Tôhoku Math. Journ. 29 (1977), 597-600.

ON A PROBLEM OF GIRSANOV

N. KAZAMAKI

(Received June 21, 1976)

Let (Ω, F, P) be a probability space with a non-decreasing right continuous family (F_t) of sub σ -fields of F such that F_0 contains all null sets. Let M_t be a continuous martingale with $M_0 = 0$, and set

$${Z}_t = \exp\left(M_t - rac{1}{2} \langle M
angle_t
ight).$$

I. V. Girsanov [1] raised the problem of finding sufficient conditions for the process Z_t to be a martingale. It plays an important role in certain aspects of the theory of stochastic integral equations. Recently, it was proved by A. A. Novikov [2] that if $\exp(M_t/2) \in L^1$ for each t > 0, then Z_t is a martingale.

Our aim is to prove

THEOREM. If $\exp{(M_t/2)} \in L^1$ for each t > 0, then the process Z_t is a martingale.

PROOF. Generally, Z_t is a positive local martingale, so that $E[Z_t] \leq 1$ for every t. Therefore, it is a martingale if and only if $E[Z_t] = 1$ for every t. Our proof is a slight modification of Novikov's proof given in [2].

Now let $\mu_t = \inf \{s > 0; \langle M \rangle_s > t\}$. Each μ_t is an F_t -stopping time and we denote by (G_t) the right continuous family (F_{μ_t}) . Let (Ω', F', P') be another probability space which carries a one-dimensional Brownian motion (B'_t, F'_t) with $B'_0 = 0$. We denote by $(\hat{\Omega}, \hat{F}, \hat{P})$ the product of (Ω, F, P) and (Ω', F', P') with π, π' the projections of $\hat{\Omega} = \Omega \times \Omega'$ onto Ω and Ω' respectively. Set $\hat{G}_t = G_t \times F'_t$. Then $\langle M \rangle_t \circ \pi$ is a \hat{G}_t -stopping time. Let $\hat{F}_t = \hat{G}_{\langle M \rangle_t \circ \pi}$. The system $(\hat{\Omega}, \hat{F}, \hat{F}_t, \hat{P})$ is a lifting of (Ω, F, F_t, P) under π . It is easy to see that $M_{\mu_t} \circ \pi$ and $B'_t \circ \pi'$ are \hat{G}_t -continuous local martingales. As is well-known, by a classical result of P. Lévy,

$$B_t = M_{\mu_t} \circ \pi + B_t' \circ \pi' - B_{t \wedge \langle \langle M
angle_\infty \circ \pi
angle} \circ \pi'$$

is a Brownian motion over (\hat{G}_t) . Here $x \wedge y$ is the minimum of x and y. It is clear that $M_t \circ \pi = B_{\langle M \rangle_t \circ \pi}$. Now, set

$${ au}_a = \inf \left\{ t \geqq 0; \, B_t \leqq t-a
ight\} \,, \qquad 0 < a < \infty \;.$$

N. KAZAMAKI

As the distribution density of this \hat{G}_t -stopping time τ_a equals

$$rac{a}{\sqrt{2\pi t^3}}\exp\left(-rac{(t-a)^2}{2t}
ight)$$
 ,

we have $\hat{E}[\exp(\tau_a/2)] = \exp(a)$ (see [2]). Since $B_{\tau_a} - \tau_a/2 = \tau_a/2 - a$, it follows that

$$\hat{E}\Big[\exp\left(B_{ au_a}-rac{1}{2} au_a
ight)\Big]=1$$
 .

This implies that the process $X_t = \exp(B_{t\wedge \tau_a} - t \wedge \tau_a/2)$ is a \hat{P} -uniformly integrable martingale over (\hat{G}_t) . Then, as $\langle M \rangle_t \circ \pi$ is a \hat{G}_t -stopping time, we have $\hat{E}[X_{\langle M \rangle_t \circ \pi}] = 1$. On the other hand,

$$\hat{E}[X_{\langle M
angle_t \circ \pi}] = \hat{E}[X_{\langle M
angle_t \circ \pi}; \, au_a > \langle M
angle_\iota \circ \pi] + \hat{E}[X_{\langle M
angle_t \circ \pi}; \, au_a \leq \langle M
angle_\iota \circ \pi] \, .$$

Since $X_{\langle M \rangle_t \circ \pi} = Z_t \circ \pi$ on $\{\tau_a > \langle M \rangle_t \circ \pi\}$, the first term on the right side is smaller than $\hat{E}[Z_t \circ \pi] = E[Z_t]$. And the second term is smaller than

$$egin{aligned} &\hat{E}iggl[\expiggl(rac{1}{4}B_{\scriptscriptstyle(\langle M
angle_t^{\circ,\pi})\wedge\pi_a}iggr)\expiggl(rac{3}{4}B_{ au_a}-rac{1}{2} au_aiggr)iggr] \ &\leq iggl(\hat{E}iggl[\expiggl(rac{1}{2}B_{\scriptscriptstyle(\langle M
angle_t^{\circ,\pi})\wedge au_a}iggr)iggr]iggr)^{1/2}iggl(\hat{E}iggl[\expiggl(rac{3}{2}B_{ au_a}- au_aiggr)iggr]iggr)^{1/2}\,. \end{aligned}$$

As $B_{\tau_a} = \tau_a - a$, the second term on the right side is

$$\Big(\widehat{E} \Big[\exp \Big(rac{1}{2} au_a \Big) \Big] \exp \Big(- rac{3}{2} a \Big) \Big)^{1/2} = \exp \Big(- rac{1}{4} a \Big)$$

which converges to 0 as $a \rightarrow \infty$. To estimate the first term, set

 $T=\inf\left\{ s\geqq 0;\,\langle M
ight
angle _{s}\circ \pi\geqq au_{a}
ight\}$.

