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Introduction. The question of uniqueness in Cauchy's problem for
elliptic partial differential operators has been reduced to the proof of
certain integral estimates of Carleman type, viz.,

σ 11 B(x, D)u(x) \\2^C\\ A(x, D)u{x) 112 Vu e Cΐ{x eRn:\x\<δ}

where the norm is a weighted norm depending on the small parameter
δ and a large parameter τ. If α ^ o o as r->oo, and C is a constant
independent of τ and δ, then such an estimate can be shown (Theorem
4.1) to be incompatible with the assumption that there is a solution v(x)
of the differential inequality

\A(x,D)v(x)\ ^C\B(x,D)v(x)\

and an ε > 0 such that v = 0 for xι ^ 6 Σ j = 2 x) unless there is a full
neighborhood of x = 0 on which v = 0. Examples of such estimates can
be found in Hormander [13, 14,15], Goorgian [9], Pederson [23, 24, 25],
and Watanabe [32], among many others.

It is the purpose of this paper to combine the techniques in Pederson
[25] and Watanabe [32] to show that uniqueness in Cauchy's problem is
a consequence of a smoothness assumption similar to Pederson's when
the characteristics have multiplicity greater than two and not all lower
order terms are included (c/., Theorem 2.2). In the case of triple charac-
teristics, we give sufficient conditions on the principal part of the operator
which, together with the smoothness of the roots implies uniqueness in
Cauchy's problem for equations with arbitrary lower order terms whose
coefficients are Lipschitz continuous. This additional assumption is, essen-
tially, that the characteristics are either of constant multiplicity of that
the gradients of the roots are linearly independent whenever the roots
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coalesce. When the operator can be represented as a product of operators
with simple characteristics

then the smoothness assumptions are always satisfied and the additional
assumption amounts to saying that whenever some of the distinct factors
of A vanish simultaneously, then their gradients are linearly independent.

1. Notation and Preliminary Lemmas. We shall use the following
notation throughout this paper. We use x=(xu , xn) e Rn (real Euclidean
%-space) to denote the independent variables in the problem and ξ =
(fi, , fn) — (ίi> £') e Λ* to denote the co-variables. When the co-variables
are allowed to have complex values, we denote them by ζ = (ζ^ , ζΛ) =
(ζlf ζ') e C\ We denote Dk = (l/i)(d/dxk) and Dk = (l/i)(d/dξk). We depart
from custom and use the classical multi-index notation whereby a multi-
index a is a set of integers from 1 to n (or, in some cases, m) a =
(a19 , ak) and the number of elements will be called the length of a
and written | a \ = k. The multi-index a* will be obtained from a by
omitting all entries aά with aά = 1. With this convention,

ξa = ξa ξa . . . ζa f Da = ^

and similarly for Da. If A(x, ξ) is a polynomial in ξ whose coefficients
depend on x, write A{a)(x, ζ) = DaA(x, ξ), Aia)(x, ξ) = DaA(x, ζ), and write
A{x, D) for the operator obtained from A by replacing ξa with Da. If
at a point A(xf ξ) has a factorization

4(a, 6) = Π (fi ~ P&, ?)Yj

where the r, are integers summing to m and if α is a multi-index with
no entry j repeated more than r5 times then we denote the Lagrange
interpolation polynomials by

Π (?i - paj)

We use the symbol || || to denote a weighted L2 norm

\u\\2= [ \

where the parameters p, τ, d and the function φp are related by
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φP(x) = fa - d)2 + dp Σ (%)2 δ > 0, τ ^ 0, p > 0

and are not represented explicitly. Throughout the paper we use V to
denote an open cone in Rn with vertex at the origin which contains the
vector NQ = ( - 1 , 0, , 0). (An open cone is a set V = {£F0: ί > 0} where
VQ is an open simply connected set in Rn.) For any such open cone we
write

E(V) = {ζeCn:ζ = ξ + iτN, NeV, τ eR, ξ eRn]

E\V) = {C G C "1: ζ - (ζlf ζ') e#(F)} .

When we refer to the Fourier Transformation of u(x) we mean the
function u(ξ) given by

and the inverse transformation

We use the symbol [ί], ί ^ 0, to denote the integer v such that v ^
έ < v + 1. Finally, we use the letter C to denote a positive constant
which is not necessarily the same in different expressions, and which
may depend on the various given operators and fixed functions but never
on the 'variable' function u nor the parameters p, d, τ, q, etc. which may
appear.

We begin by stating, without proof, a result due to Treves of which
we will often make use. It appears in [30], p. 137.

LEMMA 1.1. Suppose A(ζ) is a polynomial in ξ, of degree m. Then

τ\"\δ*w\\A<a)(D)u\\* ^ 2mml\\A(D)u\\2

for τ ^ 0, δ > 0, p > 0, Vα, and u e C^(Rn).

We shall have several occasions to use the partition of unity given
by the following lemma.

LEMMA 1.2. Suppose klf •••,&„ are n positive constants. Then if
g = (glf . . . f gn) denotes an n-tuple of integers, there is a partition of
unity θg 6 C™(Rn) and a set of points xg e Rn such that

Σ,θg{x) = l xeRn,
g

the support of θg is contained in the parallelepiped
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\x, - χ g J \ ̂ — - j = 1 , ••-, w

and for a given m there is a constant C independent ofkό, j — 1, , n,
and g so that

Furthermore, no more than 2n of the functions θg are non-zero at a
given point.

PROOF. Suppose θQ£C°°(Rn) is a non-negative function supported in

the cube I = {\x3 \ <L 1/2, j — 1, , n}y and assume that

[ θQ(x)dx = 1 .

