ON NON-COMMUTATIVE HARDY SPACES ASSOCIATED WITH FLOWS ON FINITE VON NEUMANN ALGEBRAS

KICHI-SUKE SAITO

(Received May 21, 1976)

1. Introduction. Let M be a von Neumann algebra and let $\{\alpha_t\}_{t \in \mathbb{R}}$ be a flow by which we mean a σ -weakly continuous one-parameter group of *-automorphisms on M. Let $H^{\infty}(\alpha)$ be the set of all elements of M with non-negative spectrum with respect to $\{\alpha_i\}_{i \in \mathbb{R}}$. Recently the structure of $H^{\infty}(\alpha)$ has been investigated by Kawamura-Tomiyama [9], Loebl-Muhly [11] and the author [15]. It is important to study the structure of $H^{\infty}(\alpha)$ in view of the role played by the disk algebra over the unit Furthermore $H^{\infty}(\alpha)$ happens to become a subdiagonal algebra circle. which may be regarded as a non-commutative, weak*-Dirichlet algebra. On the other hand, as a generalization of the Hardy space H^p over the unit circle, several authors studied the Hardy spaces in the L^{p} -space taking values in a Hilbert space ([4], [14], etc.) or a von Neumann algebra, in particular, the ring of all $n \times n$ matrices over the complex numbers ([1], [5], [6], etc.). The latter is considered as non-commutative Hardy spaces.

Our objective in this paper is to define and investigate the noncommutative Hardy spaces $H^{p}(\alpha)$ associated with $\{\alpha_{i}\}_{i \in \mathbb{R}}$ in case M has a faithful, normal, α_{i} -invariant finite trace. The method is based on the theory of spectral subspaces for a flow and the non-commutative theory of integration for a finite von Neumann algebra. Now we assume that there is a faithful, normal, α_{i} -invariant, finite trace τ on M. Using the non-commutative integration theory with respect to τ , we consider Banach spaces $L^{p}(M, \tau)$, $1 \leq p < \infty$. In §2, we define $H^{p}(\alpha)$ and $H^{p}_{0}(\alpha)$ and study their basic properties. In §3, we show examples of $H^{p}(\alpha)$. In §4, we consider the doubly invariant subspace theorem for $H^{\infty}(\alpha)$ in $L^{p}(M, \tau)$ which is a generalization of Wiener's theorem. Let \mathscr{M} be a closed subspace of $L^{p}(M, \tau)$. If \mathscr{M} is a left doubly invariant subspace of $L^{p}(M, \tau)$ in the sence that $H^{\infty}(\alpha)\mathscr{M} \subseteq \mathscr{M}$ and $H^{\infty}(\alpha)^{*}\mathscr{M} \subseteq \mathscr{M}$, then there exists a projection e of M such that $\mathscr{M} = L^{p}(M, \tau)e$. In §5, we consider the simply invariant subspace theorem for $H^{\infty}(\alpha)$ in $L^{p}(M, \tau)$

This paper was prepared while the author stayed in 1975-76 at Tôhoku University on leave of absence from Niigata University.

which is an extension of Beurling's theorem. Let \mathscr{M} be a left simply invariant subspace in the sense that $[H_0^{\infty}(\alpha)\mathscr{M}]_p \subseteq \mathscr{M}$, where $[H_0^{\infty}(\alpha)\mathscr{M}]_p$ is the closed linear span of $H_0^{\infty}(\alpha)\mathscr{M}$ in $L^p(\mathcal{M}, \tau)$. If $\{\alpha_t\}_{t\in\mathbb{R}}$ is ergodic, there exists a unitary element u of \mathcal{M} such that $\mathscr{M} = H^p(\alpha)u$.

The author would like to thank Prof. J. Tomiyama for his valuable suggestions and also Prof. M. Fukamiya for his valuable conversations and encouragements.

The non-commutative Hardy spaces $H^{p}(\alpha)$. Let M be a finite 2. von Neumann algebra acting on a Hilbert space H. Let $\{\alpha_i\}_{i \in \mathbb{R}}$ be a flow on M. Throughout this paper, we assume that M has a faithful, α_t -invariant, normal trace τ on M such that $\tau(1) = 1$. Such a τ exists, for example, if $\{\alpha_t\}_{t \in R}$ is a group of automorphisms leaving the center of M elementwise fixed, in particular, if M is a factor. Let $1 \leq p < \infty$ and we write $L^{p}(M, \tau)$ the space of all integrable operators for the gage space (M, H, τ) such that $\tau(|x|^p) < \infty$, $|x| = (x^*x)^{1/2}$, in the sence of Segal [17]. If $p = \infty$, we identify M with $L^{\infty}(M, \tau)$. It is well-known that $L^{p}(M, \tau)$ becomes a Banach space with the L^{p} -norm $||x||_{p} = \tau(|x|^{p})^{1/p}, x \in$ $L^{p}(M, \tau)$ [13, Theorem 8]. We refer the reader to ([3], [13], [17]) for the basic properties of the space $L^{p}(M, \tau)$. Recall that $L^{1}(M, \tau)$ may be identified with the predual of M with respect to the pairing $\langle x, y \rangle =$ $\tau(xy), x \in L^1(M, \tau), y \in M$ [3, Théorème 5]. Furthermore, in analogy with the scalar case, the dual of $L^{p}(M, \tau)$, 1 , may be identified with $L^q(M, au), \ 1/p + 1/q = 1, \ ext{via the pairing } \langle x, y
angle = au(xy), \ x \in L^p(M, au), \ y \in$ $L^{q}(M, \tau)$ [3, Théorème 7]. Since M is finite and $\tau(1) = 1$, we have $M \subset$ $L^{q}(M, \tau) \subset L^{p}(M, \tau), \ 1 \leq p \leq q \leq \infty$ [13, Lemma 3.3] and M is dense in $L^{p}(M, \tau)$ with respect to the L^{p} -norm [3, Proposition 5].

