.

PROPOSITION 2. On an induced quasi-Sasakian hypersurface $N(f, E, \eta, g)$ in a Kähler manifold $P_0(J, G)$ of constant holomorphic sectional curvature \tilde{c} if the structure indicator tensor field \bar{A} is parallel, then the second fundamental tensor field H must have the form $H = \bar{A} - (c/4)\eta \otimes E$ or $H = \lambda\eta \otimes E$ for any scalar field λ , hence the curvature tensor field R is determined by the structure tensor fields.

PROOF. Differentiating covariantly $H = \overline{A} + a\eta \otimes E$ with respect to X, we have $(\nabla_x h)(Y, Z) = \eta(Y)\eta(Z)Xa + a\{\eta(Y)(\nabla_x\eta)(Z) + \eta(Z)(\nabla_x\eta)(Y)\}$. It follows that

232

$$egin{aligned} &rac{c}{4}\{\eta(X)F(Y,Z)-\eta(Y)F(X,Z)-2\eta(Z)F(X,Y)\}\ &=\eta(Y)\eta(Z)Xa-\eta(X)\eta(Z)Ya+a[\eta(Y)(
abla_{_X}\eta)(Z)-\eta(X)(
abla_{_Y}\eta)(Z)\ &+\eta(Z)\{(
abla_{_X}\eta)(Y)-(
abla_{_Y}\eta)(X)\}] \,. \end{aligned}$$

Putting Y = Z = E in this equation, we find $Xa = \eta(X)Ea$, which is used to see that the terms $\eta(Y)\eta(Z)Xa - \eta(X)\eta(Z)Ya$ vanish. Putting Z = E again in the above, hence, we have $af\bar{A} + (c/4)f = 0$. Taking account of $\bar{A}^2 = \bar{A}$, we obtain $(a + c/4)f\bar{A} = 0$. q.e.d.

COROLLARY 3. On a hypersurface N in a Kähler manifold $P_0(J, G)$ of constant holomorphic sectional curvature \tilde{c} the set (f, E, η, g) of the induced tensor fields defines a Sasakian structure if and only if H has the form $H = I - (c/4)\eta \otimes E$.

References

- D. E. BLAIR, The theory of quasi-Sasakian structures, J. Differential Geometry, 1 (1967), 331-345.
- [2] S. S. CHERN, Einstein hypersurfaces in a Kählerian manifold of constant holomorphic curvature, J. Differential Geometry, 1 (1967), 21-31.
- [3] C. CHEVALLEY, Theory of Lie Groups, Princeton Univ. Press, 1946.
- [4] S. I. GOLDBERG and K. YANO, Noninvariant hypersurfaces of almost contact manifolds, J. Math. Soc. Japan, 22 (1970), 25-34.
- [5] J. W. GRAY, Some global properties of contact structures, Ann. of Math., 69 (1959), 421-450.
- [6] S. KANEMAKI, Products of f-manifolds, TRU Math., 10 (1974), 11-17.
- [7] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, II, Wiley (Interscience), New York, 1969.
- [8] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tôhoku Math. J., 12 (1960), 459-476.
- [9] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with certain structures which are closely related to almost contact structure II, ibid, 13 (1961), 281-294.
- [10] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with contact metric structures, J. Math. Soc. Japan, 14 (1962), 249-271.
- B. SMYTH, Differential geometry of complex hypersurfaces, Ann. of Math., 85 (1967), 246-266.
- [12] S. TANNO, Quasi-Sasakian structures of rank 2p + 1, J. Differential Geometry, 5 (1971), 317-324.
- [13] Y. TASHIRO, On contact structure of hypersurfaces in complex manifolds I, Tôhoku Math. J., 15 (1963), 62-78.
- [14] A. G. WALKER, Connexions for parallel distributions in the large, Quart. J. Math. (Oxford) (2) 6 (1955), 301-308; II, 9 (1958), 221-231.
- [15] K. YANO, Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, New York, 1965.

DEPARTMENT OF MATHEMATICS SCIENCE UNIVERSITY OF TOKYO TOKYO, JAPAN