The function θ(x) defined by

θ(x) = \ θo(x - y)dy

is in C°° and is supported in the cube {|a?y| ^ 1, j = 1, , n}. It is
evident that

Σ θ(x - g) = ( θo(x)dx = 1 ,
g JRn

that there is a common bound, C, for all derivatives of order no greater
than m, and that no more than 2n of the functions θ{x — g) are non-zero
at a point. We now take

and

θg{x) = θ(kyXγ - glf k2x2 - g2, , knxn - gn) .

Then the support of θg is centered at xg and is contained in the parallelepiped

xj - xgJ\ ^ — j = 1, . . . , n ,
k3-

the ^ff form a partition of unity, and the derivatives of order no greater
than m are bounded by

I Daθg \^Cka I a I ̂  m .

This completes the proof of Lemma 1.2.

The following lemma gives an example of a norm inequality which
is implied by the corresponding point wise inequality for the integrand.
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Its proof closely follows the one introduced by Hδrmander [14] and does
not need to be repeated here. Examples of its proof for various values of
p may also be found in Pederson [25], Goorjian [9], and Watanabe [32].

LEMMA 1.3. Suppose Q(ζ) and P,(ζ), j = 1, •• , J, ζ eCn are poly-
nomials with the property that there are non-negative integers y0, vu

• ' > Vj, non-negative constants C, τ0, and an open cone V c Rn with
No = (-1 , 0, , 0) e V such that

(1.1) \τN\>°\Q{ζ)\2 £ C Σ {τNplPAQγ

for ζ 3= $ + iτNeE(V) and τ ^ r0. TΆew /or any choice of 0 < p there
are constants d0 and τ19 with δ0 > 0, τx ^ r0, so

(1.2) ( r ^ | | ( ) | | Σ

/or 0 < δ ^ δ0, r ^ Γjδ', u e C0°°(|α;| < δ/2).

2. Some estimates leading to uniqueness theorems. The results of
this paper all deal with a very special kind of operator.

DEFINITION. A homogeneous operator A(D) is said to be elliptic when
its polynomial A(ζ) has no zeros for ζ 6 Rn. An elliptic operator is said
to have characteristics of multiplicity at most r ^ 1 if all the polynomials
(dkA(ζ)/dζk

ί) k = 0,1, , r have no common zero for ζ' e Rn~ι (when consi-
dered as polynomials in ζx), when r = 1 we say the characteristics are
simple. Since the coefficient of ζΓ in A{ζ) must be bounded away from
zero for A to be elliptic, we assume that all elliptic operators of degree
m are normalized so that the coefficient of ζΓ in A(ζ) is identically one.

With this notion, we can state the next lemma.

LEMMA 2.1. Suppose A(ζ), ζ 6 Cn, is a homogeneous polynomial of
degree m with characteristics of multiplicity no greater than r. Then
there is an open cone V c Rn so that

(2.1) |ζr ^ C± ζ^

PROOF. When considered as functions of (ξ, τ) 6 Rn+\ both sides are
homogeneous of degree 2m, and hence we need only show (2.1) for the
set |f |2 + r2 = 1. Take N = No first. In this case, neither side of (2.1)
is ever zero, by the assumption on the characteristics, and hence a constant
exists. By continuity, (2.1) will also hold for N in some neighborhood
of No. Homogeneity then assures that (2.1) holds for N near NQ and
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all (ξ, τ) e Rn+1. Since the vector N appears only in the combination (τN),
(2.1) must hold for a whole cone VcRn. This completes the proof of
Lemma 2.1.

The next lemma is a consequence of a very simple calculation.

LEMMA 2.2.

| τ iV | 2 m - 2 | α l | ζ α | 2 ^ | ζ | 2 m ζeE(Rn)\a\ ^m .

PROOF. We first note that | ζ α | 2 ̂  | ζ | 2 | α | and then that | ζ | 2 = \ξ|2 +
|τi\Γ|2 ^ |τi\Γ|2. The result follows.

The norm estimate corresponding to Lemma 2.2 will prove very
useful in the work that follows.

COROLLARY. There are constants p > 0, 0 < <50, 0 < τ0 so that

( r S ) 2 w " 2 | a | | | I U | | 2 ^ C Σ \\DβU\\2

\βl=m

V0 < δ ^ δ0, τ ^ τjδ\ ueC?(\x\^ δ/2) .

We are now in a position to state an important result due to Goorjian,
giving weighted norm estimates of the derivatives of u in terms of
A(D)u. Its proof provides model a for that of Theorem 2.2.

THEOREM 2.1. Suppose A(ζ) is s polynomial in ζeCn of degree m
whose elliptic principal part has characteristics of multiplicity no
greater than r. Then there are constants 0 < p < 2, 0 < δ0 < 1, τ0 > 0,
such that

(2.2) Σ τ m - | α | (τδ 2 ) m - | α | - r | |2? α ^| | 2 ^ C\\A(D)u\\2

V0 < δ ^ δ0, τ ^ τjδ2 , and ueC?(\x\ < δ/2) .

