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1. Introduction. Let G be a Kleinian group and denote by Ω(G)
and A(G) the region of discontinuity and the limit set of G, respectively.
A component of Ω(G) will be called a component of G. The component
subgroup GΔ for a component Δ of G is the maximal subgroup of G
which keeps Δ invariant. The quotient J/GΔ = S is a Riemann surface
and the cannonical mapping Δ \-+ S is holomorphic.

The modern theory of Kleinian groups was initiated by Ahlfors,
who proved the ίiniteness of a finitely generated Kleinian group,
known as the finiteness theorem. That is to say, if G is finitely
generated, then there is a finite complete list {Διy Δ2, •••, Δn} of non-con-
jugate components of G and Ω(G)/G is the disjoint union of finite
Riemann surfaces Sx + S2 + + Sn, where St = ΔJGj.. As a corollary
of this theorem, we can easily see that the component subgroup GΔ for
any component Δ of G is a finitely generated Kleinian group with the
invariant component Δ and that the boundary of each component Δ of
G is identical with the limit set of the component subgroup GΔ.

Recently, in [3] Maskit found the remarkable facts about boundaries
of components of a Kleinian group G and about elements of G which
have their fixed points on the boundary of a component of G. For the
frequent use of those in our later discussion, we shall restate them
here.

THEOREM A. Let GA. (i = 1, 2) be the component subgroup of the
component Δ4 of a Kleinian group G. Assume that ΔJG^. is a finite
Riemann surface, i = 1, 2. Then Λ(GΔl Π GΔ2) = Λ(GΔl) Π A(G12) = 3ΛΠ3J2.

THEOREM B. Let GΔ be the component subgroup of the component
Δ of a Kleinian group G. Assume that Δ/GA is a finite Riemann
surface. Let g be a loxodromic element of G with at least one fixed
point in dΔ. Then gn e GΔ for some positive integer n.

THEOREM C. Let GΔ, Δ, G be as in Theorem B. Let g be a para-
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bolic element of G whose fixed point z lies on the boundary of Δ. Then
there is a parabolic element heGi which has z as the fixed point.

Giving two examples, he showed that n in Theorem B is not equal
to 1 in general and that g in Theorem C is not an element of GΔ in
general. His examples also imply the existence of two kinds of Kleinian
groups. The one is a finitely generated Kleinian group Gλ such that
there are finite and more than two components of Gx having at least
two common boundary points. The other is a finitely generated Kleinian
group G2 for which there are an infinite number of components of G2

having at least one common boundary point.
Those kinds of finitely generated Kleinian groups are ruled out

from the space of the finitely generated function groups (see [4]). So,
in this paper, we shall treat the intersection of boundaries of more than
two components of a finitely generated Kleinian group being not neces-
sarily a function group.

First we shall generalize Theorem A for arbitrarily many (possibly
infinite) components of a finitely generated Kleinian group G and next
we shall show that the intersection of the boundaries of more than two
components of G consists of at most two points and that the common
boundary points of infinitely many components of G consists of at most
one point z. In the later case, as the Maskit's example is so, there is
a parabolic element of G which has the point ^ as a fixed point and
does not keep invariant any component of G. We also give some
criteria for the number of common boundary points of components to
be one or two.

2. Let Δt and Δ3 , i Φ jf be two disjoint components of a Kleinian
group G. An auxiliary domain Di3 of Δt relative to Δ3 is defined as
follows: Let Δ*3- be a component of the complement of It such that Δ*j

wD
Δj. Then Di3- is the component of the complement of Δ*3 such that
Di3 Ί) Δt. It was shown in [4] that Di5 Π D3i = φ and dDt3 Π dDjt = dAt Π

LEMMA 1. Di3 c Δ*t.

PROOF. Since Δ3 c Δ*j9 for each component D of the complement of
Δtj there is a component Δ* of the complement of Δs such that ΰ c J * .
If D is the component containing Δif then D = Di3 and zf* = Δ%. Thus
we have D i ycJJS.

