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SOME THEOREMS ON (CA) ANALYTIC GROUPS II
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Abstract. An analytic group G is called (CA) if the group of inner
automorphisms of G is closed in the Lie group of all (bicontinuous) automor-
phisms of G. It has been previously proved by this author that each non-
(CA) analytic group G can be densely immersed in a (CA) analytic group H,
such that the center of G is closed in H. We now show that there is no
{CA) analytic group "smaller" than H into which G can be densely immersed,
but H, however, is not the "smallest" such (CA) analytic group. Further-
more, we will isolate those properties of H which determine it uniquely up to
dimension, diffeomorphism, diffeomorphism together with local isomorphism,
and finally isomorphism.

1. Introduction. By an analytic group and an analytic subgroup of
a Lie group, we mean a connected Lie group and a connected Lie sub-
group, respectively. If G and H are Lie groups and φ is a one-to-one
(continuous) homomorphism from G into H, φ will be called an immersion.
φ will be called closed or dense, as φ(G) is closed or dense in H. Go and
Z(G) will denote the identity component group and center of G, respec-
tively.

If G is an analytic group, A(G) will denote the Lie group of all
(bicontinuous) automorphisms of G, topologized with the generalized
compact-open topology. G will be called (CA) if 1(6?), the Lie group of
all inner automorphisms of G, is closed in A(G). It is well known that
G is (CA) if and only if its universal covering group is (CA).

If G is a normal analytic subgroup of an analytic group H, then
each element h of H induces an automorphism of G, namely, g i—• hgh~\
We will denote this homomorphism from H into A(G) by pGH. IH(h) will
denote the inner automorphism of H determined by h e H. More generally,
if A is a subset of H, IH(A) will denote the set of all inner automor-
phisms of H determined by elements of A. IH(H) will be written as
I(H), and the mapping h h-> IH(h) of H onto I(H) will be denoted by IH.

If N is an analytic group and H is an analytic subgroup of A(N),
then N®H will denote the semidirect product of N and H. On the
other hand, if G is an analytic group containing a closed normal analytic
subgroup N and a closed analytic subgroup JET, such that G = NH,
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JV Π H = {e}, and such that the restriction of pNG to H is one-to-one, we
will frequently identify G with N(& pNG(H) and H with pNG(H), that is,
we may write G = N®H.

In Zerling [5] we proved the following theorem.

MAIN STRUCTURE THEOREM. Let G be a non-(CA) analytic group.
Then there exist a (CA) analytic group M, a toral group T in A(M),
and a dense vector subgroup V of T, such that:

( i ) H = ikf (§) T is a (CA) analytic group.
(ii) G is isomorphic to the dense analytic subgroup M (§) V of H.
(iii) Z(G) is contained in M.
(iv) Z0(G) — ZQ(H), and π(Z(H)) is finite, where π is the natural

projection of H onto T. Moreover, if G/Z(G) is homeomorphic to
Euclidean space, then Z(G) = Z(H).

(v) Each automorphism a if G can be extended to an automorphism
ε(σ) of H, such that ε: A(G) —> A(H) is a closed immersion.

In Section 2 we show that there is no (CA) analytic group "smaller" than
H into which G can be densely immersed, but H, however, is not the
"smallest" such (CA) analytic group. In Section 3 we will isolate those
properties of H which determine it uniquely up to dimension, diffeomor-
phism, diffeomorphism together with local isomorphism, and finally
isomorphism.

2.

LEMMA 2.1. Maintaining the notation in the Main Structure Theo-
rem, we have that Z(G) is of finite index in Z(H).