REMARK 2.1. In the case of abelian von Neumann algebras, the concept of measurable operator just introduced is essentially equivalent to the concept of measurable function [17, Theorem 2].

PROPOSITION 2.2. For each $p, 1 \leq p < \infty$, $\{\alpha_t\}_{t \in \mathbb{R}}$ extends uniquely to a strongly continuous representation of R of isometries on $L^p(M, \tau)$.

PROOF. Since τ is α_t -invariant, we have $||\alpha_t(x)||_p = ||x||_p$ for $x \in M$. Therefore $\{\alpha_t\}_{t \in R}$ extends uniquely to a representation of R of isometries on $L^p(M, \tau)$ and we also denote this extension of $\{\alpha_t\}_{t \in R}$ to each $L^p(M, \tau)$ by $\{\alpha_t\}_{t \in R}$. Let $x \in L^p(M, \tau)$. For any $\varepsilon > 0$, there exists an element $a \in M$ such that $||x - a||_p < \varepsilon$. For any $y \in L^q(M, \tau)$, 1/p + 1/q = 1, we have

$$\begin{aligned} |\tau((\alpha_t(x) - x)y)| &\leq |\tau((\alpha_t(x) - \alpha_t(a))y| + |\tau((\alpha_t(a) - a)y)| + |\tau((a - x)y)| \\ &\leq ||\alpha_t(x - a)||_p ||y||_q + |\tau((\alpha_t(a) - a)y)| + ||a - x||_p ||y||_q \,. \end{aligned}$$

Since $\{\alpha_t\}_{t \in \mathbb{R}}$ is σ -weakly continuous, $\tau(\alpha_t(a)y)$ is a continuous function with respect to t. Thus there exists $t_0(>0)$ such that $|\tau((\alpha_t(a) - a)y)| < \varepsilon$, $|t| < t_0$. Hence we have

$$| au((lpha_\iota(x)-x)y)| < (2||y||_q+1)arepsilon$$
 , $|t| < t_{\scriptscriptstyle 0}$,

and so $\{\alpha_t\}_{t\in R}$ is $\sigma(L^p(M, \tau), L^q(M, \tau))$ -continuous. From a well-known result $\{\alpha_t\}_{t\in R}$ is strongly continuous on $L^p(M, \tau)$. This completes the proof.

Throughout this paper we denote this extension of $\{\alpha_t\}_{t \in \mathbb{R}}$ to $L^p(M, \tau)$ by $\{\alpha_t\}_{t \in \mathbb{R}}$ too.

Next, we define a representation $\alpha(\cdot)$ of $L^{i}(R)$ into the bounded operators on $L^{p}(M, \tau)$ by $\alpha(f)x = \int_{-\infty}^{\infty} f(t)\alpha_{i}(x)dt$ where $x \in L^{p}(M, \tau)$ and $f \in L^{1}(\mathbf{R})$. For $f \in L^{1}(\mathbf{R})$, we put $Z(f) = \{t \in \mathbf{R}: \hat{f}(t) = 0\}$, where $\hat{f}(t) = \int_{-\infty}^{\infty} e^{-ist}f(s)ds$, $t \in \mathbf{R}$. Let $\mathrm{Sp}_{\alpha}(x)$ be defined as

$$igcap \{Z(f): f \in L^1(R), \, lpha(f)x = 0\}$$
 .

We refer the readers to [2] for the elementary properties of spectra and spectral subspaces.

DEFINITION 2.3. For $1 \leq p \leq \infty$, the set of all $x \in L^p(M, \tau)$ such that $\operatorname{Sp}_{\alpha}(x) \subset [0, \infty)$ is denoted by $H^p(\alpha)$ and is called the non-commutative Hardy space of exponent p. Further for $1 \leq p < \infty$ (resp. $p = \infty$) the L^p -norm closure (resp. σ -weak closure) of the set of all $x \in L^p(M, \tau)$ such that $\operatorname{Sp}_{\alpha}(x) \subset (0, \infty)$ is denoted by $H^p_0(\alpha)$.

REMARK 2.4. Let $M = L^{\infty}(T)$ where T is the unit circle. Let $x \in L^{\infty}(T)$. Putting $\alpha_t x(e^{is}) = x(e^{i(s-t)})$, $s, t \in \mathbb{R}$, and $\tau(x) = 1/2\pi \int_0^{2\pi} x(e^{it}) dt$, $\{\alpha_t\}_{t \in \mathbb{R}}$ is a flow on M and τ is a faithful, normal, α_t -invariant trace such that $\tau(1) = 1$. By Remark 2.1, we have $L^p(M, \tau) = L^p(T)$. Observe that $H^p(\alpha)$ coincides with the Hardy space H^p on the unit circle T.

For a subset S of $L^{p}(M, \tau)$, $1 \leq p \leq \infty$, $[S]_{p}$ denotes the closed (resp. σ -weakly closed if $p = \infty$) subspace of $L^{p}(M, \tau)$ generated by S and we put $S^{\perp} = \{x \in L^{q}(M, \tau) : \tau(xy) = 0, y \in S\}, 1/p + 1/q = 1.$

PROPOSITION 2.5. Let $1 \leq p \leq \infty$, 1/p + 1/q = 1 and $x \in L^{p}(M, \tau)$. The following assertions are equivalent.