PROOF. TO simplify the notation somewhat, we first assume that
\a\ = m and prove the estimate

Σ (
\a\=m

V0 < δ ^ δOf τ ^ τjδ2 , and u e C^(\x\ < δ/2) .
Applying Lemma 1.3 to the inequality (2.1) in Lemma (2.1), we see

that for 0 < p < 2 there are constants δ0 > 0 and τ0 > 0 such that

(2.3) Σ \\Dau\\2^ C±(τδγk\\P^(D)u\\2 VueC?(\x\ < δ/2)
\a\=m ft=0

where kβ = (1,1, •••, 1) and \kβ\ = k, and P denotes the principal part
of A. If we use Q to denote the terms of A with order less than m,
then we can write
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(2.4) Σ \\D«u\\2 ^ CΣt(τδYk\\A<i''>(D)u\\t + Σ (
. |α|=m Λ;=0 Λ;=0

Since Q has order less than m, we have from the corollary of Lemma 2.2

\\Q^(D)u\\2 rg C Σ II A^ll2 ^ C(τδ)-2-2fc Σ II^UII2 ,
\a\—m — l—k \a\=m

and (2.4) becomes

Σ II^UII2 ^ C ±{τδ)2k\\A^\D)u\\2 + C(τδ)-2 Σ II^UIΓ .
\a\=m k=0 \a\=m

Now, we are interested only in those values of τ where (r<52) ̂  r0, and
τδ > τδ2 since δ ̂  δ0 < 1. Choose τ0 so large that C(τδ)~2 ^ Cr0-

2 ^ 1/2, so
we can write

(2.5> Σ \ \ \ \ t
]ai=m k=0

Lastly, we apply Lemma 1.1 to the right side of (2.5), and recall that
I kβ* I = 0, to get

Σ \\Dau\\2^C±(τδy\\A(D)u\\\
| α | = m A;=0

or, by taking τ0 ^ 1,

(τδ2)- Σ \\Dau\\2^C\\A(D)u\\2.
|α|=m

The result now follows from the inequality

(2.6) (τδ)2m-^\\Dβu\\2 ^ C Σ \\D*u\\2 \β\ ^ m
|α |=m

which is from the corollary to Lemma 2.2.

REMARK. This estimate can be used to prove uniqueness in Cauchy's
problem for the inequality

\Dau\
]

where A may include terms of order less than m. All of the coefficients
of A, however, must be constant.

We now show that the assumption of a certain pointwise inequality
involving the principal part of an operator is sufficient to prove an
estimate analogous to (2.2) but including a large class of operators with
variable coefficients. In the next section we give sufficient conditions for
this pointwise inequality to be true.

THEOREM 2.2. Suppose A(x, ζ) = P{x, ζ) + Q(x, ζ) where P is a
homogeneous elliptic polynomial of degree m in ζeCn with characteristics
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of multiplicity at most r, r odd, and whose coefficients are Cr, and Q
is a polynomial in ζeCn of degree at most (m — [(r + l)/2] + 1) with
Lipschitz continuous coefficients. Assume there is a neighborhood Ω of
the origin in Rn and an open cone VczRn containing No such that

(2.7)

for l<ί\a\^(r — l),xeΩ,ζeE(V). Then there are constants 0<p<2,
0 < δ0 < 1, and 0 <; r0 so that

(2.8) Σ (rδ 2)m" l α l~ r^m" | α ll | i>^li 2 ̂  C\\A{x, D)u\\2

for all 0 < δ ̂  δ0, τ ^ τo/δ2, u e C~( \ x \ < δ/2).

REMARK. If P has at most triple characteristics, so that r = 3, then
Q may have degree at most (m — 1). In particular, operators of the form

P + Q + ((w — 2) and lower order terms)

will have unique solutions of Cauchy's problem as a consequence of
Theorem 4.1.

Applying Lemma 1.3 to the inequality (2.7) we find that there are
constants 0 < p < 2, 0 < δQ < 1, 0 ̂  r0 so that

(2.9) | | P ( α ) ( * o , £ ^ | | 2 ^ C

for 0 ̂  5 g δ0, r ^ ro/δ2 ^ ro/δ2"p, a;0 e i2, and u e CΌ°°(| α? I < δ/2). In order
to replace P{β) by A(^} on the right side, we use the same device as was
used to conclude (2.5) from (2.3). We then have

(2.10) \\P{a)(Xo,D)u\\2^C Σ
O £ | B | £ |

Since Q is of degree at most (m — [(r + l)/2] + 1) and since its coefficients
are bounded in Ω, we have

Σ
Because δlβl ^ δ1^*1 and r is odd we have

(x0, D)u\\> + C Σ ( ) H ^ | | ,
l j S | = m

where we have assumed τδ2~p ^ τδ2 ̂  r0 ̂  1. As a consequence of Theorem
2.1 we have

||Plβ,(aίo, ^)^ll2 ^ C(τδ2--)'^||A(a;0, D)u\\2 + C(τδ)δ*\\ A(x0, D)u\\>

and since | α | ^ 1 and r ^ 1,
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(2.11) | |P ( β ) (* 0 , D)u\\> <ί C(τδ*-ψ\\\A(x0, D)u\\> .

It is interesting to note here that Watanabe's [32] proof of our
Theorem 2.2 for P(x, D) = (P^x, D)f where P1 has simple characteristics
is essentially similar to the one offered here, differing mainly in that he
replaced (2.11) with his Lemma 4, which is a stronger result than (2.11)
for that case and whose proof is different.

We now show how the theorem follows from (2.11). We use the
partition of unity given in Lemma 1.2 with kj_ = k2 = = kn = (τδq)~1/z,
where p < q < 2 — p. Recall that this means that

θ,(x) = θ((τδψ*x - g) ,

x9 = 9l(τδr2 ,

and

ug(x) = θg(x)u(x) .

Now choose ι*eC*(|a?| < 3/2) where δ <̂  δ0 and δ0 will be specified later.
Applying Lemma 1.1, Theorem 2.1, and estimate (2.11) to the operator
A(xg, D), whose coefficients are 'frozen' at xg, and to the function ug, we
find that

(2.12) Σ (τδ2)m-lal-rτ™-lal\\Daug\\2 + Σ r1*1^1"*1

x \\A^(xlt D)uβ ||' + Σ (τδ>->)-™\\PU*., D)u, II2

ίί C\\A{xg, D)ug\\'.