PROOF. Simple calculation reveals that Z(M® T) = {(m, τ): τ = IM(m~ι),
τ(m) = m for all τ 6 T). Now let τί9 τ2, -—,τk be the k distinct elements
in π(Z(H)). Then there exist k distinct elements mlfm2f •• ,m f c in M,
such that Zi = IM(m^γ), and (mif τt) e Z(H). Let (m, τ) e Z(H). Then
τ = IM(m~ι). Hence, m = zmlf zeZ(M). Therefore, z = mχγm and
τ(z) = τ(m^m) = ^(m^-τ^) = m^m — z for all τ eT. So z = (z, e) e
Z(G). Hence each (m,τ)eZ(H) can be written as (m, τ) = (mif τ^ z,
z 6 Z(G). Letting A = {(mif τt): i = 1, 2, , k) we have Z(H) = Z(G)Ά,
that is, Z(G) is of finite index in Z(H).

THEOREM 2.1. Let G and H represent the groups in the Main
Structure Theorem and let ψ:G-+H be the given dense immersion.
Suppose that L is a (CA) analytic group and a: G—+ L is an immersion
for which there exists a dense immersion φ\ L—>H, such that ψ — φ © a.
Then H is isomorphic to L.
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PROOF. Since L is ((Li), H= φ(L) Z(H) from van Est [4, Theorem
2.2.1]. But Z(H) = ψ(Z(G)) A, where A is a finite set, from Lemma 2.1.
Therefore, H = φ(L)-A. Since φ(L) is of finite index in H, H = <p(L),
that is, H is isomorphic to L.

THEOREM 2.2. Let us maintain the notation of the Main Structure
Theorem and let ψ:G~> H be the given dense immersion. Then there
exist a (CA) analytic group P and a dense immersion β:G~+ P for
which there is no homomorphism φ: H~+ P, such that β = φoψ.

PROOF. The construction of our (CA) analytic group P will be based
on the proof of the proposition in Goto [1], Let T = pGH(T). Since
τ(m, v)τ~ι = (τ(m), v) f or m e M, v e V, τ e T, we see that ρGH is 1-1 on
T. Let S = G ® T. We first show that S is a (CA) group.

Simple calculation reveals that Z(G® T) = {(g, τf):τr = IG(g~ι), τ"(g) = g
for all τ" e T). However, if Ioig'1) e T, then IG{g~ι) commutes with all
elements of T. Since T keeps Z(G) elementwise fixed, we have τ"{g) = g
for all τ" 6 Γ' by Lemma 4 of Goto [1]. Therefore Z(S) = {(flr, τ'):

Since IG(V) is contained in Γ', we see that {(v, I^v"1)): ve V}aZ(S).
Therefore, Is(v) = Is(IG(v)) e IS(T) for all veV. Thus, IS(V) c IS(T) and
so I(S) = Iθ(Jlf).IS(F). W ) = /s(ilί).J5(T'). Hence S will be (CA) if we
can show that IS(M) is closed in I(S).

To this end let {I5(mJ} converge to σ in A(S), where mΛ is in M for
all n. Since Is(mn)(G) = G for all w, σ|β 6 A(G). Since {Jσ(mΛ)} converges
to σ\G in A(G), and since IG(M) is closed in A(G) from the proof of
Theorem 2.1 in Zerling [5], we have σ\G = Jσ(m) for some meM.

We now want to show that σ = Is(m). Let v eV and let v' = IG(v) e S.
Then {I8(mn)(v')} converges to σ(v') in S. But Is(mn)(v') = (mnv\m~ι)9 v') =
(mnvm~ιv~\ v')9 and {mnvm~1} converges in G to IG(m)(v). Hence, {/5(mft)(v')}
converges to (mvm"1^1, v') = {mv'(m~ι), vf) = /5(m)(vf). Therefore, σ
Is(m)(V) and so σ(r') = i*(m)(τ') for all τ' e T'. Thus, σ = Is(m) and
is closed in A(S). This proves that S is (CA).

By Goto [3; p. 163] we can find some v'o e V, such that v'o generates
a dense subgroup of T. Let IG(v0) = vj. Let Z> denote the subgroup of
S generated by (v09 vΌ'1). Since {v*} is free and discrete in V, D will be
a free discrete central subgroup of S.