Now, let G be (non-elementary and) finitely generated. Then, as
mentioned in introduction, the component subgroup Gλ for any compo-
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nent Δ of G is a finitely generated Kleinian group with an invariant
component Δ and we can see from Maskit's result [2] that, for each
component J* (Φ Δ) of GΔ, the component subgroup GΔ* for J* of GΔ is
a finitely generated quasi-Fuchsian group of the first kind with the fixed
closed Jordan curve 3J*. Hence we have the following.

LEMMA 2. // G is finitely generated, then Di3 = Δff and each dDi3

is a closed Jordan curve.

The next lemma is basic in our later discussion.

LEMMA 3. Let Δx, Δ2, Δz be three distinct components of a finitely
generated Kleinian group G. Then Di3 Φ Dik holds for at most one
triple (i, j , k), i, j , k = 1, 2, 3. Moreover, Di3 Φ Dik if and only if
4* Φ Δ*k.

PROOF. By Lemma 2, Di3 is the complement of J<* . Hence the
second statement of our lemma follows. We assume D12 Φ As- Since
Δ*2 and Δ?3 are components of the complement of I19 we have Δ*2 Π 45 =
Φ by our assumption. Since Δ2 c Δ*2 and Δs c Δf2

c, we see that Δ2S con-
tains the complement of Δf2 which is D12. Hence Δ23 Z) Δx. Thus Δ2Z =
Δ2ί and D2Z = D2ί. In the same way we have D32 = Dn. Thus the lemma
is proved.

We shall write Di3 — Dt if Di3 = Dίk. Now we can prove the fol-
lowing.

PROPOSITION. Let Δlf Δ2, Δ3 be three distinct components of a finitely
generated Kleinian group G. Then dΔ1 Π dΔ2 Π 3J3 consists of at most
two points. Moreover, if Ό^ — Όi for any i, then dΔx Π dΔ2 Π dΔ^dD^
dD2 Π 3Z)3. Otherwise, there is a triple (i, j , k) such that Di3 Φ Dik and
dΔι Π dΔ2 Π dΔ3 = dD3 f] dDk. In the later case dΔγ |Ί dΔ2 f] BΔZ consists of
at most one point.

PROOF. First note that each dDί3 is a closed Jordan curve.
The case where Di3 = Dt for any i. Since Di3 Π D3ί = φ, we see

that Dlf A and D3 are mutually disjoint. Since dΔγ Π dΔ2 = 3Dί2 Π dD21

and dΔ2 Π dΔ3 = dD2, Π dD32, we also see t h a t dΔ, Π dΔ2 Π dΔz = 3D, Π dD2 n 3JD3.

We shall show that this set consists of at most two points.
Assume that there are three points zίf z2, z3 in dA Π 9D2 n SD3. Join

^ and 2;2 by Jordan arcs C12 in A and C/2 in A , respectively. Then C12,
C12, ^ and z2 make a closed Jordan curve K12 lying in A U A U {̂ i> ^}
Let I12 be a component of the complement of K12 containing z3. In the
same manner, we can drow a closed Jordan curve KίZ (or K2B) lying in
A U A U K z3} (or A U A U {z2, zs}) and passing through z19 z, (or «a, «3).
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Let I13 (or JΓ23) be a component of the complement of Kn (or K23) con-
taining z2 (or s j . Since 2t (i = 1, 2, 3) is a boundary point of A> A c
J12 n /13 n IM. On the other hand J12 n i i 3 Π /» c A U A Hence A n (A U
A) ^ ^ This contradicts the fact that A> A> A are mutually disjoint.
Hence dΔί Π 3z/2 Π 3J3 consists of at most two points.