- (i) $x \in H^p(\alpha)$.
- (ii) $t \mapsto \tau(x\alpha_t(y))$ belongs to $H^{\infty}(\mathbf{R})$ for every $y \in L^q(\mathbf{M}, \tau)$.
- (iii) $\tau(xy) = 0$ for every $y \in H_0^q(\alpha)$.
- (iv) $\tau(xy) = 0$ for every $y \in H_0^{\infty}(\alpha)$.

PROOF. (i) \Rightarrow (ii). Let $x \in H^{p}(\alpha)$. For an $\varepsilon > 0$, choose a function $f \in L^{1}(\mathbf{R})$ such that \hat{f} lives in $[\varepsilon, \infty)$. Then, for every $y \in L^{q}(M, \tau)$, we have

$$egin{aligned} &\int_{-\infty}^{\infty} & au(xlpha_t(y))f(t)dt = \int_{-\infty}^{\infty} & au(lpha_{-t}(x)y)f(t)dt \ &= & auigg(igg(\int_{-\infty}^{\infty} & lpha_{-t}(x)f(t)dtigg)yigg) \ &= & au((lpha(\widetilde{f})x)y) \end{aligned}$$

where $\widetilde{f}(t) = f(-t)$, $t \in \mathbf{R}$. On the other hand

$$\operatorname{Sp}_{lpha}(lpha(\widetilde{f})x) \subset \operatorname{Supp}\widetilde{\widetilde{f}} \cap \operatorname{Sp}_{lpha}(x) \subset (-\infty, -\varepsilon] \cap [0, \infty) = \emptyset$$
.

Then we have $\alpha(\tilde{f})x = 0$ and so $t \mapsto \tau(x\alpha_t(y))$ belongs to $H^{\infty}(\mathbf{R})$ for every $y \in L^q(\mathbf{M}, \tau)$.

(ii) \Rightarrow (iii). We refer to [2, Proposition 5.1].

 $(iii) \Rightarrow (iv)$ is trivial.

(iv) \Rightarrow (i) Suppose that $\tau(xy) = 0$ for every $y \in H_0^{\infty}(\alpha)$. Then $x \in H^1(\alpha)$ by [9, Lemma 2.2]. From the definition of $H^p(\alpha)$, we have $H^1(\alpha) \cap L^p(M, \tau) = H^p(\alpha)$ and $x \in H^p(\alpha)$. This completes the proof.

Put $M(\alpha) = H^{\infty}(\alpha) \cap H^{\infty}(\alpha)^*$. Then $M(\alpha)$ is a finite von Neumann algebra which consists of all fixed points in M with respect to $\{\alpha_t\}_{t \in \mathbb{R}}$. Since M has a faithful, normal, α_t -invariant finite trace, there exists a unique, faithful, normal, α_t -invariant projection ε of norm one of M onto $M(\alpha)$ [10, Theorem 2]. Furthermore, for each element $x \in M$, $\varepsilon(x)$ is given as the unique element of the intersection $K(x, \alpha) \cap M(\alpha)$, where $K(x, \alpha)$ denotes the σ -weakly closed convex hull of $\{\alpha_t(x)\}_{t \in \mathbb{R}}$. By [9, Proof of Theorem 2.4], we have $H^{\infty}_{0}(\alpha) = \{x \in H^{\infty}(\alpha); \varepsilon(x) = 0\}$.

PROPOSITION 2.6. Let $1 \leq p < \infty$.

(i) ε extends uniquely to a projection ε_p of norm one of $L^p(M, \tau)$ onto $L^p(M(\alpha), \tau)$.

(ii) $L^{p}(M(\alpha), \tau)$ equals the set of all fixed points of $L^{p}(M, \tau)$ with respect to $\{\alpha_{t}\}_{t \in \mathbb{R}}$.

(iii) $H^p_0(\alpha) = \{x \in H^p(\alpha); \varepsilon_p(x) = 0\}.$

PROOF. (i) Let $x \in M$. Since $\varepsilon(x)$ is given as the unique element of $K(x, \alpha) \cap M(\alpha)$, there is a net $\{\psi_i\}_{i \in I}$ of convex combinations of the α_i (i.e., $\psi_i = \sum_{k=1}^{n_i} \lambda_k^{(i)} \alpha_{i_k}^{(i)}, \lambda_k^{(i)} \ge 0, \sum_{k=1}^{n_i} \lambda_k^{(i)} = 1$) such that $\lim_i \psi_i(x) = \varepsilon(x)$ in the σ -weak topology. Let q be the conjugate index of p: 1/p + 1/q = 1. For any $y \in L^q(M, \tau)$,

$$egin{aligned} | au(arepsilon(x)y)| &= \lim_i | au(\psi_i(x)y)| \ &&\leq \overline{\lim_i} \sum\limits_{k=1}^{n_i} \lambda_k^{(i)} | au(lpha_{t_k}^{(i)}(x)y)| \ &&\leq \overline{\lim_i} \sum\limits_{k=1}^{n_i} \lambda_k^{(i)} || lpha_{t_k}^{(i)}(x)||_p || \, y \, ||_q \ &&= ||x||_p || \, y \, ||_q \ . \end{aligned}$$

Since $L^{q}(M, \tau)$ is the dual space of $L^{p}(M, \tau)$, we have $||\varepsilon(x)||_{p} \leq ||x||_{p}$. As M is dense in $L^{p}(M, \tau)$ with respect to $||\cdot||_{p}$, ε extends uniquely to a projection ε_{p} of norm one on $L^{p}(M, \tau)$. Since $L^{p}(M(\alpha), \tau) = [M(\alpha)]_{p}$, it is clear that the range of ε_{p} equals $L^{p}(M(\alpha), \tau)$.