Let P = (G (g> ΓO/JD. Then the homomorphism β:G-+P given by
gr H* (ίy, β)D is a proper dense immersion. Now suppose that there exists
a homomorphism φ\H—>P, such that β = φoψ. Since H = ikf (§) Γ and
T = T', clearly dim ί ί < dim P. We will now show that φ(H) is closed
in P, which leads to a contradiction.
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Since φ(H) — φ(M)-φ(T), we need only show that φ(M) is closed.
However, φ(M) = β(M) = {(m, e)D: m e M}, and φ(M) is closed in P if
and only if δ~ι(β(M)) is closed in S, where δ: S —> P is the canonical
homomorphism. But δ"1(β(M)) = MD is closed in the topological space
M x F x f , since D is closed in V x T". Hence 9>(Λf) is closed in P
and so φ(jff) is a proper closed subgroup of P. This completes the proof
of our theorem.

3.

LEMMA 3.1. Let L be an analytic group. Let M and H be a closed
normal analytic subgroup and a closed abelian analytic subgroup of L,
respectively, such that L — MH, M Π H = {e}. Let G be a dense analytic
subgroup of L and let S be a subset of H. Then PML(S) is closed in
A(M) if and only if pGL(S) is closed in A(G).

PROOF. Let ψ and φ denote the respective restrictions of ρML and
pGL to H. For each a in ψ(H) let Ea denote the automorphism of L
defined by (Ea){m, h) = a(m)-h. Then a n Ea is a closed immersion of

( into A{L).{)
Let L and G be the universal covering groups of L and G, respec-

tively, and let π:L—*L be the natural projection. For aeψ(jff) let
(Ea)f denote the unique automorphism of L, such that π°(Ea)' = (Ea)°π.
Since G is closed and normal in L, each (Ea)' keeps G invariant. There-
fore, each Ea keeps G invariant.

Hence a M• (J5Ό:) \G is a closed immersion of ψ(H) into -A(G). Since
φ(h) = (E(ψ(h))) \G, ψ(S) is closed in A(M) <=> ψ(S) is closed in fCH) <=>

(E(ψ(S)))\G is closed in A(G)^φ(S) is closed in A(G).

LEMMA 3.2. Let G be a dense analytic subgroup of a (CA) analytic
group L. Then pGL(L) = I(G).

PROOF. Suppose that ρGL(L) is not closed in A(G). We may then
appeal to [2]: Let N be a maximal analytic subgroup of pGL(L), which
contains the commutator subgroup of pGL(L) and is closed in A(G). Then
there is a closed vector subgroup V of pGL(L) such that pGL(L) — N V,
N Π V = {e}, and pGL(L) = N V', where Vr is toral group. Hence, each
one dimensional vector subgroup of V is not closed in A(G). Let V =
Vq Vq-i ••• V[ be a direct product decomposition of V into one dimen-
sional subgroups: ρGL(L) = iSΓ FJ F;. ! Vϊ.

For /0σL: L -* pGL(L) let M and iίί, 1 ^ i ^ qt denote the identity
component groups of the complete inverse images of N and Vί, respec-
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tively. M is closed and normal in L, and each Hi is closed in L. More-
over, L = MΉq Hq^ H19 where M Π Ht is contained in Z(L) for each
i. The restriction of pGL to iẐ  is a homomorphism of Ht onto F t having
kernel Z{L) Π if*. Therefore, Z(L) Π iί* is connected, and so it is con-
tained in M. Also

where Vt is a one dimensional closed vector subgroup of Hi9 such that

PGL{V%) = F . Therefore,

L = M(Z(L) ΓΊ fl,) F g (Z(L) n # > FL = Λf. F, F,., .. V, .

If ρGL(mvq ^) = β, then pσL(m)'pGL(vq) ^ O J = β. Therefore

/ M m ) = ^GL(vff) = - = ^LίVi) = e .