Applying Taylor's theorem to the principal part, P, of A gives

A(x, ζ) - A(xβt ξ) = Q(x, ζ) - Q(xa, ζ) + Σ (X ~ ^"PU*., ί)

+ Λ Σ (* - ^)α-P(α.(«, I)
γ\ \α\=r

where x is a point between α; and xg. Hence,

(2.13) \\A{x, D)u9 - A(x9J D)ug\\> ^ C(τS^ Σ \\Dαu9\\>
| α | m [ ( r + l ) / 2 ] + l

C Σ (^TII-DAII 2

Comparing the first sum on the right side of (2.13) with the terms of
order | α \ = m - [(r + l)/2] + 1 of the first sum on the left of (2.12) gives
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Since q < 2, choosing δ0 so small that

Cδf' ^ 1/2

will allow us to combine these terms. Similarly, comparing the third
sum on the right of (2.13) with the terms of order \a\ = m in the^first
sum on the left of (2.12) gives

(τδyr - C(τδ<)~r = (τδ2yr(l - CSr(2~9))

and choosing δ0 so small that

Cδri2~q) ^ Cδ{

0

2-q) ^ 1/2

allows us to combine these terms. Comparing the middle sum on the
right of (2.13) with the third sum on the left of (2.12) gives

and choosing δQ so small that
/*yS\\oc\(2—a—p) <*" /T5^2—Q — p <̂ ** "f / O

allows us to combine these terms. We therefore have

\^ 14) s t [To ) T 11 UaV/g 11 "T" y i T o \\Ά \Xgt U)V/g\\
\oc\Sm l ^ | α |

We next consider the middle term on the left side of (2.14). For
:g \a\ ^ r — 1, Taylor's theorem gives

^(x, ξ) - A<«>(a>f> I) =

+ Σ , „ , P\"β\(β. ξ) + Qia)(%, ζ) -
\β\=r-\a\ + l \ β \ l

where x is between x and xg, and hence

^ I β l S p l α * ! ! ! A(a)(sy JΊ\^i Δ («)//>• Γ ) W II 2 <Γ Z0'
Γ 0 j I J± \X, JSjUg J± K&g, U)Ug | | ^ KJ

v τ l α l ^ p l α * l | | T>(a)(rr Thii II 2 j _ Π V (r

Applying Lemma 1.1 to the first term on the right gives

(2.15) r | a ^ I a * ' | | A^{x, D)ug - Aw{xgj D)ug\\2 ^C Σ (τδ«)-^

x\\P{β){xgi D)ug\\2 + C Σ Tw-r-^pla*l~^r-^+1)

\β\=m-\a\

x 11 Dβu, 112 + aτδ<)-ψ«ψw Σ 11 D,u, 112 .
| 8 | [ ( + i ) / 2 ] + l | |
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We now use (2.15) for 1 <̂  \a\ <Ξ> r — 1, and the following consequence
of the degree of A,

}a)(x, D)ug - A«\xg, D)ug\\* ̂  C Σ

for \a\ ^ r, in combination with (2.14) to give

(2.16) Σ (rδT~' α | "T κ - | α | | |D α w ί , | | 2 + Σ ;

x\\Aia)(a

t.ll*

where we have simply dropped the terms involving P(α) on the left side.
To replace ug by % we sum on g. Since % = Σσ w,, then Dαu = Σ A ^

and A(α)(α;, D)^ = Σ A{a)(x, D)ug. By Leibnitz' rule, since ug = 0ffw,

4(ίc,Z))tt = Σ α (A(α)(α;, D)u)(DJg)
a

where the constants Ca depend only on a, and hence summing (2.16)
yields

(2.17) Σ (rδ 2 ) w " | α ' " r ^ m " l α l l l^α^ll 2 + Σ r1*1^1**1!! A'a){x, D)u\\2 '
\a\£m | α | ^ l

^ C||A(a;, D)u\\2 + CΣ(τδ*)w\\Aw(x, D)u\\2 .
| α | £ l

If p < ^ < 2 and δ0 is chosen so small that

cδrp ^ i/2

then

and hence (2.17) becomes

(2.18) Σ (τδ2)m-]al-rτm-lal\\Dau\\2 + Σ τWδpw\\Aw(x, D)u\\2

The proof of Theorem 2.2 is completed by simply dropping the second
sum on the left side of (2.20).

REMARK. It is possible to eliminate the inequality (2.7) from Theorem
2.2 if the polynomial A(x, ζ) is restricted to be homogeneous (Q = 0),
and one also assumes that the roots of A considered as a polynomial in
d are locally Cr. This fact is a consequence of Lemma 3.1.

3. Sufficient conditions for theorem 2.2. The reader will observe
that the conclusion of Theorem 2.2 is a consequence of an inequality
which, per se, does not depend explicitly on any properties of the roots
of the principal part of the symbol. In this section we shall give
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sufficient conditions in order that the inequality (2.7) is satisfied. Our
aim is to generalize the result of Watanabe for operators of the form

(3.1) A(x, ζ) = (P(x, ζ))3 + Q(x, ζ) ,

where P is a homogeneous elliptic polynomial of degree m/3 whose charac-
teristics are simple and Q has degree (m - 1) and Lipschitz continuous
coefficients, by replacing the polynomial (P)3 by more general polynomials
with characteristics of multiplicity no greater than three. In the case
that Q = 0, we have already achieved this objective.

It seems reasonable that it should be possible to generalize Watanabe's
result with (3.1) replaced by

A(x, ζ) = Px(x9 ζ)P2(x, ζ)P.(s, ζ) + Q(x, ζ)

or

A{x, ζ) = (PAx, Q)2P£χ, 0 + Q(χ, 0

where Plf P2, P3 are homogeneous elliptic polynomials with simple charac-
teristics whose degrees sum to m and Q is as above. This generalization
may not be possible unless additional assumptions are placed on Plf P2, P3,
however, and one possible such assumption is that the distinct factors
of the principal part have linearly independent gradients in a neighborhood
of a multiple root, a condition which is trivially true in the case of a
single distinct factor with simple characteristics, i.e., in Watanabe's case.
As it turns out, this assumption may be imposed even when the factors
are not polynomials, and it is with this in mind that we make the
following definition.