(ii) Let F be the set of all fixed points of $L^{p}(M, \tau)$ with respect to $\{\alpha_{t}\}_{t \in \mathbb{R}}$. Since $L^{p}(M(\alpha), \tau) = [M(\alpha)]_{p}$, it is easy to show that $L^{p}(M(\alpha), \tau) \subset F$. Let $x \in F$. We may assume that x is self-adjoint. Let $x = \int_{-\infty}^{\infty} \lambda d\alpha_{t}(e_{\lambda})$ be its spectral resolution. Now we can consider $\alpha_{t}(x) = \int_{-\infty}^{\infty} \lambda d\alpha_{t}(e_{\lambda})$. Since the spectral resolution is unique, $e_{\lambda} \in M(\alpha)$ and so $x \in L^{p}(M(\alpha), \tau)$.

(iii) From (iii) and (iv) of Proposition 2.5, we have $H_0^p(\alpha) = [H_0^{\infty}(\alpha)]_p$. Since $\varepsilon(x) = 0$ for $x \in H_0^{\infty}(\alpha)$, we show that $H_0^p(\alpha) \subset \{x \in H^p(\alpha); \varepsilon_p(x) = 0\}$. Now suppose that there exists an element $a \in H^p(\alpha)$ such that $\varepsilon_p(a) = 0$ and $a \notin H_0^p(\alpha)$. We can find $y \in L^q(M, \tau)$ such that $\tau(ay) = 1$ and $\tau(by) = 0$ for all $b \in H_0^p(\alpha)$. Let $F(t) = \tau(\alpha_t(a)y)$. As in the proof of [9, Theorem 2.4], F is constant in \mathbf{R} , that is, $\tau(ay) = \tau(\alpha_t(a)y) = 1$. Let δ be any number such that $0 < \delta < 1/2$. Since $L^p(M, \tau) = [M]_p$, there exists $x \in M$ such that $||\alpha - x||_p < \delta/||y||_q$. Then

$$| au(lpha_{\imath}(x)y)-1|=| au(lpha_{\imath}(x)y)- au(lpha_{\imath}(a)y)|<\delta$$
 .

Hence we have $\operatorname{Re} \tau(\alpha_i(x)y) > 1 - \delta$. We choose a net $\{\psi_i\}_{i \in I}$ as in the proof of (i). Then

$$egin{aligned} | au(arepsilon(x)y)| &= \lim_i | au(\psi_i(x)y)| \ &\geq \lim_i \sum_{k=1}^{n_i} \lambda_k^{(i)} \operatorname{Re} au(lpha_{t_k}^{(i)}(x)y) > 1 - \delta \;. \end{aligned}$$

On the other hand

$$|\tau(\varepsilon(x)y)| = |\tau(\varepsilon_p(a)y - \varepsilon(x)y)| \leq ||a - x||_p ||y||_q < \delta$$
.

This is a contradiction. This completes the proof.

PROPOSITION 2.7. Let 1 . $(i) <math>H_0^p(\alpha) = [H_0^{\infty}(\alpha)]_p$. (ii) $H^p(\alpha) = [H^{\infty}(\alpha)]_p$.

- (iii) $H^p_0(\alpha) = \{x \in L^p(M, \tau); \tau(xy) = 0, y \in H^\infty(\alpha)\}.$
- (iv) $H^{p}(\alpha) = H^{q}_{0}(\alpha)^{\perp}, \ 1/p + 1/q = 1.$

PROOF. (i) and (iv) are clear from Proposition 2.5. (ii) is clear from Proposition 2.6. (iii) is proved from (ii).

Finally we define both simply and doubly invariant subspaces for $H^{\infty}(\alpha)$ in $L^{p}(M, \tau)$.

DEFINITION 2.8. Let \mathscr{M} be a closed (resp. σ -weakly closed) subspace of $L^{p}(\mathcal{M}, \tau)$ (resp. \mathcal{M}) for $1 \leq p < \infty$ (resp. $p = \infty$). \mathscr{M} is said to be left (resp. right) doubly invariant if $H^{\infty}(\alpha)\mathscr{M} \subseteq \mathscr{M}$ and $H^{\infty}(\alpha)^{*}\mathscr{M} \subseteq \mathscr{M}$ \mathscr{M} (resp. $\mathscr{M} H^{\infty}(\alpha) \subseteq \mathscr{M}$ and $\mathscr{M} H^{\infty}(\alpha)^{*} \subseteq \mathscr{M}$). If \mathscr{M} is left and right doubly invariant, \mathscr{M} is said to be two-sided doubly invariant. Furthermore a closed subspace \mathscr{M} of $L^{p}(\mathcal{M}, \tau)$, $1 \leq p < \infty$, is said to be left (resp. right) simply invariant if $[H^{\circ}_{0}(\alpha)\mathscr{M}]_{p} \subseteq \mathscr{M}$ (resp. $[\mathscr{M} H^{\circ}_{0}(\alpha)]_{p} \subseteq \mathscr{M}$).

3. Examples. Let M and τ be as in §2. Let F_n be a type I_n factor and let $\{e_{ij}\}$ be a matrix unit of F_n . We denote by B the von Neumann tensor product $M \otimes F_n$ of M and F_n . Setting $\tilde{\alpha}_t = \alpha_t \otimes 1$, we get a flow $\{\tilde{\alpha}_t\}_{t \in \mathbb{R}}$ on B. Let Tr be the canonical trace on F_n and let $\tau \otimes \text{Tr}$ be the tensor product of τ and Tr. We denote by $L^p(M, \tau) \otimes F_n$ the algebraic tensor product of $L^p(M, \tau)$ and F_n . Then we have the following:

PROPOSITION 3.1. For $1 \leq p < \infty$, $L^{p}(M, \tau) \otimes F_{n} = L^{p}(B, \tau \otimes \operatorname{Tr})$.