Since Z(L) Π Vt = {β}, we have vg = = ^ = e. Hence, Z(L) is con-
tained in M. In the same way we see that each element x in L can be
written uniquely in the form x — mvqvq^ vlf meM, Viβ Vt. There-
fore, L is homeomorphic to M x Vq x Vq^ x x Vx.

Let Mt = MVq- Fg_! F2. M2 is closed and normal in L, and L =
M2Vlf MiΠVι = {e}. Let ψ,: V1-^A{M2) be given by ψM{m^ = vιm2v^1.
Since Z(L) is contained in Mlf and since Vx is abelian, we see that ψt

is an immersion. From Lemma 3.1 we see that ^ ( F J is not closed in
A(M2), since pGL(V^) — V[ is not closed in A(G). Consider M2(§)~

where ψx(FJ is the closure of ψ^Vj) in A(M2). L is properly dense in
M2® 'fi(Fi). Since Z(L) is contained in Λf2, and since L is (CA), we
have a contradiction by van Est [4, Theorem 2.2.1]. Hence pGL{L) = I(G).

COROLLARY. Let us maintain the notation of the Main Structure
Theorem and let L be a (CA) analytic group containing G as a dense
analytic subgroup. Then dim L = dim H + dim Z(L) — dim Z(G) ^ dim H.

PROOF. Since H/Z(H) =T(G) = L/Z(L), and dim Z{H) = dim Z(G) ^
dim Z(L), we have our result.

THEOREM 3.1. Let us main the notation of the Main Structure
Theorem and let L be an analytic group with the following properties,
which we know to be exhibited by H.

( i ) L is (CA).
(ii) There is a dense immersion f: G —> L.
(iii) Z(f(G)) is of finite index in Z(L).

Then L is diffeomorphic to H, and Z(f(G)) is closed in L.

PROOF. Since G is non-(CA) we can appeal to Goto [2]: Let N be
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a maximal analytic subgroup of I(G), which contains the commutator
subgroup of I{G) and is closed in A(G). Then there is a closed vector
subgroup V of J(G), such that I(G) = N V, Nn V' = {e}, and W) =
iSΓ F', where V* is a toral group. Moreover, N Π V is finite, and the
space of I(G) is diffeomorphic to the product space N x V. In the proof
of the Main Structure Theorem in Zerling [5], H is constructed in such
a way that ρGH(M) = N, ρGH(V) = V, and p r a (Γ) = T' = Ψ. Moreover,
/θσ£r is 1-1 on T.

Therefore, since pόϊ(N) = f(M)-Z(L), and Z(L) = Z(G)-F, where F
is a finite set, we have pG

ι

L{N) =f(M) F because Z(G) is contained in M
from the Main Structure Theorem. Hence f(M) is the identity component
group of PGL(N), and so it is closed in L. Thus, Z(f(G)) is closed in L.

Since pGL(L) — I(G) from Lemma 3.2, there is a unique closed immer-
sion ε': I(G) —»A(L) such that the following diagram commutes:

Because f(M) is closed in L, and /((?) and L have the same commuta-
tor subgroup, there exists a maximal analytic subgroup J of f(G), which
contains the commutator subgroup of f(G) and is closed in L, so that
from Goto [2] we have L = J- T", where T" is a toral group, and
Jf] T" is finite. Moreover, the space of L is diffeomorphic to the space
of J x T". We will show that J may be taken to be f(M).

There exists such a group J containing f(M); assume that this con-
tainment is proper. Since f{M) is the identity component group of pzKN),
we see that pGL(J) properly contains N. Hence, pGL(J) is not closed in
A(G) by the maximality of N. N is also the maximal analytic subgroup
of pGL(J), which contains the commutator of pGL{J) and is closed in A(G).

Following Goto [2] there exists a closed vector subgroup W of pGL{J)
so that ρGL(J) = N-W, NΓιW' = {e}, and CIΛ{G)W is a toral group. Let
W = W'q W[ be a direct product decomposition of W into one dimen-
sional subgroups:

pGL(J) = N.Wq.W'g-1 .. W[.

