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1. Introduction. Let M be a von Neumann algebra and let {at}teR

be a flow by which we mean a σ-weakly continuous one-parameter group
of *-automorphisms on M. Let H°°(a) be the set of all elements of M
with non-negative spectrum with respect to {at}t£R. Recently the struc-
ture of H°°(a) has been investigated by Kawamura-Tomiyama [9], Loebl-
Muhly [11] and the author [15]. It is important to study the structure
of H°°(a) in view of the role played by the disk algebra over the unit
circle. Furthermore HM(ά) happens to become a subdiagonal algebra
which may be regarded as a non-commutative, weak*-Dirichlet algebra.
On the other hand, as a generalization of the Hardy space Hp over the
unit circle, several authors studied the Hardy spaces in the L'-space
taking values in a Hubert space ([4], [14], etc.) or a von Neumann
algebra, in particular, the ring of all n x n matrices over the complex
numbers ([1], [5], [6], etc.). The latter is considered as non-commutative
Hardy spaces.

Our objective in this paper is to define and investigate the non-
commutative Hardy spaces Hp(a) associated with [cct}t€R in case M has
a faithful, normal, αrinvariant finite trace. The method is based on the
theory of spectral subspaces for a flow and the non-commutative theory
of integration for a finite von Neumann algebra. Now we assume that
there is a faithful, normal, α^-mvariant, finite trace τ on M. Using the
non-commutative integration theory with respect to τ, we consider Banach
spaces LP(M, τ), 1 <; p < oo. In §2, we define Hp(a) and Hl(a) and study
their basic properties. In §3, we show examples of Hp(a). In §4, we
consider the doubly invariant subspace theorem for H°°(ά) in LP(M, τ)
which is a generalization of Wiener's theorem. Let Λf be a closed
subspace of LP(M, τ). If ̂  is a left doubly invariant subspace of
LP(M, τ) in the sence that H°°(a)^ £ ̂  and H°°(ά)*^ c ̂  then
there exists a projection e of M such that ̂  — LP(M, τ)β. In § 5, we
consider the simply invariant subspace theorem for H°°(a) in L*(M, τ)
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which is an extension of Beurling's theorem. Let ̂  be a left simply
invariant subspace in the sense that [H~(ά)^]p g ̂  where [H^(a)^]p

is the closed linear span of H™(a}^ in LP(M, τ). If {at}teR is ergodic,
there exists a unitary element u of M such that ̂  — Hp(a)u.

The author would like to thank Prof. J. Tomiyama for his valuable
suggestions and also Prof. M. Fukamiya for his valuable conversations
and encouragements.

2. The non-commutative Hardy spaces Hp(a). Let M be a finite
von Neumann algebra acting on a Hubert space H. Let {at}teR be a
flow on M. Throughout this paper, we assume that M has a faithful,
^-invariant, normal trace τ on M such that τ(l) = 1. Such a τ exists,
for example, if {at}tBR is a group of automorphisms leaving the center
of M elementwise fixed, in particular, if M is a factor. Let 1 <; p < °o
and we write LP(M, τ) the space of all integrable operators for the gage
space (M, H, τ) such that τ(|α?|p) < <χ>, \x\ = (α?*#)1/2, in the sence of Segal
[17]. If p — oo, we identify If with L°°(M, τ). It is well-known that
L*(M, τ) becomes a Banach space with the ZΛ norm | |α? | | p = τ(\x\p)l/p, xe
LP(M, τ) [13, Theorem 8]. We refer the reader to ([3], [13], [17]) for
the basic properties of the space LP(M, τ). Recall that L\M, τ) may be
identified with the predual of M with respect to the pairing <#, #> =
τ(xy), x e L\M, τ), y e M [3, Theoreme 5]. Furthermore, in analogy with
the scalar case, the dual of LP(M, r), 1 < p < oo, may be identified with
Lq(M, τ), ί/p + l/q = 1, via the pairing <#, j/> = τ(xy), x eLp(M, τ), y 6
Lq(M, τ) [3, Theoreme 7]. Since M is finite and τ(l) = 1, we have Me.
Lq(M, τ) c L*(M, τ), 1 <; p <; q <; oo [13, Lemma 3.3] and M is dense in
LP(M, τ) with respect to the IΛnorm [3, Proposition 5].