Next, we investigate the structure of $H^{p}(\tilde{\alpha})$. We denote by $H^{p}(\alpha) \otimes F_{n}$ the algebraic tensor product of $H^{p}(\alpha)$ and F_{n} .

PROPOSITION 3.2. For $1 \leq p \leq \infty$, $H^p(\tilde{\alpha}) = H^p(\alpha) \otimes F_n$.

PROOF. Let $x \in L^{p}(M, \tau) \otimes F_{n}$ $(x = \sum x_{ij} \otimes e_{ij}, x_{ij} \in L^{p}(M, \tau))$. For $f \in L^{1}(\mathbb{R})$, we have $\tilde{\alpha}(f)x = \sum (\alpha(f)x_{ij}) \otimes e_{ij}$. Thus $\tilde{\alpha}(f)x = 0$ if and only if $\alpha(f)x_{ij} = 0$ for all i, j. By the definition of spectrum, we have $\operatorname{Sp}_{\tilde{\alpha}}(x) = \bigcup \operatorname{Sp}_{\alpha}(x_{ij})$. Therefore $H^{p}(\tilde{\alpha}) = H^{p}(\alpha) \otimes F_{n}$. This completes the proof.

REMARK 3.3. Let $L^{\infty}(T)$ and $\{\alpha_i\}_{i \in \mathbb{R}}$ be as in Remark 2.4. Let $L^{\infty}(T, F_n)$ be the Banach space of all F_n -valued essentially bounded weak*measurable functions on T. Then $L^{\infty}(T) \otimes F_n = L^{\infty}(T, F_n)$ [16, Theorem 1.22.13]. Moreover $L^{\infty}(T, F_n)$ is a type I_n von Neumann algebra with the center $L^{\infty}(T)$ 1 [16, Proposition 3.2.3]. Put $\tilde{\alpha}_i = \alpha_i \otimes 1$. Then we have $H^p(\tilde{\alpha}) = H^p \otimes F_n$ by Remark 2.4 and Proposition 3.2. The flow $\{\tilde{\alpha}_i\}_{t \in \mathbb{R}}$ has the period 2π and the structure of $H^{\infty}(\tilde{\alpha})$ was considered in

[15]. On the other hand, this space $H^{p}(\tilde{\alpha})$ was studied by Helson and Lowdenslager as the notion of analytic matrix-valued functions.

4. Doubly invariant subspaces. In this section we characterize doubly invariant subspaces of $L^{p}(M, \tau)$, $1 \leq p \leq \infty$.

THEOREM 4.1. Let \mathscr{M} be a closed subspace of $L^{p}(M, \tau)$, $1 \leq p \leq \infty$. Then \mathscr{M} is a left (resp. right) doubly invariant subspace of $L^{p}(M, \tau)$ if and only if there exists a projection e of M such that $\mathscr{M} = L^{p}(M, \tau)e$ (resp. $eL^{p}(M, \tau)$).

PROOF. Let \mathscr{U} be a salf-adjoint subalgebra generated by $H^{\infty}(\alpha) + H^{\infty}(\alpha)^*$ in M. Since $H^{\infty}(\alpha) + H^{\infty}(\alpha)^*$ is σ -weakly dense in M [11, Theorem III.15], \mathscr{U} is so. Suppose \mathscr{M} is left doubly invariant. Then \mathscr{M} is a left \mathscr{U} -invariant subspace in $L^p(M, \tau)$.

Case $p = \infty$. It is trivial since \mathscr{M} becomes a σ -weakly closed left ideal of M.

Case p = 2. Let $P_{\mathscr{M}}$ be the projection of $L^2(M, \tau)$ onto \mathscr{M} , $L(M) = \{L_x: x \in M\}$ where $L_x(y) = xy$, $y \in L^2(M, \tau)$ and $R(M) = \{R_x: x \in M\}$ where $R_x(y) = yx$, $y \in L^2(M, \tau)$. Since \mathscr{M} is left \mathscr{U} -invariant, \mathscr{M} is left L(M)-invariant. Hence $P_{\mathscr{M}} \in L(M)' = R(M)$, where L(M)' is the commutant of L(M), and so there exists a projection e in M such that $P_{\mathscr{M}} = P_e$. Thus $\mathscr{M} = P_{\mathscr{M}}L^2(M, \tau) = L^2(M, \tau)e$.

Case $1 \leq p < 2$. Putting $\mathscr{N} = \mathscr{M} \cap L^2(M, \tau)$, \mathscr{N} is a left \mathscr{U} -invariant closed subspace of $L^2(M, \tau)$. According to the case p = 2, there exists a projection e in M such that $\mathscr{N} = L^2(M, \tau)e$. It is sufficient to show $\mathscr{M} = L^p(M, \tau)e$. $\mathscr{M} \supset L^p(M, \tau)e$ is clear. Let x = u|x| be the polar decomposition of x in \mathscr{M} and put $x_1 = u|x|^{p/2}$ and $x_2 = |x|^{1-(p/2)}$. Then $x_1 \in L^2(M, \tau)$ and $x_2 \in L^r(M, \tau)$ where 1/p = 1/2 + 1/r. Putting $\mathscr{N}' = [\mathscr{U}x_1]_2$, \mathscr{N}' is a left \mathscr{U} -invariant subspace in $L^2(M, \tau)$ and so there exists a projection f in M such that $\mathscr{N}' = L^2(M, \tau)f$. Then

$$fx_2\in L^2(M,\, au)fx_2=[\mathscr{U}x_1]_2x_2\subset [\mathscr{U}x_1x_2]_p=[\mathscr{U}x]_p\subset\mathscr{M}$$
 .