The case where there is a triple (i, j , k) such that Ay =£ A& We
may assume i = 1, j = 2 and fc = 3. By Lemma 3, Ai = As = A and
D31 = D32 = A Hence A ΓΊ A = 0. If 3J2 Π 34 ( = 3A Π 3A) contains
two points, then there is a closed Jordan curve K passing through
these two points such that Ka A U A U Λ(G). Since Δ*2 Π 4*8 = Φ by
Lemma 3 and since D2(zΔ*29 D3dΔ*3 by Lemma 1, both the interior and
the exterior of K contain points of dΔ*2czdΔ1 and hence also contain
points of Δγ. This contradicts connectedness of Δx. Hence dΔ2 Π dΔ3 con-
sists of at most one point. Therefore, dJ1 Π dd2 Π dJ3 (c3z/2 Π 3J3) consists
of at most one point.

Next we show that dΔγ Π dJ2 Π 3J3 = 3A Π 3A As was just stated
above, it holds that A c JJ, A c Jf3 and JJ Π 45 = ί3. Hence, if 3A Π
3A ^ >̂ then 3A Π 3A contains a point of 34f2 c dΔγ. Since 3A Π 3A
consists of at most one point, 3D2 Π 3A c 34- Combining this with the
equality dΔ2 Π 3J3 = 3A ΓΊ 3A> we have the inclusion relation dΔ1 Π dΔ2 Π
3z/3 = 3Λ n (3A ΓΊ 3A) = 3A n 3A Thus we have shown 34ΓΊ942n34,=
9A Π 3A and completed the proof of our proposition.

For common subgroups we have the following.

THEOREM 1. Let G be a finitely generated Kleinian group and let
{Δi} be any collection of more than two components of G. Then Π G^
is an elementary group, where the intersection is taken over all ele-
ments of {Δi}.

PROOF. Since Λ(GΔ.) = dΔίf we have Λ(f\ GΔ.) c Γl dJt. By the above
Proposition, the limit set of Π ^Δ^ consists of at most two points. From
this, the theorem is immediately obtained.

We shall see later that if Ay = A (i = 1, 2, 3) and if dΔ.ΠdΔ.ΠdΔ.Φ
φ, then dΔ1 Π dΔ2 Π dΔ3 consists of exactly two points.

3. Ahlfors' finiteness theorem and Theorem A imply the fact that
if 4 and Δ2 are components of a finitely generated Kleinian group G,
then 4(GΔι Π GΔί) = 3Λ Π 3J2. We can extend this as follows.

THEOREM 2. Let G be a finitely generated Kleinian group and let
{Δi} be any collection of the components of G. Then Λ(f\ GΔi) = Π 3Λ>
where the intersections in both sides are taken over all elements of
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PROOF. From the fact stated in the beginning of this section, it
suffices to prove Theorem 2 for any collection {Ax} consisting of more
than two components. The inclusion relation A({\ GΔ.) c fl <H was
already proved in the proof of Theorem 1. To prove the opposite
inclusion relation we note that Π dA consists of at most two points and
may suppose that Π dA is not empty. We divide the proof into three
cases corresponding to the number of elements of {z/J.

The case I where {A,} = {Aly A2, A3}. First we assume that Diά =
Di (i = 1, 2, 3) and that dAx Π dA2 Π dA3 consists of two points zu z2. If
either GΔί Π GΔ2 or GΔχ Π GΔ%, say GΔχ Π GΔ2, is an elementary group, then,
by Theorem A, GΔl Π GΔz contains a loxodromic element g of G with zί

and z2 as the fixed points. By Theorem B, there is an integer n such
that gn e Gj3. Then gn is an element of GΔl Π GΔt Π GΔz and has the fixed
points z19 z2. This is the required. If both GΔι Π GΔ2 and GΔί Π GΔz are
non-elementary, then, since Dlf D27 D3 are mutually disjoint and each of
their boundaries is a closed Jordan curve, D3 lies in a component of
( A U D2)