REMARK 2.1. In the case of abelian von Neumann algebras, the
concept of measurable operator just introduced is essentially equivalent
to the concept of measurable function [17, Theorem 2],

PROPOSITION 2.2. For each p, l^p<°°, {<%t}teR extends uniquely
to a strongly continuous representation of R of isometries on LP(M, τ).

PROOF. Since τ is #Γinvariant, we have | |#t(αO| |p= \\%\\9 for xeM.
Therefore {at}tQR extends uniquely to a representation of R of isometries
on LP(M, τ) and we also denote this extension of {at}teR to each LP(M, τ)
by {^JίeΛ Let xeL*(M,τ). For any ε > 0, there exists an element
aeM such that | | a? — a\\P < ε. For any yeLq(M, τ), 1/p + l/q = 1, we
have

\τ((at(x) - x)y)\ ^ \τ((at(x) - at(a))y\ + \τ((at(a) - a)y)\ + \τ((a - x)y)\

^ \\at(x - a)\\p\\y\\q + \τ((at(a] - a)y)\ + \\a - x\
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Since {cct}t&R is σ-weakly continuous, τ(at(a)y) is a continuous function
with respect to t. Thus there exists ί0(>0) suc^ that \τ((at(ά) — a)y)\ <ε,
|έ | < ί0. Hence we have

\τ((at(x) — x)y)\ < (2\\y\\q + l)ε , \t\ < t0,

and so (at}t&R is σ(Lp(M, τ), L9(M, τ))-continuous. From a well-known
result {αJίeΛ is strongly continuous on L*(M, τ). This completes the
proof.

Throughout this paper we denote this extension of {at}tGR to LP(M, τ)
by {αjίen too.

Next, we define a representation α( ) of L\R) into the bounded

S CO
f(t}at(x)dt where a? 6 LP(M", τ) and

I/CR). For feLl(R), we put #"(/) - {t e R: f(t) = 0}, where /(t) =

e~ίstf(s}ds, teR. Let Spα(x) be defined as

We refer the readers to [2] for the elementary properties of spectra and
spectral subspaces.

DEFINITION 2.3. For 1 <: p <; <*>, the set of all x eLp(M, τ) such that
Spα(#)c[0, oo ) is denoted by Hp(a) and is called the non-commutative
Hardy space of exponent p. Further for 1 <; p < oo (resp. p = oo) the
Lp-norm closure (resp. σ-weak closure) of the set of all x e LP(M, τ) such
that Spα(#)c(0, oo ) is denoted by ff?(a).

REMARK 2.4. Let M — L°°(T) where T is the unit circle. Let xe

L~(T}. Putting atx(eiβ) = α;^8-^), β, teΛ, and τ(a?) = 1/2^(^(6**)^,
Jo

{tfjteii is a fl°w on -M" an(i Γ is a faithful, normal, αrin variant trace
such that τ(l) = 1. By Remark 2.1, we have LP(M, τ) = LP(T). Observe
that Hp(a) coincides with the Hardy space Hp on the unit circle T.

For a subset S of LP(M, τ), 1 <; p ̂  oo, [S]p denotes the closed (resp.
σ- weakly closed if p = oo) subspace of Lp(Λf, τ) generated by S and we
put S1 = {x e Lq(M, τ): τ(xy) = 0, y 6 S}, 1/p + 1/g = 1.

PROPOSITION 2.5. Lei 1 <; p <; oo, 1/p + 1/g = 1 α^d a? eLp(M, τ).
T/ie following assertions are equivalent.