On the other hand, since r > 2, $fx_2 \in L^r(M, \tau) \subset L^2(M, \tau)$. Therefore

$$fx_2 \in \mathscr{M} \cap L^2(M, au) = \mathscr{N} = L^2(M, au)e$$
 .

Thus $fx_2 = fx_2e$. Moreover, since $x_1 \in L^2(M, \tau)f = \mathcal{N}'$, we have $x_1 = x_1f$. Therefore

$$x = x_1 x_2 = x_1 f x_2 = x_1 f x_2 e \in L^p(M, \tau) e$$
 .

Hence we have $\mathcal{M} = L^{p}(M, \tau)e$.

Case $2 . Putting <math>\mathscr{M}' = \{y \in L^q(M, \tau) : \tau(y^*x) = 0 \ (x \in \mathscr{M})\}$ where 1/p + 1/q = 1, \mathscr{M}' is a left \mathscr{U} -invariant subspace of $L^q(M, \tau)$. Since 1 < q < 2, we have a projection f in M such that $\mathcal{M}' = L^q(M, \tau)f$. Put e = 1 - f and so we have $\mathcal{M} = L^p(M, \tau)e$.

The assertion for right doubly invariant subspaces may be proved in just the same way.

This completes the proof.

COROLLARY 4.2. Let \mathscr{M} be a closed subspace of $L^{p}(M, \tau)$, $1 \leq p \leq \infty$. Then \mathscr{M} is a two-sided doubly invariant subspace of $L^{p}(M, \tau)$ if and only if there exists a central projection e of M such that $\mathscr{M} = L^{p}(M, \tau)$ e.

REMARK 4.3. We suppose that M has a faithful, normal, α_t -invariant finite trace. However, even if M does not have any α_t -invariant trace, $H^{\infty}(\alpha) + H^{\infty}(\alpha)^*$ is always σ -weakly dense in M by [11, Theorem III. 15]. Thus Theorem 4.1 holds in this case.

REMARK 4.4. Let $M = L^{\infty}(T)$ and let A be the disk algebra over the unit circle T. Let \mathscr{M} be a closed subspace of $L^2(T)$. If \mathscr{M} is a doubly invariant subspace in the sense that $A \mathscr{M} \subseteq \mathscr{M}$ and $\overline{A} \mathscr{M} \subseteq \mathscr{M}$, where \overline{A} is the conjugate functions of A, then $\mathscr{M} = C_E L^2(T)$ for some measurable set E (where C_E denotes the characteristic function of E). This result is well-known as Wiener's theorem. Furthermore, Hasumi and Srinivasan [4, 18] extended the result to L^p -spaces taking values in a Hilbert space.

5. Simply invariant subspaces. Throughout this section, we keep the notations in §2. Then $H^{\infty}(\alpha)$ becomes a finite subdiagonal algebra with respect to the projection ε of norm one induced by the α_t -invariance of τ . Furthermore, if $\{\alpha_t\}_{t \in \mathbf{R}}$ is ergodic in the sense that for $x \in M$, $\alpha_t(x) = x$ for all $t \in \mathbf{R}$ implies $x = \lambda 1$ for some complex number λ , $H^{\infty}(\alpha)$ is an antisymmetric finite subdiagonal algebra (see [1], [8], etc.). Then Kamei in [8] has shown simply invariant subspace theorems for antisymmetric finite subdiagonal algebras in case p = 1, 2. In this section we precisely characterize the simply invariant subspace theorem for $H^{\infty}(\alpha)$ in $L^p(M, \tau), 1 \leq p \leq \infty$, if $\{\alpha_t\}_{t \in \mathbf{R}}$ is ergodic.

THEOREM 5.1. Let $1 \leq p \leq \infty$. If $\{\alpha_i\}_{t \in \mathbb{R}}$ is ergodic, every left (resp. right) simply invariant subspace \mathscr{M} of $L^p(M, \tau)$ is of the form $H^p(\alpha)u$ (resp. $uH^p(\alpha)$) for some unitary operator u in M.

To show this theorem, we have the following lemmas. Throughout the remainder of this section, we suppose that $\{\alpha_t\}_{t \in R}$ is ergodic.

LEMMA 5.2. (Kamei) Let $x \in L^2(M, \tau)$. If $x \notin [H_0^{\infty}(\alpha)x_1]_2$, then we have x = au where $u \in [H^{\infty}(\alpha)x]_2$ is unitary and $[H^{\infty}(\alpha)a]_2 = H^2(\alpha)$.

Let $1 \leq p < 2$. Define the number r by 1/r + 1/2 = 1/p. Then we have the following;

LEMMA 5.3. Let $x \in L^p(M, \tau)$. If $x \notin [H_0^{\infty}(\alpha)x]_p$, then we have $|x^*|^{p/2} \notin [H_0^{\infty}(\alpha)|x^*|^{p/2}]_2$.

PROOF. Let $x = |x^*| u$ be the polar decomposition of x and put $x_1 = |x^*|^{1-(p/2)}u$. Assume that $|x^*|^{p/2} \in [H_0^{\infty}(\alpha) |x^*|^{p/2}]_2$. Then

$$x = |x^*|^{p/2} x_{\scriptscriptstyle 1} \, \in \, [H^{\infty}_{\scriptscriptstyle 0}(lpha) \, | \, x^* \, |^{p/2}]_{\scriptscriptstyle 2} x_{\scriptscriptstyle 1} \, \subset \, [H^{\infty}_{\scriptscriptstyle 0}(lpha) \, | \, x^* \, |^{p/2} x_{\scriptscriptstyle 1}]_{\scriptscriptstyle p} = [H^{\infty}_{\scriptscriptstyle 0}(lpha) x]_{\scriptscriptstyle p} \; .$$

This is a contradiction. This completes the proof.