For each t, $\{T \leq t\} = \{\tau_a \leq \langle M \rangle_t \circ \pi\} \in \widehat{G}_{\langle M \rangle_t \circ \pi} = \widehat{F}_t$, so that T is an \widehat{F}_t -stopping time. It follows from the definition of T that

$$\langle M
angle_{\scriptscriptstyle t \wedge T} \circ \pi = (\langle M
angle_{\scriptscriptstyle t} \circ \pi) \wedge au_a$$
 .

As $M_t \circ \pi = B_{\langle M \rangle_t \circ \pi}$ is a martingale over (\hat{F}_t) , by the Doob optional sampling theorem

$$\hat{E}[B_{\langle M
angle_{t} \circ \pi} | \hat{F}_{t \wedge T}] = B_{\langle M
angle_{t \wedge T} \circ \pi} = B_{\langle \langle M
angle_{t} \circ \pi
angle \wedge au_{a}}$$
 .

Thus, by the Jensen inequality,

$$\widehat{E}\left[\exp\left(rac{1}{2}B_{\langle\langle M
angle_t\circ\pi
angle\wedge au_a}
ight)
ight] \leq \widehat{E}\left[\exp\left(rac{1}{2}B_{\langle M
angle_t\circ\pi}
ight)
ight]$$

598

$$egin{aligned} &= \hat{E}iggl[\expiggl(rac{1}{2}M_t\circ\piiggr)iggr] \ &= Eiggl[\expiggl(rac{1}{2}M_tiggr)iggr]. \end{aligned}$$

Consequently, we have

$$1 \leq E[Z_t] + \left(E\!\!\left[\exp\left(rac{1}{2}M_t
ight)
ight]
ight)^{\!\!1/2} \exp\left(-rac{a}{4}
ight).$$

The right side converges to $E[Z_t]$ as $a \to \infty$. Thus, $E[Z_t] = 1$ for every t. This completes the proof.

REMARK. If $\exp(\langle M \rangle_t/2) \in L^1$, then $\exp(M_t/2) \in L^1$. Indeed, applying the Schwarz inequality we get

$$egin{aligned} &Eiggl[\expiggl(rac{1}{2}M_tiggr) &= Eiggl[\expiggl(rac{1}{2}M_t - rac{1}{4}\langle M
angle_tiggr) \expiggl(rac{1}{4}\langle M
angle_tiggr) iggr] \ &\leq (E[Z_t])^{1/2} iggl(Eiggl[\expiggl(rac{1}{2}\langle M
angle_tiggr) iggr] iggr)^{1/2} \ &\leq iggl(Eiggl[\expiggl(rac{1}{2}\langle M
angle_tiggr) iggr] iggr)^{1/2} \,. \end{aligned}$$

Namely, our result is an improvement of the Novikov theorem.

Finally, we give such a continuous local martingale M_t that $Z_t = \exp(M_t - \langle M \rangle_t/2)$ is a martingale, but $Z'_t = \exp(-M_t - \langle M \rangle_t/2)$ is not a martingale. For that, let (B_t) be a one-dimensional Brownian motion such that $B_0 = 0$. We set

$$arsigma = \inf \left\{ t > 0; \, B_t \geqq 1
ight\}$$
 ,

which is stopping time such that $0 < \xi < \infty$ a.s. Now let $\alpha: [0, 1] \rightarrow [0, \infty[$ be an increasing homeomorphic function, and set

$$heta_t = egin{cases} lpha(t) \wedge \xi & ext{if} \quad 0 \leq t < 1 \ arsigma & ext{if} \quad 1 \leq t < \infty \end{cases}$$

Then each θ_t is a stopping time such that $\theta_0 = 0$ and $\theta_1 = \xi$. For a.e. $\omega \in \Omega$ the sample functions $\theta_0(\omega)$ are non-decreasing and continuous, so that $M_t = B_{\theta_t}$ is a continuous local martingale. As $\theta_t \leq \xi$, we have $M_t \leq 1$ and $Z_t \leq e$. Therefore, Z_t is a bounded martingale. On the other hand, as $M_1 = B_{\xi} = 1$, $E[Z'_1] \leq E[\exp(-M_1)] = 1/e < 1$. This implies that the process Z'_t is not a martingale. Of course, if $\exp(\langle M \rangle_t/2) \in L^1$ for every t, then Z_t and Z'_t are martingales. But, for every $\delta > 0$, there is a continuous martingale M_t such that $E[\exp((1/2 - \delta)\langle M \rangle_t)]$ is finite

N. KAZAMAKI

and the process Z_t is not a martingale (see [2]). Therefore, as $E[\exp(\alpha M_t)] \leq (E[\exp(2\alpha^2 \langle M \rangle_t)])^{1/2}$ for every α , our condition may not be essentially weakened.

References

- [1] I. V. GIRSANOV, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures, Theory Probability Appl., 5 (1960), 285-301.
- [2] A. A. NOVIKOV, On an identity for stochastic integrals, Theory Probability Appl., 17 (1972), 717-720.

DEPARTMENT OF MATHEMATICS College of General Education Tôhoku University Sendai, Japan