( i ) α? 6 JEP(aO.
( ii ) έ — > r(a?αt(y)) belongs to H°°(K) for every y e Lq(M, τ).
(iii) τ(xy) — 0 /or evβrί/ y e Hq(a).
(iv) r(ajy) — 0 for every y e H"(a).
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PROOF, (i) => (ii)., Let x e Hp(a). For an ε> 0, choose a function
feL\R) such that / lives in [ε, oo). Then, for every yeL9(M,τ), we
have

τ(xat(y))f(t)dt = \°° τ(a_t(x}y}f(t}dt

= τ((a(f}x)y}

where /(ί) - /(-£), £e#. On the other hand

Sp« («(/>) c Supp/n Spβ(a?) c (- oo, -ε] n [0, oo) - 0 .

Then we have a(f)x = 0 and so t h-> τ(xat(y}) belongs to H°°(R) for every
I/ 6 L«(AΓ, τ).

(ii) => (iii). We refer to [2, Proposition 5.1].
(iii) => (iv) is trivial.
(iv) ==> (i) Suppose that τ(xy) = 0 for every y e H%(ά). Then a? 6

H\a} by [9, Lemma 2.2]. From the definition of H*(a), we have JEΓ^α) Π
LP(M, τ) = ffp(α) and # 6 H*(oϊ). This completes the proof.

Put AΓ(αO - H°°(a) Π H°°(a)*. Then Λf(α) is a finite von Neumann
algebra which consists of all fixed points in M with respect to {<xt}teR.
Since M has a faithful, normal, αrinvariant finite trace, there exists a
unique, faithful, normal, ^-invariant projection ε of norm one of M onto
M(a) [10, Theorem 2], Furthermore, for each element xeM, ε(#) is
given as the unique element of the intersection K(xf a) n M(a), where
K(x, a) denotes the σ- weakly closed convex hull of {at(x)}teR. By [9,
Proof of Theorem 2.4], we have H?(a) = {x e H°°(ά); ε(x) = 0}.

PROPOSITION 2.6. Let 1 ̂  p < oo.
( i ) ε extends uniquely to a projection εp of norm one of LP(M, τ)

onto Lp(M(a), τ).
( ii ) Lp(M(a\ τ) equals the set of all βxed points of LP(M, τ) with

respect to {at}teR.
(iii) JΓj(α) - {x G ίΓ*(α); ep(a?) - 0}.

PROOF. ( i ) Let x e M. Since ε(x) is given as the unique element
of K(x9 α) Π Λf(α), there is a net {ψ»i}<βj of convex combinations of the
at (i.e., γt = Σϊiiλi'^ϊ, λiί} ^ 0, Σftiλ i0 = D such that Km^^α?) - e(a?)
in the σ-weak topology. Let ^ be the conjugate index of p: ί/p + ί/q — 1.
For any y e Lq(M, τ),
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= lim |

l

= ll*IUIvll.
Since Lq(M, τ) is the dual space of LP(M, r), we have ||e(α?)||p ̂  \\%\\-P

As AT is dense in LP(M, τ) with respect to || ||p, ε extends uniquely to a
projection εp of norm one on LP(M, τ). Since Lp(M(a\ τ) = [Λf(α:)]p, it is
clear that the range of εp equals Lp(M(ά), τ).

(ii) Let F be the set of all fixed points of LP(M, τ) with respect
to {tff}te«. Since L*(M(a),τ) = [M(a)]9, it is easy to show that Lp(M(a},τ)c:F.

S CO
\deλ be

S — 0 0
\dat(eλ). Since

-00
the spectral resolution is unique, eλ e M(a) and so x e Lp(M(a], τ).

(iii) From (iii) and (iv) of Proposition 2.5, we have Hξ(oί) = [H~(ά)]p.
Since e(a?) = 0 f or x e H?(a), we show that Hξ(oί) c.{xe Hp(a)\ εp(x) = 0}.
Now suppose that there exists an element a e Hp(a) such that εp(a) = 0
and α g jff?(α). We can find # e Lq(M, τ) such that τ(αy) = 1 and τ(by) = 0
for all δ 6 Hl(a). Let J^(t) = τ(at(a)y}. As in the proof of [9, Theorem
2.4], .F is constant in R, that is, τ(ay) = τ(at(a)yy = 1. Let δ be any
number such that 0 < δ < 1/2. Since I/p(Λί, τ) = [M]p, there exists a? 6 M
such that ||α - a? | |p < δl\\y\\q. Then

- 1| = \τ(at(x)y) - τ(at(a)y)\ < 3 .