Since ker ρGL\j = JΓ\ Z(L), we may repeat the technique of Lemma
3.2 in order to construct closed one dimensional vector subgroups
Wlf W2, •• ,WqofJ, such that J = /(Λf) Wq- Wq_, Wlt where ρGL(W%) =
"PΓί and Jf] Z{L) is contained in f(M). Moreover, each element xe/can
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be written uniquely in the form x = f(m) wq wlf meM, WieWi.
Therefore, J is homeomorphic to f(M) x Wq x x Wλ. In particular
Wq Wq^ Wx is closed in J, and so it is closed in L. We will now
show that W — Wq WΊ is actually a closed vector subgroup of L.

We have L = J-T" = (/(Jlf).TF).T" = (/(ilί).T") TF where f(M) T"
is a closed analytic subgroup of L. Since T" Π / is finite and contained
in /(G), it is contained in f(M). Hence, if (/(Af) T")ΓI T7 ̂  {e}, then
w = /(m) r", and so r" = f{m)~ι*w. Hence r" e ϊ7" Π /, which is contained
in f(M). By the uniqueness of the decomposition in J, we have w = e.
So L = (fiM)-T")*W, (/(ikf).Γ") ΠW = {e}. Moreover, W n Z(L) = {β},
since /Π Z(L) is contained in f(M), and TΓfΊ/(Λf) = {e}.

Let Γ2 = /(ikί) T" Wg ••• W2. Y2 is closed and normal in L, since
f(M) Wq TΓ8 is closed in /, and L = Γ2 Wίf Y1ΓiW1 = {e}. Let ^ :
TΓi—>A(Γ2) be given by φSw^(y2) = wγy2wϊ\ Since T7Π Z(L) = {e} and
since TΓj is abelian, we see that φγ is an immersion.

Since W[ is not closed in i(Gj, ef(WI) = 1^^) is not closed in A(L).
Hence, φ^WΊ) is not closed in A(Y2) by Lemma 3.1. Consider Y2

Let wx e WΊ and wy e TΓy, 2 <ί j <L q. Then IiίφiiwdiWj)) = Jziw
ε'ipGLiWiWjWΪ1)) = IL(Wo), since TF7 is abelian. Therefore,
Z{L). Hence, σiw^ wj1 is in Z(L) Π Γ2 for all α e

Since ^(L) Π Γ"2 is a closed central subgroup of Y j, and each element
of ^(WΊ) keeps Z(L) Π Y2 elementwise fixed, we see by Lemma 2.2 of
Zerling [5] that σ(wj) = ws for each σ e ^ ^ Wx) and each wy in Wjf 2 ^
j ^ q; in particular, t ϋ ^ ^ = WjW^.

Since L = /(Λf) 27//TΓJC(ff, ••• TFπ(1) for each permutation π on {1,2,
• , q}9 we can show that WtWj = wάWi for all wt e Wi9 ws e Wjf l^i, j ίίq.
Hence W = Wq W1 is a closed vector subgroup of L, which is isomor-
phic to W under pGL. Hence, L = (/(ΛΓ) T") ® T7.

Let φ: T7—* A(/(M) Γ") be given by φ(w)(y) = wyw'K φ is an im-
mersion. Since W is not closed in /((?), we see as before that φ(W) is
not closed in A(/(Λf) Γ") In fact, each one parameter subgroup of
φ(W) is not closed in A(f(M)*T"); therefore, <p(W) is a toral group.

Next let zeZ(L). Then « = «f 6, β'eZ(G), 6 e F . Therefore, 2; =
z'-f(m)>τ".w, f(m)ef(M), r " e Γ , weTΓ. But z'f(m) =/(mj for some
m^M. So z = f(mi)-τ"-w. Since F is ./wnte, the projection of
into TΓ is finite, and, therefore, trivial. So w = e and we have that
is contained in f(M) T".