DEFINITION. The homogeneous elliptic differential operator A(x, D)
is said to have non-tangential characteristics of multiplicity r at a
point (x0, ζ0) eRn x Cn if its symbol A(x, ζ) has the factorization in a
neighborhood of (xQ9 ζ0)

A{x, ζ) = Π (ζ, - Pi(x, C)Y*

with pj e Cr~ι j = 1, , J and where the r5 are positive integers whose
sum is m, K S J is an integer such that

*Ί + r2 + + rκ = r

and

pi(χo, Co) = p2(χo, Q = = pκ(χo, Q Φ pAxof Q , j = K + l, , J

and the set of vectors {ylf -*-,Ίκ}c_Cn is linearly independent, where Ίό
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is the vector whose first component is 1/i and whose remaining components
are —Dkpj(x0fζ'0),k = 2, — ,n. We say that an operator has non-
tangential characteristics of multiplicity at most r in a set if it has
non-tangential characteristics of multiplicity no greater than r at every
point in that set.

Observe that we tacitly assumed that the roots of the polynomial
are well-defined functions, an assumption that is unnecessary if it is the
product of factors with simple roots. In this case, if

A(x, ζ) - (P&, ζ)W 2 (a, Qϊ2 (Pκ(x, ζ)Y*(Pκ+&, 0)

and if Pfa, ζ0) = = Pκ(x0, ζ0) = 0 and Pκ+ι(xOf ζ0) Φ 0 then A will have
non-tangential characteristics if and only if the set of vectors {Γ19 , Γκ) c
Cn is linearly independent, where Γ5 is the vector whose components are
D k P j ( x 0 9 C o ) , k - 1 , ••-,*.

The first lemma containts a pointwise inequality relating the poly-
nomials obtained by differentiating the coefficients of the given polynomial
with the Lagrange interpolation polynomials.

LEMMA 3.1. Let A(x, ζ) be a homogeneous elliptic polynomial of
degree m in ζeCn for x e Rn. Let pό(xy ζ') j = 1, , J be its roots, where
the multiplicity of p3- is rό when considered as a polynomial in d
Suppose there is a neighborhood ΩQ of the origin in Rn and an open cone
VcRn so that

PjeCr(Ωox E\V))

then for xeΩQ, Ne V, ζ eE(V) and \a\ <ϊ min(r, m) we have

(3.2) \A{a)(x,Q\2

\ ( Q \ Σ \
. \β\£\a\

REMARK 1. By this assumption we do not mean to imply that the
roots of A are defined globally but merely that for each point (x, ζ') e
ΩQ x Er(V) there is a neighborhood and m functions ρ3(xf ζ') each of
which is Cr and satisfies A(x, ζl9 ζ') = 0 in that neighborhood.

REMARK 2. In (3.2) the multi-index a has entries running from 1
to n, as have the other multi-indices used until now. The index /S,
however, has entries running from 1 to J, where the entry j may be
repeated at most rs times, since these are the indices for which βA is
defined. Although these restrictions on β are not explicitly denoted in
the various expressions where β appears, it will always be clear from
the context that they are required.

PROOF OF LEMMA 3.1. Since
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,τ
Λ(Ύ r\ _ TT tr n /„ r'\\rj

Ά-{x9 ς ; — ι ι (^ — PJ\X9 ς )) 3 ,

then if \a\ = 1 we have

Aia) = Σ rβι(Dapβί(x, ζ ' ) M
I β I = i

For min (r, m) ^ | α | S; 1, we write

(3.3) A(β) =
where the 72(α, /3) are all continuous functions in a neighborhood of each
point in the set Ωo x E\V).

We return now to the consideration of (3.2). Considered as functions
of (ζ, τ) e Rn+1 for each x e Ωo, each side is a homogeneous function of
degree 2m. We therefore need only show (3.2) for the set S = { | ί | 2+τ 2=l}.
For N = No and τ = 0 the elliptic polynomial A(x9 ζ) is non-zero and
hence, by continuity, there is a number r0 with | A(#, ζ) |2 bounded below
by a positive number for τ ^ r0. Again by continuity, there is a relatively
open set, Vo, of unit vectors surrounding No such that | A(x, ζ)|2 is bounded
below by a positive number for NeVQ and r ^ r0. Without loss of
generality, we may assume that the cone V is generated by the set Vo.
For xeΏ0, τ <; τ0, iVe Fo, then, |A(#, ζ)|2 is bounded below by a positive
number. Since | A{a)(x, ζ)|2 is a continuous function on the closure of
these sets, it is bounded above, and hence we have

for xeΩQ,τ<^τ0,Ne Vo, and (ξ, τ) e S.
Now consider the expression (3.3). As noted, R(a9 β) is a continuous

function on the closure of the set given by x G ΩQ9 τ <; τ0, iV G Fo, (f, T) G S,
and hence is bounded above. Although pj9 j = 1, , m and hence R{a, β)
are only defined locally, S may be covered by a finite number of neigh-
borhoods on which the functions R(a, β) are defined and bounded. We
then fix this covering and interpret all subsequent inequalities as holding
true at (ζ9 τ) for each of the finite number of possible selections of sets
{PJ} corresponding to the members of the covering set in which (f, τ)
lies. This tells us that

\A (x ζ)|2 < C Σ I A I2

For τ Ξ> r0 this implies
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for Ne Vo. Hence

(3.6) \A{a)(%,Q\2^

for τ ^ τ0 and Ne VQ. Adding (3.5) and (3.6) gives (3.2) for Ne Vo, x e Ωo,
and (ξ,τ)eS. Homogeneity now shows (3.2) for ζeE(V) with Ne Fo.
The vector N, however, always appears in the combination (TN) and
hence (3.2) is true for ζeE(V) without other restriction. This completes
the proof of Lemma 3.1.