Hence we have Re τ(at(x)y) > 1 — δ. We choose a net {^Jί6/ as in the
proof of (i). Then

lim |

lim Σ λi<} Re τ C α ί ) ^ ) > 1 -

On the other hand

|τ(e(aj)y)| - \τ(e,(a)y -

This is a contradiction. This completes the proof.

PROPOSITION 2.7. Let 1 < p < <χ>.
( i ) JER(α) = [
(ii) lΓ»(α) - [
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(iii) Hξ(a) - {x 6 L*(M, τ); τ(a?y) = 0,
(iv) #<>(«) - Hξ(aY, l/p + 1/q - 1.

PROOF, (i) and (iv) are clear from Proposition 2.5. (ii) is clear from
Proposition 2.6. (iii) is proved from (ii).

Finally we define both simply and doubly invariant subspaces for
H~(ά) in LP(M, τ).

DEFINITION 2.8. Let ̂  be a closed (resp. σ- weakly closed) subspace
of LP(M, τ) (resp. M) for 1 <; p < oo (resp. p = oo). ^C is said to be
left (resp. right) doubly invariant if H*°(a)^ £ ̂  and jff°°(α)*^^ £
^ (resp. ^eΉ°°(a) Q ̂  and ̂ H~(a)* Q ̂ ). If ̂  is left and
right doubly invariant, Λ£ is said to be two-sided doubly invariant.
Furthermore a closed subspace ^£ of L*(M, r), 1 <^ p < oo, is said to
be left (resp. right) simply invariant if [H~(oί)^]p £ ̂  (resp.

3. Examples. Let lί and τ be as in §2. Let Fn be a type In

factor and let {e^} be a matrix unit of Fn. We denote by J5 the von
Neumann tensor product M®Fn of M and jpft. Setting &t = at®l9

we get a flow [oίt}teR on J?. Let Tr be the canonical trace on Fn and
let τ (x) Tr be the tensor product of τ and Tr. We denote by LP(M, τ) ®
Fn the algebraic tensor product of L*(M, τ) and Fn. Then we have the
following:

PROPOSITION 3.1. For l^p < <*>, LP(M, τ ) ( g ) F n = LP(B, τ (g) Tr).

Next, we investigate the structure of Hp(a). We denote by
Hp(ά) (x) Fn the algebraic tensor product of Hp(a) and Fn.

PROPOSITION 3.2. For 1 ̂  p <; oo, jϊ^α) = Hp(a) (x) ί7,.

PROOF. Let x e LP(M, τ)(S>Fn (x = Σ »ί/ ® β^ > <&</ e I/p(lί, τ)). For
/e Ll(R), we have 5(/)α? = Σ («(/)«?</) 0 β^ . Thus α(/)a? — 0 if and only
if cc(f)xtj = 0 for all i, j. By the definition of spectrum, we have
Sp«(#) = U Spα(a?<y). Therefore jff^α) = fp(α) (x) Fw. This completes the
proof.

REMARK 3.3. Let L°°(Γ) and {at}teR be as in Remark 2.4. Let
L°°(Γ, jF7^) be the Banach space of all ίVvalued essentially bounded weak*-
measurable functions on Γ. Then L°°(T}®Fn = L°°(Γ, FJ [16, Theorem
1.22.131. Moreover I/°°(T, JP^) is a type Ift von Neumann algebra with
the center L°°(T)1 [16, Proposition 3.2.3]. Put at = at®l. Then we
have Hp(a) = Hp (g) Fn by Remark 2.4 and Proposition 3.2. The flow

iβ has the period 2π and the structure of H°°(a) was considered in
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[15]. On the other hand, this space H*(&) was studied by Kelson and
Lowdenslager as the notion of analytic matrix-valued functions.

