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1. Introduction. Let V be an oriented Riemannian 2-manifold.
The bundle TX{V) of the tangent unit vectors of V can be equipped
with a family of natural Riemannian metrics given by the following
line element:

dσ2 = gihdxidxh + pgiiβyίδvk ,

where gik is the metric tensor of the basic manifold V, p is an arbitrary
non-zero real constant and we have put

J ̂
= dy* + J

This metric in the case p = 1 was introduced and studied by S. SASAKI

[2]. In a recent paper [1] W. KLINGEBERG and S. SASAKI investigated
the tangent sphere bundle of a 2-sphere. The geometry of the tangent
sphere bundle of a Euclidean 3-space was investigated by A. M.
VASIL'EV in another approach [3].

In this paper we consider the tangent sphere bundle of an arbitrary
Riemannian 2-manifold equipped with the generalized Sasaki-metric (1).
We carry out our discussions using a special orthogonal frame: the first
vector of the frame is the horizontal lift of the supporting element (i.e.,
of the regarded point of TΊ(F)), the second and the third ones are the
horizontal and vertical lifts of the normalized vector which is orthogo-
nal to the supporting element.

2. Acknowledgements. The author wishes to express his sincere
thanks to Prof. A. M. VasiΓev (Moscow State University) for raising
the problem and advising him to apply the method of moving frame.

The author is indebted to A. Szϋcs (Budapest) for the verbal obser-
vation that if (x(t), y(t)) forms a geodesic in 2\(M) then y(t) moves on
a simple helix relative to the parallel displacement necessarily (cf.
Theorem 1).

3. The structure equations. The Riemannian connection of the
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manifold V defines a direct sum decomposition of the tangent spaces
of TV. Let xeV and y be a tangent unit vector at x. We denote by
e, the horizontal lift of y e 2^7 to T{x>y)TV. Let z e Ϊ ^ F be the tangent
unit vector at x which is orthogonal to y and such that the 2-frame
(y, z) at x has a positive orientation. We denote by e2 and ez the hori-
zontal and vertical lifts of zeTxV to Tix>y)TV respectively. It is easy
to see that the vectors e19 e29 e3 are tangent to the tangent sphere
bundle T^V) of the manifold V. Let ω\ ω2, ω5 be the linear forms
on 2\(F) forming a dual basis to the frame elf e29 e8.

PROPOSITION 1. The linear forms ω\ ω\ ω3 on T^V) satisfy the
following structure equations

(2) dω1 = -α> 2Λω 3,

dω2 = ω1 Λ ft)3,

dα>3 = -Kω'Λω2 ,

where K is the Gaussian curvature of the Riemannian manifold V.

For the proof it is sufficient to note that the bundle of unit vectors
of an oriented Riemannian 2-manifold can be identified with its bundle
of positively oriented orthonormal 2-frames in a natural manner. Then
the equations (2) correspond to the structure equations on the frame-
bundle.

PROPOSITION 2. The components θl of the Riemannian connection
form θ corresponding to the generalized Sasaki metric can be expressed
in the form

- l ) α > 3 ,

θl = iξ-κ - l)ω 3, θ\ = 0 ,
2

θ\ = -ξ-Kω*, θl = —2-Kω1, θ\ = 0 .
2 2

PROOF. The forms θ{ satisfy the structure equations

dωί = -θi A cok .

On the other hand we have

dgik + gimθt + gmkΘT = 0 ,

where the components gik of the metric tensor are
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011 = 022 = 1 , 033 = P , 012 = 013 = 023 = 0 .

If follows that

θ\ = ffl = θ\ = 0 , 01 + θ\ = 0 , 0Ϊ + pθ\ = 0 , 0* + /O0Ϊ = 0 .

It is easy to see using Cartan's lemma that the theorem holds.

4. Geodesies on TΊ(F). We shall prove the following theorem.

THEOREM 1. The curve (x(t), y(t)) is a geodesic in Tλ{V) with
respect to the Riemannian metric (1) if and only if

a) the geodesic curvature ic of x(t) is proportional to the Gaussian
curvature K of V along x(t), that is fc = aK (a = constant);

b) the endpoint of the vector y(t) moves on a simple helix with
respect to the parallel displacement along the curve x(t) and has the
constant angular velocity ajp concerning the arc-length parameter of
x(t).

REMARK. x(t) may reduce to a point x0. In this case (a = °o) the
vector y(t) moves on the unit circle in the tangent plane as x0.

PROOF. The coordinates ω* of the tangent vectors of a geodesic
with respect to the frame (eίf e2, e3) satisfy the differential equations

ώι + θlωk = 0 ,

where the point denotes the derivation by the afβne parameter t. This
equations can be written on account of Proposition 2 as

ώ 1 - ω2ω* + ρKω2ω* = 0 ,

ώ2 + ωxωz — pKωι(ύ* — 0 ,

d>3 = 0 .