c which is bounded by two Jordan subarcs C, of dD1 and C2 of
dD2 with the same end points z19 z2. We show that there is a loxodro-
mic element g e GΔί Π GΔ2 with both endpoints of C^ as the fixed points.
Let GD. be the maximal subgroup of GΔ. which keeps Dt invariant, i =
1, 2. Then it is shown in [4] that GD. is a quasi-Fuchsian group of the
first kind and A(GDί Π GD2) — dDι Π dD2. We can obtain the required g
in GDl Π GD2 as follows. If the quasi-Fuchsian group GDι Π GD2 is of the
first kind with two invariant curves dDί and 3D2, then A(GDl Π GDz) = dDι =
dD2 and Dι U D2 — Cu{°°} and D3 — φ, which is absured. Hence GDι Π
GD2 must be of the second kind. Let w be a conformal mapping of the
upper half plane onto Όγ with w([0, 1]) = Cι and let Γ be a Fuchsian
model of GDl Π GD2 such that GDl Π GD2 = wΓw~\ Since D3 lies in a
component bounded by d and C2 and since 3D, Π 3D2 = ^ί(Gi?1 Π Gz)2), any
point of d except for its both end points lies in Ω{GDl Π GDz). Hence
we see that the open interval (0,1) on the real axis lies in Ω(Γ). On
the other hand, since both end points of d lie in A(GDί Π GD2), both end
points of (0, 1) lie in Λ(Γ). By a well known fact for a finitely gener-
ated Fuchsian group of the second kind, there is a hyperbolic element
7 of Γ with the fixed points 0, 1. Let g = wΊw~\ Then g is a desired
loxodromic element of GDl Π GD2 c GΔι Π Gj2. By the same reasoning as
before, we see that Λ(GΔl n G 2̂ n (JJ8) =) 3Λ Π dA2 Π 3z/3.

Next we shall show that the case, where Dί3 = A (i = h 2, 3) and
3Aι Π 3J2 Π SA3 consists of one point z0, does not occur. If GΔχ Π GΔi is
an elementary group, then it contains a loxodromic or a parabolic ele-
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ment g of GΔγ Π GU2 with z0 as a fixed point. If g is loxodromic, then,
by Theorem B, there is an integer n such that gn e Gj3. Since gn e GΔι Π
Gj2 Π Gj3 and ^(G^ Π Gj2 Π Gj3) c 9 4 Π 3zf2 n 34, another fixed point of g
must lie on 3Δλ Π 3J2 Π 3J3. This contradicts our assumption. Hence g
is parabolic. By Theorem C, there is a parabolic element g' e GΔ,ά with
the fixed point z0. Let GD. {% = 1, 2, 3) be as before. Since GD. is iden-
tical with the component subgroup GΔ\. for a component J * of GΔ. and
there is a parabolic element of GΔ. with z0 as the fixed point, there is
a parabolic element gt e G/,. with 20 as the fixed point by Theorem C,
i = 1, 2, 3. Since G^. is a quasi-Fuchsian group of the first kind, z0

corresponds to a puncture of the Riemann surface DJGD.. Hence there
is an open disc in Ot whose boundary passes through z0. This means
that there are three open discs which are mutually disjoint and tangent
each other at z0. This is impossible. Therefore GΔl Π Gj2 is not elemen-
tary. Thus as was already shown, there is a loxodromic element g e
GΔί Π GΔ2 with z0 as one fixed point. In the same way as before, we
arrive at the same contradiction that dΔγ Π dΔ2 n 94» consists of two
points. Hence, the case, where Diό = Dt (i = 1, 2, 3) and dΔγ Π dJ2 n 3J3

consists of one point zQ, does not occur.