4. Doubly invariant subspaces. In this section we characterize
doubly invariant subspaces of LP(M, τ), 1 <; p ^ oo.

THEOREM 4.1. Let ̂  be a closed subspace of LP(M, τ), 1 <^ p <; oo.
Then ̂  is a left (resp. right) doubly invariant subspace of LP(M, τ)
if and only if there exists a projection e of M such that ̂  — LP(M, τ)e
(resp. eLp(M, r)).

PROOF. Let ̂  be a salf -adjoint subalgebra generated by H°°(ά) +
H°°(ά)* in M. Since H°°(a) + H °(OL)* is <j-weakly dense in M [11, Theorem
III. 15], ^ is so. Suppose ̂  is left doubly invariant. Then ̂  is a
left ^"-invariant subspace in LP(M, τ).

Case p — oo. It is trivial since ̂  becomes a σ- weakly closed left
ideal of M.

Case p = 2. Let P^ be the projection of L2(M, τ) onto ̂  L(Λf ) =
{Lx: x e M} where Lβ(y) = ##, # e L2(lf, r) and J?(Af ) = {^r x e M} where
#»(#) = yu, y e L2(Λί, τ). Since f̂ is left ^-invariant, ^̂  is left I/(M)-
invariant. Hence P^ e L(M)r = J?(M), where I/(M)' is the commutant
of L(M), and so there exists a projection e in If such that P^ = Pe.
Thus ^̂  - P^L2(M, τ) - L2(M, τ)e.

Case 1 ̂  p < 2. Putting Λ^ = ̂  Π L\M, r), ^T is a left %/-
invariant closed subspace of L2(M, τ). According to the case p = 2, there
exists a projection e in M such that ^~ = L2(M, τ)e. It is sufficient to
show ̂  = LP(M, τ)β. c^ ID Lp(Λί, τ)e is clear. Let a? = u \ x \ be the
polar decomposition of x in ̂  and put x1 = ^|α;|p/2 and a;2 = |a?| l r"(p/2).
Then a?! 6 L\M, τ) and α?2 6 Lr(M, τ) where 1/p = 1/2 + 1/r. Putting ^T ' =
[^ίcjg, ^̂ ' is a left ^-invariant subspace in L8(Λf, r) and so there
exists a projection / in Λf such that Λ^' = L2(Λί, τ)/. Then

aa?2 c [^xfa,, = ^a?P c ̂ f .

On the other hand, since r > 2, /a?a 6 Lr(M, r) c L2(M, τ). Therefore

/aj2 6 ̂  n L2(M, τ) - ΛT = L2(M, τ)e .

Thus /a?2 = /a?2β. Moreover, since x^ e L\M, τ)f = «^ '̂, we have xl = ̂ /.
Therefore

Hence we have ̂  = LP(M, τ)e.
Case 2<p < oo. Putting Λ" = {y 6 L?(Λί, r): τ(j/*aj) = 0 (a; 6

where 1/p + l/q = 1, ^ '̂ is a left ^/-invariant subspace of Lg(Λf, r).
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Since 1 < q < 2, we have a projection / in M such that Λ€* — Lq(M, τ)/.
Put e = 1 — / and so we have ̂  = Lp(Λf, τ)e.

The assertion for right doubly invariant subspaces may be proved
in just the same way.

This completes the proof.

COROLLARY 4.2. Let ̂  be a closed subspace of LP(M, τ), 1 <; p <: oo.
Then ̂  is a two-sided doubly invariant subspace of LP(M, τ) if and
only if there exists a central projection e of M such that ^? = LP(M, τ}e.

REMARK 4.3. We suppose that M has a faithful, normal, αrinvariant
finite trace. However, even if M does not have any ^-invariant trace,
H°°(a) + H°°(ά)* is always σ-weakly dense in M by [11, Theorem III. 15].
Thus Theorem 4.1 holds in this case.