The following lemma gives sufficient conditions for (2.7) to hold when
the characteristics have multiplicity at most three. In this case, the
consequence of Theorem 2.2 is sufficient to show uniqueness in Cauchy's
problem when arbitrary lower order terms are included so long as they
have Lipschitz continuous coefficients.

LEMMA 3.2. Suppose that Ω is a compact neighborhood of the origin
in Rn, VaRn is an open cone (containing N0)f and that A(x, D) is a
homogeneous elliptic operator with non-tangential characteristics of
multiplicity at most three in the set ΩxE(V). Then by replacing V by
the closure of a smaller cone

(3.7) |A(β)(s, ζ) | 2 ̂  C Σ \τNΓ\A^(x, ζ) | 2

0£\β\£\\

for xeΩ,NeV,ZeE(V), and 1 ^ \a\ ^ 2 .

PROOF. In view of homogeneity and the fact that N only appears
in the product τN, we need only show (3.7) holds on the compact set
Ω x Eo where Eo = {ζ e E(V): \ ζ|2 + τ2 = 1, |N\ = 1}. We shall accomplish
this objective by first observing that the right side of (3.7) can only
vanish on the subset SaΩ x Eo for which A has either double or triple
roots. We then consider each point (x, ζ) 6 Ω x Eo at which A has double
or triple roots and construct a relatively open neighborhood SQ(x, ζ) c
Ω x Eo of (x, ζ) on which (3.7) holds. Since only a finite number of the
sets SQ(x, ζ) are needed to cover S and the right side of (3.7) is bounded
below on the closed set (Ω x Eo)\( U SQ(x, ζ)), the lemma will be proved.

Before beginning the construction indicated above, we introduce some
notation which will simplify the calculations somewhat. By FA we will
mean the vector in Cn whose components are AU) j — 1, , n and whose
Euclidean norm is denoted ||FA||. Similarly, if p is a function of ζ' we
shall use Fζφ to mean the vector whose components are D*p, j = 2, , n.

In light of Lemma 3.1 we already know the inequality

(3.8) I AM(x, 012 ̂  C Σ IτNΓ\βA(x, ζ)|2

| 8 l £ | |



180 M. M. SUSSMAN

for xeΩ, Ne V, ζ eE(V), where the sum is taken over those β's for
which the Lagrange interpolation polynomial are defined. (The cone V
may have to be made smaller for this application of Lemma 3.1.) Hence
the proof of (3.7) is reduced to showing the inequality

(3.9) Σ I ^ Γ ^ C Σ I ^ Ί 1 fc = i , 2 .
\β\=k \β\=k

To show (3.9) we must consider five separate cases.

Case 1. Suppose (xQ, ζ0) is a point in a neighborhood of which we have

(3.10) A(x, ζ) = (ζ, - Pι(x, COKCi - fc(», O ) Π (Ci - P&, C'))r'
3

Π
where ζOιl = ft^, ζj) = <o2(a;0, Q Φ pά{xQ, Q, j = 3, , J. In this case we
need only show (3.9) for k — 1, since if | α | = 2 in (3.7) its right side is
non-zero at (x09 ζ0), and hence in a neighborhood of (x0, ζ0).

It is easy to see from (3.10) that

(3.11) FA = Ύ, ,A + 72 2A + Σ A

where τ, e Cw represents the vector whose first component is 1/i and
whose remaining components are those of —V^p5. Hence we have

(3.12) UTAH2 ^ CUT, XA + 72 2A||2 - C Σ

Since p3 Φ pγ for j = 3, , J we see that

(3.13) , <^ p )

(Ci - /Oy)

and (d — jOj/ίCi — PJ) will be continuous and bounded in a neighborhood

So(#o, £o) o f ^ 0 > W» a n ( ^ w ί l 1 ^ e °(1) (* β ' w ί l 1 a P P r o a c h z e r o ) a s (̂ > 0—*
(x0, Co). Hence we have

(3.14) UTAH2 ^ CUT, ,A + 72 2A||2 - o ^ L A I 1

since the functions Ύ, are homogeneous of degree zero and hence bounded.
Now, 7i and 72 are linearly independent and hence the function

is a positive definite quadratic form for 7}lf η2 6 C. It follows that

and the same inequality for a smaller C holds in a restriction of the
neighborhood S0(x0, ζ0), and hence that
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(3.15) \\FAW 2ϊ CCUAI + \M -

By restricting S0(x0, ζ0) further so that

o(l) £ 1/2 C ,

we have

| | F A | | 2 ^ C ( | t A | 2 + | 2

The equality (3.13) also implies that

ΣiίAi^α + oi.Ar
101=1

and (3.9) and hence (3,7) follows for this case.

Case 2. Suppose (α?0, ζ0) is a point in a neighborhood of which we have

(3.16) A{x, ζ) = (ζ, - Pι(x, ζ'))2 Π (Ci - PiV ,
i—2

where ζOfl •=* ̂ (α^, ζ'o) Φ pj(xQ9 ζ') i = 2, , J . We again need only show
(3.9) for k = 1.

From (3.16) we have

(3.17) FA = 27, ,A + Σ rάΊά 3A .

The equality (3.13) applies in this case as well as Case 1, and we have

(3.18) | , A | 2 S o ( l ) | ^ | 2 , j = 2 , . . - , J .

