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This paper will consist of two unrelated remarks concerning contact
manifolds. In § 1, we study normal almost contact 3-manifolds. Let M
be a closed normal almost contact 3-manifold. We show that π2(M) = 0
unless M is homotopy equivalent to S1 x S2, by using the results of
Kodaira [7] and Inoue [5] on the classification of compact complex analytic
surfaces. Especially it follows that the connected sum of two non-
simply-connected closed 3-manifolds has never normal almost contact
structure. In § 2, we study the contact structures on Brieskorn mani-
folds defined by Sasaki-Hsu [15]. Using the result of Morita [12], we
show that there are many essentially different contact structures on odd
dimensional spheres. We also have non-deformable strongly pseudo-
convex structures (see e.g., Tanaka [17]) on odd dimensional spheres.

1. Normal almost contact 3-manifolds. An almost contact structure
on a (2n + l)-dimensional manifold M is a reduction of the structure
group of the tangent bundle of M to the unitary group U(ri). If a
manifold M has a contact structure, i.e., there exists a globally defined
1-form η on M such that η/\(dή)n never vanishes, then r) induces a unique
(up to homotopy) almost contact structure on M (see Gray [4], or Sasaki
[14]). An almost contact structure on M naturally gives an almost
complex structure on the product manifold M x R. If this almost com-
plex structure is integrable, i.e., the Nijenhuis tensor vanishes, then
we call the given almost contact structure on M normal. The normal
almost contact structure is also called almost Sasakian structure [14].
If a normal almost contact structure comes from a contact form, we
call the structure normal contact or Sasakian.

By a result of Sasaki-Hsu [15] (see also Abe-Erbacher [2], or Abe
[1]), every Brieskorn manifold has a normal contact structure.

By a result of Martinet [10], every orientable closed 3-manifold has
a contact structure.
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Our theorem is as follows.

THEOREM 1. Let M be a ^-dimensional closed normal almost contact
manifold. If M is not homotopy equivalent to S1 x S2, then

π2(M) - 0 ,

where π2(M) denotes the second homotopy group of M.

Let N be an orientable closed 3-manifold. Before the proof, we
need the following lemmas. The coefficient of the homology groups are
assumed to be the integer Z.

Let j be the inclusion of N into N x S1 defined by j(x) = x x {0},
for x e N and 0 is a base point of S1.

LEMMA 1. Let x be an element of H2(NxSl), then the self intersec-
tion number x°x is an even integer. If one of the following conditions
is satisfied,

(i) x is represented by a 2-sphere,
(ii) x lies in the image of H2(N) under j*,

then x o x = 0.

PROOF. Corresponding to the isomorphism

H2(N x S1) ~ H2(N) <g> HOGS1) φ H,(N) (x) ΉOS1) ,

we have the direct sum decomposition x = x^ 0 x2. We have x o x —
xloχί + 2Xί° x2 + x2 ° x2 — 2xj_o x2. Hence x o x is an even integer. If x
lies in the image of j*, then x belongs to the first direct summand and
χ0χ = o. We know that π^S1) = 0. Hence if x is represented by a 2-
sphere, x lies in the image of j*. The proof finishes.

LEMMA 2. If N x S1 is diffeomorphic to the total space of a dif-
ferentiable fiber bundle over an orientable 2-manifold V with fiber
diffeomorphic to S2, then N is homotopy equivalent to S2 X S1.

PROOF. Since DiίE S2 is homotopy equivalent to S0(3) (Smale [16]),
there are two non-equivalent fiber bundle over V. Both have cross
sections. Let [V] denote the homology class of the image of a cross
section. If the bundle is non-trivial, then [F]o[F] is an odd integer.
By Lemma 1, we infer that N x S1 is diffeomorphic to the product
S2 x V. Since H2(S2 x V) - Z0 Z, we have HZ(N) (g) H^S1) φ H^N) (g)
jff^S1) ^ Z0 Z. The Poincare duality theorem shows that rank H^N) =
rank H2(N) - 1. Thus we have H,( V) = H,(S2 x F) ~ H^N x S1) = Z φ Z,
which shows that V is diffeomorphic to the torus S1 x S1. We have a
diffeomorphism /: S2 x S1 x S1-^N x S1. Let N x R~->N x S1 be the
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covering of N x S1 and let p: P = f*(N x R)-»S2 x S1 x S1 be the
induced covering. We can define a projection q: S2 x S1 x S1 —> S2 x S1

so that the composition q°p: P—+S2 x S1 is a homotopy equivalence.
Consequently we have

where ~ means homotopy equivalence. The proof finishes.