REMARK 4.4. Let M = L°°(T) and let A be the disk algebra over
the unit circle T. Let ̂  be a closed subspace of L\T). If ̂  is a
doubly invariant subspace in the sense that A^ £ ̂  and Ά^ £ ^£,
where A is the conjugate functions of A, then ̂  = CEL\T) for some
measurable set E (where GE denotes the characteristic function of E).
This result is well-known as Wiener's theorem. Furthermore, Hasumi
and Srinivasan [4, 18] extended the result to Z/p-spaces taking values in
a Hubert space.

5. Simply invariant subspaces. Throughout this section, we keep
the notations in §2. Then H°°(a) becomes a finite subdiagonal algebra
with respect to the projection ε of norm one induced by the αrinvariance
of τ. Furthermore, if {#JίeΛ is ergodic in the sense that for xeM,
at(x) = x for all t e R implies x — λl for some complex number λ, H°°(a)
is an antisymmmetric finite subdiagonal algebra (see [1], [8], etc.). Then
Kamei in [8] has shown simply invariant subspace theorems for antisym-
metric finite subdiagonal algebras in case p — 1, 2. In this section we
precisely characterize the simply invariant subspace theorem for H°°(a)
in LP(M, τ), 1 <^ p <^ oo, if {at}teR is ergodic.

THEOREM 5.1. Let 1 ̂  p ^ oo. If {at}tBR is ergodic, every left (resp.
right} simply invariant subspace ̂  of LP(M, τ) is of the form Hp(ά)u
(resp. uHp(a)} for some unitary operator u in M.

To show this theorem, we have the following lemmas. Throughout
the remainder of this section, we suppose that {at}teR is ergodic.

LEMMA 5.2. (Kamei) Let x 6 L\M, τ). If x $ [Hf(a)x\, then we have
x = au where u 6 [H°°(cί)x]2 is unitary and [H°°(a)a]2 — H\a).
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Let 1 <^ p < 2. Define the number r by 1/r + 1/2 — 1/p. Then we
have the following;

LEMMA 5.3. Let x e LP(M, τ). If x$ [Hΐ(oί)x]p, then we have \x**p/2

PROOF. Let x — \x*\u be the polar decomposition of x and put xl =
I x* I-(P/^U. Assume that | x* \ p / 2 e [H%(a) \ x* \ p / 2 ] 2 . Then

a: - xx^H?a)x *& c

This is a contradiction. This completes the proof.

LEMMA 5.3. If x e LP(M, τ) and x £ [H"(a)x]p, then x = zy where
y 6 [HM(aί)x]p D Lr(M, τ) and z e ίP(α).

PROOF. If x £ [H?(a)x]p, we have 1 x* \ p / 2 $ [H?(a) \ x* \p/2]2 by Lemma
5.3 and so | x* \ p / 2 = zu where u e [H^α) | «* \p/2]2 is unitary and [jffw(α)^]2 =
H2(a) by Lemma 5.2. Let x— \x*\v be the polar decomposition of x
and put y = u\x* l~(p^v. Then j/ e Lr(M, τ) c L2(M, τ). Hence

zy - stφ* ^"Vv = \x* p/2 x*\l-(*™v = x*\v = x .

Since [jff°°(α)^]2 = H\a), for any ε > 0, there exists an element a e H°°(ά)
such that \\az - 1||2 < e/\\y\\r. Thus

||αα? - y \ \ p -= \\azy - y\\P < \\az - l \ \ z \ \ y \ \ r < ε .

Therefore y e [H°°(oί)x]p. This completes the proof.

PROOF OF THEOREM 5.1. Let ̂  be a left simply invariant subspace
of LP(M, τ). In case p ~ 2, we have the result by [8, Theorem 1].