Next we assume that there is a triple (ί, j , k) such that Dtj Φ Dik.
We may assume Dί2 Φ D13. By Proposition, dΔγ Π 3Λ (Ί 3z/3 consists of at
most one point and is identical with dD2 Π 9A = 9J2 (Ί 3J3. If z0 = 9zί2 n
3J3, then, by Theorem A, we have zQ = ^ί(Gj2 Π Gj8). Hence there is a
parabolic element g e Gj2 Π Gj3 with 2;0 as the fixed point. By Theorem
C, there is a parabolic element gf 6 GΔχ with z0 as the fixed point. If g
and #' do not belong to the same cyclic subgroup of G, then an invari-
ant curve in Δ2 under g intersects an invariant curve in Δι under g'.
This contradicts the fact that Δ1 and Δ2 are the distinct components.
Hence g and g' belong to the same cyclic subgroup of G and there are
two integers m, n such that gm = {g')n e GΔl Π GΔz Π Gj3. Thus gm is a
parabolic element of GΔl Π Gj2 Π Gj3 with z0 as the fixed point and we
have the proof of theorem in the case I.

The case II where {zίj = {Δlf Δ2, •••, Δp}, p > 3. Let zι and z2 (ΦzJ
be points of Π 9Λ Then for any three components of {JJ, say Δlt Δ2y

Δ3, 3Λ Π dΔ2 Π 9 4 = {zlf z2}. By the result in the case I, Λ(GάιΓ\Gj2Γ\Gά^ =
{zlf z2}. Hence there is a loxodromic element g e GΔl Π Gj2 Π Gj3 with ^,
2;2 as the fixed points. By Theorem B, for each 4 there are an integer
Tii and a loxodromic element & 6 GΔ. such that & = gni. Let w0 be a
common multiple of n4, nδ, •••, np. Then 5fΛ0 is a loxodromic element of
Π Gj. with &!, ^ as the fixed points. Hence Λ(f\ G..) z> Π 3Λ
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Next assume that Π dΔt consists of only one point z0. In the same
way as just stated above, we see that there is a parabolic element ge
GΔί Π GΔz Π Gj3 with z0 as the fixed point. By Theorem C, for each Δif

i > 3, there is a parabolic element gt e GΔ. with z0 as the fixed point.
By the same reasoning as in the last step of the case I, we see that
each gt is an element of a cyclic subgroup of G containing g so that
there are two integers mif nt such that gmi — g"K Let m0 be a common
multiple of m4, m5, " ,mp. Then gm° is a parabolic element of Π ^ j .
with z0 as the fixed point. Hence we have the required.

The case III where {JJ consists of infinite elements. The proof of
this case is somewhat long, so it will be given in a sequence of lemmas.

LEMMA 4. // Π dAt is not empty, then it consists of one point.

PROOF. Assume that Π <?4 consists of two points zγ and z2. By
Proposition, for each triple (Δif Δj9 Δk) of {JJ, Di5 = Dt. Hence we can
use the notation Dt instead of Di3. Note that Dt Π D3 = φ for each
if 3 (=£*)• Conjugating G by a linear transformation, we may assume
z1 = 0 and z2 = oo. Since each GD. is a finitely generated quasi-Fuchsian
group of the first kind with a quasi-circle dDt as the fixed curve and
since dZ^ passes through oo, there is a positive number Ct depending
only on GD. such that |ζΛ — ζ | ^ Ct\ζt\ for any two points ζ<, ζ on dDt

separated by 0 and oo (see [1]). Since there are only a finite number
of non-conjugate components of G, there are also only a finite number
of non-conjugate Di so that there are only a finite number of distinct
C/s. Let C be the maximum of {CJ. Then it holds that |ζ, - Q ^
C\ζt\ for each i and for any two points ζίy ζ on dDt separated by 0
and oo. Choose ζ< and ζ on 3D* such that | ζ, | = | & | = 1 and such that
the open arc on the unit circle bounded by ζt and ζ lies in Dt. Then
I ζi — ζ! I ̂  C for each i. Therefore, there can be only finitely many
distinct Dt and hence only finitely many Δt. Thus we have our lemma.