PROOF OF THEOREM 1. Since M has a normal almost contact struc-
ture, it follows easily that M x S1 has a structure of a complex analytic
manifold. Let ^ be the first Chern class of the complex manifold W —
M x S1. By Lemma 1, it follows that el = 0 and that W has no excep-
tional curves. Obviously the topological Euler Number of W is zero.
By using the Kodaira's results on the classification of compact complex
manifolds ([7], Theorem 55), we infer that W belongs to the class I0,
IΠ0, IV0, VI0, or VΠ0. The surfaces in class I0 are projective plane or
rulled surfaces. The surfaces in class IΠ0 are complex tori. Rulled
surfaces are S2-bundles over orientable 2-manifolds. By Lemma 2, it
follows that surfaces in class I0 or IΠ0 which are diίfeomorphic to the
product M x S1 are given only when M is homotopy equivalent to
S2 x S1 or Sί x S1 x S1. The classes IV0 and VI0 are elliptic surfaces.
Since the Euler number is zero, they are obtained from elliptic surfaces
free from singular fibers by means of logarithmic transformations ([7],
§ 4). This shows that W is diίfeomorphic to the product M' x S1, where
Mf is an orientable Seifert bundle over orientable 2-manifold with typical
fiber S1. Such Seifert bundles are classified by Seifert (see Orlik [13]).
Seifert bundles are devided into two types — large and small. Large
Seifert manifolds are known to be K(π, 1) spaces, i.e., their ί-th homotopy
groups vanish for all ί > 1. Small orientable Seifert bundles over ori-
entable 2-manifolds are diffeomorphic to torus bundles over S1, S2 x S1,
or quotient spaces of S3 by finite linear groups. Since

the theorem is proved, except the case where W = M x S1 belongs to
the class VII0.

The complex manifold W — M x S1 belongs to class VΠ0 only when
M is a rational homology 3-sphere. Let 6^ be the ί-th Betti number of
a surface W = M x S1 in class VΠ0. Then bt = 1, and &2 = 0. Further
suppose that W contains a curve, then W is an elliptic surface or a
Hopf surface. If it is elliptic, then the same discussion as for the classes
IV0 and VI0 holds and the conclusion of the theorem holds. The universal
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covering of a Hopf surface is SB x Rl.
For other surfaces in class VII0, we need the following result due

to Inoue. Let Π be the fundamental group of W and let [77, 77] be the
commutater subgroup.

THEOREM (INOUE [6]).*} Let W be a compact analytic surface in
class VΠ0 with b^ = 1, 62 — 0. Suppose W contains no curve. Then
there exists a holomorphic line bundle FQ on W such that dim H^Ω^F^)) Φ
0 if and only if [77, 77] is finitely generated.

Let π be the fundamental group of the manifold M. Since W —
M x S1, then 77 = π^W) = π 0 Z. Hence we have [77, 77] = [π, π].

LEMMA 3. Let π be the fundamental group of a compact 3-manίfold
M. If Hi(M', Z) is a torsion group T9 then [π, π] is finitely generated.

PROOF. We have a covering manifold M such that π^M) = [π, π].
The covering index is equal to %π/[π, π] = #T, and so, is finite. The
manifold M is compact and [π, π] is finitely generated.

PROOF OF THEOREM 1 (CONTINUED). Suppose W—M x S1 is in class
VΠ0 and suppose W contains no curve. Let 77 = π^W). By Lemma 3,
[77, 77] is finitely generated. By the theorem of Inoue, there exists a
holomorphic line bundle F0 over W such that dim H\Ω\Fύ) Φ 0. But
such manifolds are completely classified by Inoue [5]. Their universal
covering spaces are all diffeomorphic to Λ4. Especially π2(M) = π2( W) = 0,
which finishes the proof of Theorem 1.

Let Mί9 M2 be two closed 3-manifolds such that π^Mi) Φ 0 for j —
1, 2. The argument in Milnor ([11], p. 5) shows that π2(M^M2) Φ 0,
where M^MZ denotes the connected sum of Mt and M2.

COROLLARY. Let Mίf M2 be two closed 3-manifolds. If π^Mj) Φ 0,
for j = 1, 2, then the manifold M$M2 has no normal almost contact
structure.

2. Essentially different contact structures on spheres. Let % and
27i be two contact forms on a (2n + l)-dimensional manifold M. Let
T*M be the cotangent bundle of M.