As a consequence of (3.17), we see that in a neighborhood S0(α;0, ζ0)

(3.19) IIFAII^CIlTjH.Ar-oα)!^! 2 .

Because of its definition, HTJI ^ 1, and by restricting S0(x0, ζ0) (3.9), and
hence (3.7), follows, as in Case 1.

The subsequent three cases are made more difficult because of the
necessity of dealing with second derivatives and the attendant notational
difficulties. For convenience we shall identify the set of linear maps
from Cn to Cn with the set of complex n x n matrices (with respect to
the standard basis) and with the tensor product space Cn (g) C\ These
spaces will be normed by the square root of the sum of the squares of
the matrix entries. If v, weCn are vectors whose components are vjf wj9

j = 1, , n, then v (g) w eCn (g)Cn has components VjWk j , k — 1, , n.
We denote by V2A the matrix whose entries are A{β) \β\ = 2 and hence
\\F2A\\2 = Σj\β\=2\A{β)\2. In addition, FT,- will be the matrix whose entries
are D%, - pj(x, ζ')),\β\ = 2.

Since the second derivative of the roots will be homogeneous of
degree ( — 1) in ζ', we must be assured that A can have no roots at
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ζ' = 0. Since A is elliptic, however, when ζ' = 0, A - ζ? and

If necessary we restrict the cone V to be so small that if Ne V and
\N\ = 1 then N, ^ 1/2. Hence we have

^ ( ί + τ r 1 / 4 .

By continuity, there is an ε so that if | ζ ' | < ε, |A| 2 Ξ> 8~m > 0, so we
may assume | ζ ' | ^ ε.

Case 3. Suppose (α?0, ζ0) is a point in a neighborhood of which we have

(3.20) A(x, ζ) = (d - ft)(Ci - ftHd - ft) Π (Ci - PiYj

where ζOil = ft(a?0, ζό) = ft(α;0, ζό) = ft(α?0, ζί) ^ ft (α?<» Cί) i = 3, , J . We
need to show (4.3) for both k = 1 and & = 2. When fc = 1, the proof is
essentially similar to Case 1, and will not be repeated here.

For k = 2, we must calculate P2A. Differentiating (3.20) twice gives

P A = (FT,) ,A + (F72) 2A + (F7.) 3A + Σ r,(F7,) ,A

J / \

Σ -r (v Λ . A -1- Ύ fv*> / V *• YΎ Λ . >4 1

) j

4- V r-r Ύ
JΛ=4

+ Σ rs(rs - 1)7, (x) Ίά jSA
3=4

where we take iSA = 0 if rs — 1. Hence we have, recalling that jkA =

(3.21) F2A = Σ rs(Vrts)sA + (7X ® 72 + 72 (g) 7 j 12A

+ (% (X) 73 + 73 (X) 7X) 13A + (72 (g) 73 + 73 (X) 72) 23A

+ Σ ^i ii-Ato (X) 7i + 7χ (g) 7, )
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We make use of the following identities.

(3.22) άA = ttAfc-ftXt'-ft) j = l,...,J
(Ci - Ps)

A — /i(£i ~ ι°2/ -ί — 4. . . . r

(Ci -

,3A 3 1 A ^ i 4, , J
(Ci - Pi)

• • A — A ™ ~ l ° i ) (^ i ~ W ή — A . . . r A < ί < ί

(Ci - /OixXCi - l<>i2)

where 3 J A is taken to be zero if r, = 1. Since the indicated quotients
in (3.22) are all continuous, bounded, and o(l) in some neighborhood
S0(x0, ζ0), and since Ύ, and VΊ} are bounded for | ζ ' | ^ e, we have

(3.23) | | P A | | 2 ^ CIK^ ® 72 + 72 <g) 7 j 12A + (7t (g) 73 + 73

+ (7, <8> 73 + 7 3 (8) 72) 23A112 - o(

It is not hard to see that if {7lf 72, 73} is linearly independent, then so
is the set

{74 (x)7,-: i, j = 1, 2, 3}cC"(g) C"

linearly independent. Hence there is a constant C and a further restriction
of S0(a;0, ζ0) so that

Using (3.22) once more gives

and (3.9) for k = 2, and hence (2.7) follows.

Case 4. Suppose (α?0, ζ0) is a point in a neighborhood of which we have

(3.24) A(x, ζ) = (d - Λ)3 Π (Ci - ^i)^' ,

where ζOll = (̂ίCo, ζj) Φ ρά{x,, Q j = 2, , /. We must show (3.9) for
k = 1 and & = 2.

The proof of (3.9) for & = 1 follows just as in Case 2.
For k = 2, we differentiate (3.24) twice to get that
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(3.25) V2A = 67 t (x) 7X U A

Σ
j 1=3

£ 3 < h

+ Σ fy(*V - l)^y ® ^ yy-A
j=2

Now, we have the following equalities

(3.26) ,A = nA^-PJ2 j = 1, , J
(Ci - PJ)

A — v4 (Ci ~" <°i) o — 9 . . . 7

(Ci - ^y)

where all the indicated ratios are continuous, bounded, and o(l) in some
neighborhood S0(xQ, ζ0). In addition, since | ζ ' | ^ ε, 7 i χ (x)Ί h and Fτ y are
all bounded so we have as a consequence of (3.25)

(3.27)

and for a possibly smaller neighborhood SQ(x0, ζ0)

Since it is also true that

ΣI
| J 9 | = 2

in SQ{x0, ζ0), we have (3.9), and hence (3.7), for k = 2.