LEMMA 5. Assume that f] dAt consists of one point z0. Let Δi9 Δ5

and Ak be any three distinct components of {z/J. Then dAt Π dΔ5 Π dΔk

consists of the point z0.

PROOF. Assume that dΔt Π dΔ5 Π dΔk contains another point zγ Φ z0.
From a result in the case I, Λ(GΔ. Π GΔ. Π GAk) = {zQ, z j . Hence there is
a loxodromic element g e GΔ. Π GΔj Γ) GΔje with zQ, zx as the fixed points.
By Theorem B, for each Δt there is an integer nt such that gn* e GΔ..
Hence zx e dΔt for every i. This implies zι e f\ dΔif a contradiction.
Hence we have our lemma.
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LEMMA 6. If f\ 3J* consists of one point z0, then each GΔ. contains
a parabolic element gt with z0 as the fixed point.

PROOF. By Lemma 5 and by a result in the case I, Λ(GΔ. Π GΔj Π
GΔ]e) = ô for any three distinct components Δi9 Δjf Δk. Hence there is a
parabolic element ^ e G j . PιGΔj Π GΔk with z0 as the fixed point, which is
clearly an element of GΔ..

Let E = {Δlf , Δn) be a complete list of non-conjugate components
of {JJ in G and let Et be the conjugacy class of Δ{eE in {zfJ. Then
for each Δ3 e Et there is an element hH e G such that hH(Δ5) = 4 . We
can prove the following.

LEMMA 7. // Π 3Δt consists of one point zQf then the point hji(z0)
corresponds to a puncture of Ω(GΔί)/GΔ..

PROOF. Obviously it suffices to show that z0 corresponds to a punc-
ture of Ω(GΔj)/GJj. Let Δk (ΦΔ3 ) be a component of {JJ and let Δfk be
the component of GΔj which includes Δk. Then by Lemma 1, Dkj c Δ%.
On the other hand, D3k n Dkj = φ and D i fc Π Δ*k = φ. Hence, if f] dΔt

consists of one point zQ, then z0 e dΔ3- n dΔk = 3JDJfc Π 3^^-, so we have
zQedΔ*k. By Lemma 6, there is a parabolic element of GΔ. with a;0 as
the fixed point. By Theorem C, there is a parabolic element of GΔ*ik with
z0 as the fixed point, where G/.k is the component subgroup for Δfk of
GΔj. Since Gj*fc is a quasi-Fuchsian group, ^0 corresponds to a puncture
of Δ*k/G/jk. Since Δ*k/G/jk is a component of Ω(GΔj)/Gάj, zQ corresponds
to a puncture of Ω{Gά3)jGΔά. Thus Lemma 7 is proved.

Now we shall define an equivalence relation between components in
Et as follows: Let Δ3 and Δ) be in Et and let hόi and fe^ be elements of
G such that h^Δ/) = Λ and /^(zQ = J o respectively. Then we say that
Δj and Δ'3 are equivalent if Λy<(»o) a n ( i ί̂i(^o) correspond to the same
puncture of Ω(GΔ.)/GΔ.. This equivalence relation is independent of choice
of hji and h'5i. Denote by Ft — {Δh, •••, Δis) a complete list of non-equi-
valent components of Et. Then {hhi(z0)f , hisi(z0)} corresponds to a
subset of the (non-conjugate) punctures of Ω(GΔ.)/GΔ.f where hiιt(Δu) = Δi9

1 ^ I ^ j . Let F be a set of all components of G belonging to Ft for
some i (1 ^ i <; w).

LEMMA 8. i?ac/t component of {zίj is equivarent to a component
of G in F by an element of G with z0 as a fixed point.