LEMMA 5.3. If $x \in L^{p}(M, \tau)$ and $x \notin [H_{0}^{\infty}(\alpha)x]_{p}$, then x = zy where $y \in [H^{\infty}(\alpha)x]_{p} \cap L^{r}(M, \tau)$ and $z \in H^{2}(\alpha)$.

PROOF. If $x \notin [H_0^{\infty}(\alpha)x]_p$, we have $|x^*|^{p/2} \notin [H_0^{\infty}(\alpha)|x^*|^{p/2}]_2$ by Lemma 5.3 and so $|x^*|^{p/2} = zu$ where $u \in [H^{\infty}(\alpha)|x^*|^{p/2}]_2$ is unitary and $[H^{\infty}(\alpha)z]_2 = H^2(\alpha)$ by Lemma 5.2. Let $x = |x^*|v$ be the polar decomposition of x and put $y = u |x^*|^{1-(p/2)}v$. Then $y \in L^r(M, \tau) \subset L^2(M, \tau)$. Hence

$$zy = zu \, |x^*|^{1-(p/2)} v = |x^*|^{p/2} |x^*|^{1-(p/2)} v = |x^*| \, v = x$$
 .

Since $[H^{\infty}(\alpha)z]_2 = H^2(\alpha)$, for any $\varepsilon > 0$, there exists an element $a \in H^{\infty}(\alpha)$ such that $||az - 1||_2 < \varepsilon/||y||_r$. Thus

$$||ax - y||_p = ||azy - y||_p < ||az - 1||_2 ||y||_r < \varepsilon$$
.

Therefore $y \in [H^{\infty}(\alpha)x]_p$. This completes the proof.

PROOF OF THEOREM 5.1. Let \mathcal{M} be a left simply invariant subspace of $L^{p}(M, \tau)$. In case p = 2, we have the result by [8, Theorem 1].

(1) Case $1 \leq p < 2$. Putting $\mathscr{N} = \mathscr{M} \cap L^2(\mathcal{M}, \tau)$, \mathscr{N} is a closed subspace of $L^2(\mathcal{M}, \tau)$. By the assumption of the left simple invariance of \mathscr{M} , there exists an element $x \in \mathscr{M} \setminus [H_0^{\infty}(\alpha)\mathscr{M}]_p$. In particular, we have $x \notin [H_0^{\infty}(\alpha)x]_p$ and so, by Lemma 5.4, x = zy where $z \in H^2(\alpha)$ and $y \in [H^{\infty}(\alpha)x]_p \cap L^r(\mathcal{M}, \tau)$. Since $H^{\infty}(\alpha)x \subset \mathscr{M}$, we have $y \in [H^{\infty}(\alpha)x]_p \subset \mathscr{M}$ and so $\mathscr{N} \neq \{0\}$. If $y \in [H_0^{\infty}(\alpha)\mathscr{N}]_2$ we have

$$egin{aligned} x &= zy \in H^2(lpha) y \subset [H^\infty(lpha) y]_p \subset [H^\infty(lpha) [H^\infty_0(lpha) \mathcal{N}]_2]_p \ &\subset [H^\infty_0(lpha) \mathcal{N}]_p \subset [H^\infty_0(lpha) \mathcal{M}]_p \;. \end{aligned}$$

This is a contradiction. Hence \mathscr{N} becomes a left simply invariant subspace of $L^2(M, \tau)$. By [8, Theorem 1], there exists a unitary operator $u \in M$ such that $\mathscr{N} = H^2(\alpha)u$. Thus $H^{\infty}(\alpha)u \subset H^2(\alpha)u = \mathscr{N} \subset \mathscr{M}$ and so $[H^{\infty}(\alpha)u]_p \subset \mathscr{M}$. If $x \in \mathscr{M} \setminus [H_0^{\infty}(\alpha)\mathscr{M}]_p$, we have x = zy where $z \in H^2(\alpha)$ and

K.-S. SAITO

$$y \in [H^{\infty}(lpha)x]_p \cap L^r(M, \tau) \subset \mathscr{M} \cap L^r(M, \tau)$$

= $\mathscr{N} \cap L^r(M, \tau) = H^2(lpha)u \cap L^r(M, \tau)$.

Hence $yu^* \in H^r(\alpha)$ and so $x = zy = zyu^*u \in H^p(\alpha)u$. Therefore $\mathscr{M} \setminus [H^{\infty}_{0}(\alpha)\mathscr{M}]_p \subset H^p(\alpha)u$. If $y \in [H^{\infty}_{0}(\alpha)\mathscr{M}]_p$, then

$$x + y \in \mathscr{M} \setminus [H^{\infty}_{0}(\alpha) \mathscr{M}]_{p} \subset H^{p}(\alpha) u$$
.

Since $x \in H^{p}(\alpha)u$, we have $y \in H^{p}(\alpha)u$ and so $\mathcal{M} = H^{p}(\alpha)u$.

The assertion for right simply invariant subspaces in case $1 \le p < 2$ may be proved in just the same way.