Therefore, L is properly dense in U = (f(M) T")®φ(W), and Z(L)
is closed in V. This contradicts the fact that L is (CA) by van Est [4;
Theorem 2.2.1]. Hence J = f(M) and so L =f(M) T", and /(Af) Π T" is
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finite. Therefore, the space of L is diffeomorphic to the space of
f(M)xT" by Goto [2]. However, dim 7(G) = dim H - dim Z(H) =
dimH-άimZ(G) = άimM+dimT-dimZ(G), and dim/(G)=:dimL-dimZ(L) =
dim L - dim Z{G) = dim f(M) + dim T" - dim Z(G). Thus, dim T = dim T",
and i ϊ is then diffeomorphic to L.

REMARK. We have actually proved more than what was stated in
Theorem 3,1. If Z(f{G)) is of countably infinite index in Z{L), then f(M)
is still closed in L (see the proof of Theorem 3.4) and we still have
L = (/(Λf) Γ")(B) W. To show that W = {e}, however, requires that
"countably infinite" be replaced by "finite".

If the index of Z(f(G)) in Z(L) is not at most countably infinite,
then the dimension of L may actually exceed the dimension of H, as is
seen in the construction of P in Theorem 2.2.

THEOREM 3.2. Let us maintain the hypothesis and notation of
Theorem 3.1, and let Z{G) be compact. Then L is also locally isomorphic
with H.

PROOF. pβL:L—*I(G) is now a closed mapping. Therefore, f(V) is
a toral group, since each one parameter subgroup of f(V) is not closed
in L because each one parameter subgroup of pGL(f( V)) = V is not closed
in I(G). Hence, L = f(M) f(V). Let 2\ denote the identity component
group of f{M) Π f(V). Then there is a toral subgroup T2 of f(V) so that
TOO = 2VΓ,, Tx n T2 = {e}. Therefore, L = f(M) T2 and f(M) n Γ2 is
finite. Now T'=-^ffi = pGjJ(V» = pσL(TrTJ But
ρGL{Td is contained in the finite group ΛΓΠ T\ Therefore ρGL{Tγ) = {e}
and so T' = ρGL{T2). Since dim Z(L) = dim Z(G), we see that dim T2 =
dim T\ Hence Γ2 n Z(L) must be discrete and, therefore, finite.

Since f(M) Π T2 is finite, we can find neighborhoods A of β in f{M)
and ΰ of e in Γ2 so that Af)B = {e} and ?7 = AB is open in L. More-
over, each u e U can be written uniquely as u = a b, aeA, beB. U
can be assumed symmetric and since T2 Π Z(L) is finite, U can be selected
so that U2Γ)T2f) Z(L) = {e}.

Since |OGH is 1-1 on T, for / ( m ) e i and beB we can define β:U~+H

as follows:

), 6) -

Hence L is diffeomorphic and locally isomorphic with H.

THEOREM 3.3. Let us maintain the hypothesis and notation of
Theorem 3.1 and let G have trivial center and be homeomorphic to
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Euclidean space. If L possesses the property (possessed by H) that Z(L)
is trivial, then H = L.

PROOF. H = I(G) = L from Lemma 3.2.

THEOREM 3.4. Let us maintain the hypothesis and notation of
Theorem 3.1, except let Z(f(G)) be of countably infinite index in Z(L).
Then dim L — dim H and Z(f(G)) is closed in L.

PROOF. Let Q denote the identity component group of PGL(N). Then
since Z(f(G)) is of countably infinite index in Z(L), and f(M) contains
Z(f(G))j we see that Q = f(M) C, where C is a countable set. By going
to the universal covering group of Q, where analytic normal subgroups
are closed, we see that Q = f{M). Hence f(M) and, therefore, Z(f{G))
are closed in L. Since Z(L) is now a countable union of closed subsets,
we see that dim Z{L) = dim Z(G). Thus, dimL = dimH by the corollary
to Lemma 3.2.
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