PROOF. Let Δ be a component of {JJ and let h{Δ) = Δt e E for some
heG. Clearly Δ e Et. By Lemma 7, /&(s0) corresponds to a puncture of
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Ω(GΔ.)/GΔ. which corresponds to one of h^z,), •• ,hi.i(zQ), say hHi(z0), by

an element g e GΔ.. Set fc* = h^lgh. Then Δ is equivalent to ΔH by
ft* e G with ft*(z0) = z0. Thus Lemma 8 is proved.

LEMMA 9. There is a parabolic element g* ^Γ\JBFGJ satisfying
g*(z0) = z0.

PROOF. Lemma 4 and Lemma 6 imply that for each Δ of F there
is a parabolic element gΔ of GΔ with z0 as the fixed point. By the same
reasoning used already in the last step of the case I, we see that
{9j}jeF are in the same cyclic subgroup Go of G. Since F is a finite set
of components of G, there is a parabolic element g* 6 Go which is denoted
by gk

Δ

(Δ) for some integer k(Δ). This element g* is a desired one.

LEMMA 10. Let g* be in Lemma 9. Then g* e GΔk for each com-
ponent Δk in

PROOF. By Lemma 8, Δk is equivalent to some ΔeF by an heG
with h(z0) = z0. We may assume Δk Φ Δ. Then g = h~ιg*h is a parabolic
element of GΔ]c with g(z0) = zQ. Since g* is a parabolic element of G
with zQ as the fixed point, h is not loxodromic, for, otherwise G is not
Kleinian. If h is parabolic, then it is easy to see g = g*. Next consider
the case where h is elliptic. By a suitable conjugation, we may suppose
g*(z) = 2 + 1 and h(z) = e2πi/nz. Then g(z) = z + e~2:ri/\ If n Φ 2, then
an invariant curve in J under g* intersects an invariant curve in Δk

under g. This contradicts Δk Φ Δ. Hence n = 2 and g = (tf*)"1. In both
cases, g* e G J r Thus Lemma 10 is proved.

Now we can prove the inclusion relation Λ{f\ Gj.) z> Π 94 ίn the
case III. Namely, by Lemma 10, we see g* e Π G J ί and 20 e Λ(Π G^),
which shows Λ(Π G^) ^ Π 94- Thus we have completed the proof of
Theorem 2.

4. In the case where {JJ consists of an infinite number of compo-
nents, we can also show the following.

THEOREM 3. Let G be a finitely generated Kleinian group and let
{Δ^ be an infinite collection of the components of G. // Πi^i 94 Φ φ,
then ΠΓ=i94 consists of one point zQ. Moreover, there is a parabolic
element h of G with z0 as the fixed point such that h does not keep
invariant any component of G.

PROOF. The first assertion was shown in Lemma 4. In order to
show the second assertion, we continue the discussion in the case III of
the proof of Theorem 2 under the notation used there.
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Since {JJ and F are an infinite set and a finite set, respectively,
there is a component ΔeF whose equivalence class consists of an infinite
number of components {Δt.} in {z/J. By Lemma 8, for each Δije{Δij)
there is an element h*. e G such that h*^tj) = Δ and /̂ *.(z0) = so As is
seen from the proof of Lemma 10, the set {fe*y} of those /̂ *. consists of
parabolic elements and elliptic elements of order 2. Lemma 9 and Lemma
10 imply the existence of a parabolic element g* ef\JeFGj such that
9*(Zo) — %o and such that g* e Π GΔ.. We may assume that zQ = oo and
that #*: sι->2 + 1. First we shall show that G contains a parabolic ele-
ment h of the form h: z H^ Z + a with Im α ^ 0.

If {feζ.} contains an infinite number of the elliptic elements, then
each elliptic element h*. in {h*3) has the form h*.\ z H+ — z + air We
assert that {Im aio) are not all the same. Assume that each a{j has
the same imaginary part. Since for each integer m, we have

( 0 * Γ / ^ T w K ) = Δ and (g*Thψ*rm(™) = - ,
we may assume that 0 ^ Re aiά < 2. Then the infinite set {h?.} has a
convergent subsequence of distinct elements, which contradicts that G
is Kleinian. Hence we have the assertion that {Im ai5) are not all the
same. Thus there are two elliptic element h*: zv-> —z + at. and h?.,: z\->
— z + aiβr, where Im aiβ Φ Im atj.. Set h — htA?.,: z\-+z + ais. — aiβ,. This
is a desired parabolic element of G.