( 1 ) Case 1 ̂  p < 2. Putting ̂  = ̂  n L\M, r), Λ* is a closed
subspace of L2(M, r). By the assumption of the left simple invariance
of ̂  there exists an element x e ̂ \[Hf(a)^]p. In particular, we
have x $ [H™(ά)x]p and so, by Lemma 5.4, x = s# where z 6 if 2(α) and
y e [fPO*)^ n I/r(lί, τ). Since H°°(ά)x c ̂ ^ we have y G [H"00^) ]̂̂  c ̂
and so ^//" Φ {0}. If j/ 6 [Hf(a)^]2 we have

c [

c

This is a contradiction. Hence Λ~ becomes a left simply invariant sub-
space of L2(M, τ). By [8, Theorem 1], there exists a unitary operator
u e M such that Λ* = JΪ2(α) .̂ Thus H°°(a)u c H2(α)^ = Λ~c:^ and
so [JEΓ'XαOt&lp c ^Γ. If x 6 ̂ ^^ (̂α)̂ ]̂̂ , we have a? = zy where 3 e
H\ά) and
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y 6 [H-(ά)x]p n Lr(M, τ) c Λ n Lr(M, τ)

= ^T Π Lr(Λf, τ) - #«(«)% n L'(M, τ) .

Hence #%* 6 Hr(d) and so α? = zy — zyu*u e Hp(ά)u. Therefore
^ ί̂ίo00 )̂̂  ]p c Hp(ά)u. lί ye [H?(a)^?]p, then

x + y 6 ̂ r\[jgΓS°(α)^^]p c Hp(a)u .

Since # 6 Hp(ά)u, we have ^/ e Hp(a)u and so ^̂  = Hp(ά)u.
The assertion for right simply invariant subspaces in case 1 <; p < 2

may be proved in just the same way.
( 2 ) Case 2 < p <; <χ> . Define the number g by 1/p + ί/q — 1. Putting

^T = {y e L«(AΓ, τ); τ(yx) = 0, a e [H?(a)^#]P} ,

then Λ^ is a closed subspace of Lq(M, τ). Since [H^(a)^^]p is a proper
subspace of ^^9 there exists α e Lg(M, τ) such that r(αa?) — 0, xe
[H%(a}^]p and r(α») Φ 0 for some j/ 6 ̂ . Thus α 6 ^\Λ*&ζ(&\.
Therefore ^Λ^ is a right simply invariant subspace of Lg(M, r) and so
there exists a unitary element ueM such that ^^ — u*Hq(ά). By
Proposition 2.7 (iv), [Hϊ(ά)^]p = Hp(a)u. If xe^u* and yeHϊ(ά),
then

2/α € Jϊ0

00(α)^ '̂̂ * e [if0°°(α)^r ],%* - JΪJ(α)

and so τ(#ίc) = 0. Thus x e Hp(a) and so ^€V c Hp(a). Since £Γ?(α) is
a subspace of Hp(a) of codimension 1, we have ̂  = Hp(a}u or 4X^' =
Hl(a)u = [H™(a)^?]p. As ̂  is left simply invariant, ^C = H*(a)u.
This completes the proof.

REMARK 5.5. The converse of this theorem is also true. If {cct}teR

is not ergodic, there exists a αrinvariant projection eeM such that
0 < e < 1. Choose a unitary element ueM. Putting ^£ — Hp(a)eu,
^is easily seen to be a left simply invariant subspace of LP(M, r) which
is not of the form Hp(a)v for any unitary element v 6 M.

REMARK 5.6. Keep the notations in Remark 2.4. Let A be the disk

algebra and put A^ — κ $ e A; \xdt = O j . A closed subspace ̂  of LP(Γ)

is said to be simply invariant if [A^i^]p £Ξ ^#. As {at}teR in Remark
2.4 is ergodic, then every simply invariant subspace ̂  of LP(T), 1 ̂
29 ^ co, is of the form Hpf for some unimodular function / in I/°°(Γ)

REMARK 5.7. Loebl-Muhly [11] showed an example such that H°°(ά)
becomes a reductive algebra. But our H°°(a) is not a reductive algebra
on L*(M9 τ), because there is always a simply invariant subspace for
JEP°(α) in L2(Λί, τ).
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