Case 5. Suppose (x0, ζ0) is a point in a neighborhood of which we have

(3.28) A(x, ζ) = (ζ, - ^ ( ζ , - p2) Π (Ci - PiV
y=3

where ζOfl = ί ? ^ , ζί) = ρ2(x0, ζ'Q) Φ pό(x0, Q 3 = 3, , J.
The proof of this case is not essentially different from those of the

previous cases.
The assumption of non-tangential characteristics is necessary for the

inequality (2.7) to hold, as may be seen from the following example.

COUNTEREXAMPLE. The operator A(x, D) = ((A)2 + (A)2 + (A)2)3 +
#i(A)β has characteristics which are C2, triple at α?x = 0, but are not
non-tangential there. The polynomial A(x, ζ) does not satisfy the inequality

(3.29) IAA |2 ^ C(\ A |2 + | τN01
2 Σ I A^(x, ζ) |2)
I 9 | l
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for ζ = ξ + iτN0, and V^ in a small neighborhood of 0. This operator
is elliptic for I&J <; ft < 1.

PROOF. Consider the symbol

A = (ζj + ζϊ + Ci)» + aίζj

for I x11 < 1/2. The roots of this polynomial in £. are easily seen to be
smooth when ζ2 and ζ3 have small imaginary parts. At points given by
N = No = ( -1 , 0, , 0), ζ2 - ξ2 = 0, ζ3 = f3 =* 0, & = 0, and ζ, = iτ where

τ = f 8τ/l + x\ ,
the left side of (3.29) becomes O(x\) as xι-+0 while the right side of
(3.29) is O(x«) as ^ - - 0 .

REMARK. It is unknown to this author whether a fifth order term
can be added to the operator A given above in such a way that
uniqueness in Cauchy's problem is violated.

In the case that the principal part, P, of the operator A has quintuple
characteristics, Theorem 2.2 is not strong enough to conclude uniqueness
in Cauchy's problem if terms of degree (m — 1) are included, even if
they have very smooth coefficients. If the assumption of non-tangential
characteristics is made, however, the conclusion of Theorem 2.2 still
yields new information, viz., that terms of degree (m — 2) with Lipschitz
continuous coefficients may be added to P while retaining uniqueness in
Cauchy's problem. The proof of a lemma analogous to Lemma 3.2 involves
great notational difficulty but no theoretical difficulty and is not presented
here.

4. A theorem on unique continuation. The next theorem illustrates
how uniqueness in Cauchy's problem is a consequence of weighted L2

estimates such as those in Theorems 2.1 and 2.2.

THEOREM 4.1. Suppose that A(x, D) is a differential operator of
degree m for which the following estimate is known. There are constants
1 < Pt ô > 0, τ0 ̂  0 and an integer r > 0 such that

(4.1) Σ (τδ 2)w" l α l"" r^w" | α l l l^^ll 2 ^ C\\A(x, D)u\\2

|α|£»-[(r+i)/2]

V0 < 8 ̂  δ0, τ ̂  τjδ\ u e C«°°(|x\ < δ/2) .

Suppose that v{x) is a solution of the differential inequality

(4.2) \A(x,D)v\£C Σ \Dav\
| | £ ( + l ) / 2 ]

and which vanishes for x1 ̂  ε(x\ + ••• + x2

n)f ε > 0, when x is in a
neighborhood Ωo of the origin. Then there is a neighborhood of the
origin on which v = 0.
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PROOF. Choose a function χ e Co°°(| x | < δ/2) such that χ = 1 for | x, | ̂
δ/4. Then set χ(aθt?(#) = u(x). Without loss of generality, we may assume
u e CΓ( I x I < δ/2) since such functions are dense in L2. By (4.1) we have

(4.3) Σ (τ§γ-\«\-rτ™-\«\ f |2)ew|»e2r

|α|^m-[(r+l)/2] J \x\<δl2

\A(x, D)\
\x\<δl2

We now shrink the region of integration on the left of (4.3) and apply
(4.2) to the right (with u = v for \x\ ^ δ/4) to get

Σ (Γg2)*-ι«ι-rΓ»-ι«ι f I B ^ I
α|^w-[(r + l)/2] J 1*1̂ 5/2

^C Σ ( \Dau\2e^pdx
| α | ^ m - [ ( r + l ) / 2 ] J |«|^3/2

+ C [ \A(x,D)u\2e2τφi>dx .
J | | ^ δ /

Hence we have

(4.4) ^ Σ ((rδ 2 ) w " | α | " r ^ m ~ | α | -C)\ <s \Dau\*e?τ

Now for r an odd integer and | a \ ̂  m — [(r + l)/2]

(Γ<52)m-'α |~V"~ i α | ^ τ§-2(r-[(r + l)/2]) ^ τ g -

and for 7 an even integer and | a \ ̂  m — [(r + l)/2]

In either case we may choose δ small enough and τ ^ l so that

With these choices, we drop all but the a = 0 term in (4.4) and restrict
the region of integration still further to get

(4.5) ( ID a u\ 2 e 2 T ^dx ^c[ \A(x, D)n\2e2r

We now investigate the behavior of φp in the two regions of integration
in (5.5). For xι ^ δ/16 we have

φ,(x) = (xt - δf +



UNIQUENESS IN CAUCHY'S PROBLEM 187

Now, we choose δ small enough that δp~λ <: ε, and leave it fixed afterwards.
For

j^2 j£2

we have
φp(x) = (Xt - δf + δ*± (XJY ^ x\ - δxL + δ2 ,

and if δ/4 ^ x^ δ/2, by monotonicity of the right side, we have

Hence (4.5) becomes

( 4 . 6 ) e<^2/128,r f I J)aU | l d a . ^ Ce(208S2/l28,r f
Jxj.Sί/16 Jx

This is clearly impossible for all large τ unless u, and hence v, is zero
for xί ^ δ/16. This completes the proof of Theorem 4.1.
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