(2) Case 2 . Define the number <math>q by 1/p + 1/q = 1. Putting $\mathscr{N} = \{y \in L^q(M, \tau); \tau(yx) = 0, x \in [H^{\infty}_0(\alpha)\mathscr{M}]_p\},\$

then \mathscr{N} is a closed subspace of $L^{q}(M, \tau)$. Since $[H_{0}^{\circ}(\alpha)\mathscr{M}]_{p}$ is a proper subspace of \mathscr{M} , there exists $a \in L^{q}(M, \tau)$ such that $\tau(ax) = 0$, $x \in [H_{0}^{\circ}(\alpha)\mathscr{M}]_{p}$ and $\tau(ay) \neq 0$ for some $y \in \mathscr{M}$. Thus $a \in \mathscr{N} \setminus [\mathscr{M}H_{0}^{\circ}(\alpha)]_{q}$. Therefore \mathscr{N} is a right simply invariant subspace of $L^{q}(M, \tau)$ and so there exists a unitary element $u \in M$ such that $\mathscr{N} = u^{*}H^{q}(\alpha)$. By Proposition 2.7 (iv), $[H_{0}^{\circ}(\alpha)\mathscr{M}]_{p} = H_{0}^{p}(\alpha)u$. If $x \in \mathscr{M}u^{*}$ and $y \in H_{0}^{\circ}(\alpha)$, then

$$yx \in H^{\infty}_{0}(\alpha) \mathscr{M} u^{*} \subset [H^{\infty}_{0}(\alpha) \mathscr{M}]_{p} u^{*} = H^{p}_{0}(\alpha)$$

and so $\tau(yx) = 0$. Thus $x \in H^p(\alpha)$ and so $\mathscr{M}u^* \subset H^p(\alpha)$. Since $H^p_0(\alpha)$ is a subspace of $H^p(\alpha)$ of codimension 1, we have $\mathscr{M} = H^p(\alpha)u$ or $\mathscr{M} = H^p_0(\alpha)u = [H^\infty_0(\alpha)\mathscr{M}]_p$. As \mathscr{M} is left simply invariant, $\mathscr{M} = H^p(\alpha)u$. This completes the proof.

REMARK 5.5. The converse of this theorem is also true. If $\{\alpha_t\}_{t \in \mathbb{R}}$ is not ergodic, there exists a α_t -invariant projection $e \in M$ such that 0 < e < 1. Choose a unitary element $u \in M$. Putting $\mathscr{M} = H^p(\alpha)eu$, \mathscr{M} is easily seen to be a left simply invariant subspace of $L^p(M, \tau)$ which is not of the form $H^p(\alpha)v$ for any unitary element $v \in M$.

REMARK 5.6. Keep the notations in Remark 2.4. Let A be the disk algebra and put $A_0 = \{x \in A; \int x dt = 0\}$. A closed subspace \mathscr{M} of $L^p(T)$ is said to be simply invariant if $[A_0 \mathscr{M}]_p \subseteq \mathscr{M}$. As $\{\alpha_t\}_{t \in R}$ in Remark 2.4 is ergodic, then every simply invariant subspace \mathscr{M} of $L^p(T)$, $1 \leq p \leq \infty$, is of the form $H^p f$ for some unimodular function f in $L^{\infty}(T)$.

REMARK 5.7. Loebl-Muhly [11] showed an example such that $H^{\infty}(\alpha)$ becomes a reductive algebra. But our $H^{\infty}(\alpha)$ is not a reductive algebra on $L^2(M, \tau)$, because there is always a simply invariant subspace for $H^{\infty}(\alpha)$ in $L^2(M, \tau)$.

References

- [1] W. B. ARVESON, Analyticity in operator algebras, Amer. J. Math., 89 (1967), 578-642.
- W. B. ARVESON, On groups of automorphisms of operator algebras, J. Functional Analysis, 15 (1974), 217-243.
- [3] J. DIXMIER, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France, 81 (1953), 9-39.
- [4] M. HASUMI AND T. P. SRINIVASAN, Doubly invariant subspaces II, Pacific J. Math., 14 (1964), 525-535.
- [5] H. HELSON AND D. LOWDENSLAGER, Prediction theory and Fourier series in several variables, Acta Math., 99 (1958), 165-202.
- [6] H. HELSON AND D. LOWDENSLAGER, Prediction theory and Fourier series in several variables II, Acta Math., 106 (1961), 175-213.
- [7] K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, (1962).
- [8] N. KAMEI, Simply invariant subspace theorems for antisymmetric finite subdiagonal algebras, Tôhoku Math. J., 21 (1969), 467-473.
- [9] S. KAWAMURA AND J. TOMIYAMA, On subdiagonal algebras associated with flows in operator algebras, to appear.
- [10] I. KOVÁCS AND J. SZÜCS, Ergodic type theorems in von Neumann algebras, Acta Sci. Math. (Szeged), 27 (1966), 233-246.
- [11] R. I. LOEBL AND P. S. MUHLY, Analyticity and flows in von Neumann algebras, preprint.
- [12] P. S. MUHLY, Function algebras and flows, Acta Sci. Math. (Szeged), 35 (1973), 111-121.
- [13] T. OGASAWARA AND Y. YOSHINAGA, A non-commutative theory of integration for operators, J. Sci. Hiroshima Univ., A 18 (1955), 311-347.
- [14] Y. Ohno, Simply invariant subspaces, Tôhoku Math. J., 19 (1967), 368-378.
- [15] K.-S. SAITO, The Hardy spaces associated with a periodic flow on a von Neumann algebra, Tôhoku Math. J., 29 (1977), 69-75.
- [16] S. SAKAI, C*-algebras and W*-algebras, Springer-Verlag, Berlin, (1971).
- [17] I. E. SEGAL, A non-commutative extension of abstract integration, Ann. of Math., 57 (1953), 401-457.
- [18] T. P. SRINIVASAN, Doubly invariant subspaces, Pacific J. Math., 14 (1964), 701-707.
- [19] T. P. SRINIVASAN AND J.-K. WANG, Weak*-Dirichlet algebras, Proc. Int. Symp. Function algebras (Tulan Univ. 1965), 216-249, Scott-Foresmann, 1966.
- [20] H. UMEGAKI, Conditional expectation in an operator algebra, Tôhoku Math. J., 6 (1954), 177-181.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE, NIIGATA UNIVERSITY NIIGATA, JAPAN