If {ht3) contains an infinite number of the parabolic elements, then
each parabolic element h*. in {h?.} has the form z H-> Z + biΓ We assert
that there is a 6iy with Im 6̂ . ^ 0. Assume that Im bίj = 0 for all bίά.
Since g*eGJf we see (g^hζiΔ^) = Δ and (βr*)*Λt*(°°) = oo for any inte-
ger m. Hence we may assume that 0 ^ Re biβ < 1. In the same manner
as above, we arrive at the contradiction that G is not Kleinian. Thus
our assertion follows. Hence there is an hf. with Im bi5 Φ 0 and we
take this hf. as h.

In both cases we can show that h does not keep any component of
G invariant. Assume that there is a component J* of G such that
h(Δ*) = Δ*. Choose a component Δt in {JJ which is different from zf*.
Then an invariant curve in Δt under g* intersects an invariant curve
in zί* under h, which is impossible. Thus the second assertion follows
and Theorem 3 is proved.

5. Finally, we shall give a criterion for the intersection of bounda-
ries of the components of G to be one point or two points.

THEOREM 4. Let {z/J be a collection of more than two components
of a finitely generated Kleinian group G and let the intersection of
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their boundaries be not empty. Then the intersection of their bounda-
ries consists of one (or two) point if and only if there is a triple (Δif Δ39

Ak) of the components of {z/J such that Di3 Φ Dik (or Dί3 = Dik, D3k = D3ί

and Dki = Dkj).

PROOF. Assume that Π dΔt consists of one point zQ9 where the inter-
section is taken over all elements of {JJ. Then by Theorem 2, Λ((} GJt) =
z0 Hence there is a parabolic element of G with z0 as the fixed point.
Therefore for any triple (Δiy Δ3, Δk) it holds that dΔt Π dΔ3 Γ) dΔk = z0. For,
if dΔi Π dΔj Π dΔk contains another point z19 then, by Theorem 2, A(GΔ. Π
GΔj Π Gjk) — {zQ, z,} and hence there is a loxodromic element of G with
z09 zι as the fixed points, which contradicts the assumption Π ^Λ = (zo}
From the case I of the proof of Theorem 2, we see easily that there is
a triple (Δi9 Δj9 Δk) such that Di3 Φ Dik.

Assume that there is a triple (Δi9 Δjf Δk) such that Di3 Φ Dik. Then,
by Proposition, dΔt Π dΔ3 Π dΔk consists of one point. Hence Π 3Λ con-
sists of one point.

Assume that Π 9Δt consists of two points. If there is a triple
(Δi9 Δ3, Δk) such that Di3 Φ Diky then, from Proposition, Π ddt consists of
one point, which contradicts our assumption. Hence for any triple (Δif

Δjf Δk) it holds t h a t Di3 = Dik, D3k = D3i and Dki = Dk3.

Assume that there is a triple (Δif Δj9 Δk) such that Di3 = Dik, D3k =
D3i and Dki = Dk3. Then, by the fact stated in the case I of the proof
of Theorem 2, 3Λ Π dΔ3- Π dΔk consists of two points, say zlf z2. By
Theorem 2, there is a loxodromic element in G with zί9 z2 as the fixed
points. On the other hand, if (\dΔi consists of one point, say zί9 then,
by Theorem 2, Λ(f\ Gj.) = zγ. Hence there is a parabolic element of G
with zγ as the fixed point. Since G is Kleinian, this is not the case.
Hence Π <H consists of two points.
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