If z(t) is the vectorfield along x(t) such that (y(t), z(t)) forms an
oriented orthonormal frame at x(t) on V, than we can write the above
equations in the form

(3) x = ωιy + ω2z , F&y = ωsz ,

V-Xx = -ρKω2ω*y + pKω'ω'z ,

(c.f. [1], p. 51, equations (2.1))J

J

If we put c = p l l = V{wJ + (ω2)2, we see from djdt{x, x) =

A, V-Xx) = 0 and

4r
at
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that c and ωz are constants.
If c = 0 we have the case mentioned in the Remark.
Let s be the arc-length of x(t) and dash denotes the derivation by

it. We can write the equations (3) as follows

Vx,x' = -

y
c

Vx,Vx,y

The geodesic curvature it of x(s) satisfies

pKω3

\κ\ =

sign K = sign det
ωι; ω2

— pKω2ω*;
= sign (pKω3)

So we have K — pKafjc i.e. a — pω*/c.
The equation Vx,Vx,y = — {ωzjcfy means that the endpoint of the

vector y moves on a simple helix along the curve x{t) with respect to
the parallel displacement.

On the other hand let x(s) be a curve in V (s is its arc-length
parameter) such that the geodesic curvature tz of x(s) is proportional
to the Gaussian curvature K of V along x(s): it = aK. Let y(s) be a
vector field along x(s), the endpoint of which moves on a simple helix
along x(s) and has the constant angular velocity a/p. Now we state
that (x(s), y(s)) is a geodesic in 2\(F) with respect to the me tic (1).

Let z(s) be the vector field along x(s) such that (y(s), z(s)) forms an
oriented orthonormal frame. We can write the differential equations
of x(s), y(s), z(s) as

Vx,x' = -κi2y + fCΎιz ,

If we take



TANGENT SPHERE BUNDLE 207

we get the equations of geodesies (3).

COROLLARY 1. If V is an elliptic or hyperbolic plane then the
geodesies on T^V) are helices around circles on V.

In fact, in this case K Φ 0 is constant on F, and the geodesic
curvature tc of x(t) is constant.

COROLLARY 2. If V is a Euclidean space, then the geodesies on
TΊ(F) are helices around straight lines (/c = α°0 = 0).

5. The curvature of 2\(F).

PROPOSITION 3. The components of the curvature forms Ωl = dθ\ +
θ\ A θ{ in our frame can be expressed as follows:

Ω\ = κ(l - ^-K)ωι Λft)2+ ^K,ωι A ω* + -£-K2ω
2 A

Ω\ = ^-K.ω1 A ω2 + £κ%ωι Aω* ,

Ω\ = -£-K2ω
ι A ω2 + £-K2ω2 A ω* ,

2 4

where dK = iξω1 + K2ω
2.

The proof is obtained by a simple calculation using the results of
Proposition 2.

Now we can find in which case will be the 3-manifold T^V) of
recurrent curvature or locally symmetric or of constant curvature with
respect to the metric (1).

THEOREM 2. The Riemannian manifold TX{V) equipped with the
metric (1) is of recurrent curvature if and only ifK=Q or pK = 1.
In the case K — 0 it is flat, in the case pK = 1 I\(F) has the constant
curvature K/A.

PROOF. We get from Proposition 3 the components of the curvature
tensor:

( ^ ) i21213 -

TKl 9 -^1313 = " T » ^1323 = " >

Δ 4

= = "TJ" -8-2 > -^2313 = = 0 , -Π/2323 = =
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Using these expressions we can calculate the components of the covari-
ant derivative of the curvature tensor. For example we have

W ζ κ K 2 a n d i 2 1 3 2 3 ; 2 = - ζ - i
4 4

From the recurrence of the curvature tensor it follows Kx = K2 = 0,
that is K = constant. But in this case we have

^1212 — K\l j - J f ) , i? 1 3 1 3 = — K2, i? 2 3 2 3 = Γ

and the other components are 0. Now we calculate

We obtained that if T^V) is of recurrent curvature than K = 0 or
jθX = 1. In the first case we have evidently that Tλ{V) is flat.

Now we suppose that pK = 1. We get

Γ> Λ TΓ> K TΓ> - ^ Λ
•"'1212 Γ > -^1318 ~Γr 9 -^2323 ~̂r

H 4 || 4 || 4
τ> jr jζ
—(9n9z2 — 9lt) , —(^11^33 — gld f ^-(^22^33 — flf?8) ,

4 4 4
and iZijjfcί = 0 in the other combination of the indices. This completes
the proof.
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