DEFINITION. ^ is deformable to % if there exists a differential
homotopy of cross sections F: M x I—> T*M, with FQ = F\M x {0} = %,
Ft = F\M x {1} = ft and Ft = F\M x {t} is a contact form of M for all
0 ̂  t ̂  1.

*} The author thanks M. Inoue for showing him this result with proof. The author
had only a partial result.
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In the paper [4], Gray has shown the rigidity of deformation of
contact structure.

THEOREM (GRAY). // % is deformable to %, then there exists a dif-
feomorphism f of M diffeotopic to the identity such that /*?ft = τηQ,
where τ is a positive function on M.

DEFINITION. Two contact forms % and 3ft are essentialy equivalent
if there exists a diffeomorphism / of M such that /*3ft = τηQ, where τ
is a non-zero function on M. We say they are essentially different if
no such diffeomorphism exists.

Remark that if /*% = r% for some positive function r, and if / is
diffeotopic to the identity, then 3ft is deformable to %. In fact, let ft

be the diffeotopy of / such that /t = identity and /0 = /. We define a
one-parameter family of contact forms Ft on M by

Then F0 = (l/τ)/*3ft = % and F1 = 3ft. ί7 is a deformation connecting %
and 3ft.

DEFINITION. Two almost contact structure λ0 and \ are said to be
homotopic if there exists a one-parameter family of the reduction of the
structure group of the tangent bundle of M to U(n) connecting λ0 and \.

If there exists a deformation between two contact structures
3ft, then the induced almost contact structures λ0 and \ are homotopic.

Let τ(M): M— *BSO(2n + 1) denote the classifying map of the tangent
bundle TM of M. The homotopy classes of almost contact structures
on M correspond bijectively to the homotopy classes of liftings λ:lf— >
BU(n) so that the diagram

BU(n)

/ 1*
M— ->BSO(2n + l)

τ(M)

commutes, where Bj: BU(ri)— *BSO(2n + 1) is induced by the inclusion

The inclusion maps ί: S0(2n + ϊ)->SO(2n + 2) and i: U(n) -> U(n + 1)
induce the maps Bi: BSO(2n + ϊ)-+BSO(2n + 2) and Bί: BU(ri)-*BU(n + 1)
respectively. The composition Bi°\: M— >BU(n + 1) is a lifting of
Bi°τ(M):M->BSO(2n + 2), i.e., the diagram
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BU(n) ——-> BU(n + 1)

Bj

MτΆ BSO(2n + 1) — BSO(2n + 2)
commutes, where Bj: BU(n + 1)—>BSO(2n + 2) also denotes the map
induced by the inclusion j: U(n + 1) —* S0(2n + 2).

Let p: M x R-+M be the projection. Then the composition Bi°τ(M}°p:
M x R —> BSO(2n + 2) is a classifying map of the tangent bundle of
M x jβ. A lifting of Bi°τ(M)°p to jBΪ7(% + 1) is an almost complex
structure of M x R. Since M x U is homotopy equivalent to M, the
homotopy classes of almost complex structures on M x R correspond
bijectively to the liftigs of Bίoτ(M) to BU(n + 1).

The fibers of the fiberings BU(n)-+BSO(2n + 1) and BU(n + !)-»
BSO(2n + 2) are S0(2n + l)/Z7(w) and S0(2^ + 2)/U(n + 1) respectively.
But we know the following. (See e.g., [4], Corollary 3.1.3.)

LEMMA 4. The inclusion i: S0(2n + 1) —* S0(2n + 2) induces a
homeomorphism

S0(2n + ϊ)/U(ri) ~ S0(2n + 2)/U(n + 1) .
Hence we obtain the following.

PROPOSITION 1. The set of homotopy classes of almost contact struc-
tures on M corresponds bijectively to the set of homotopy classes of
almost complex structures on M x R.

In the paper [15] (see also [1], [2]), Sasaki and Hsu have proved that
any Brieskorn manifold has a normal contact structure. It induces the
complex structure on M x R. This complex structure is just equal to
the complex structure of the hypersurface punctured at the origin de-
fining the Brieskorn manifold.

If a Brieskorn manifold is homeomorphic to the sphere SZn+1

f then
we have a complex structure on S2n+1 x R, which is homeomorphic to
R2n+z — {0}. We can express homotopy spheres which bound parallelizable
manifolds as Brieskorn manifolds in many different ways. At this point,
we can apply Morita's work [12]. He investigates the homotopy classes
of almost complex structures on R2n+z — {0} which are induced from
complex analytic structures.

Let us define the number a(n) by

^ if n is odd

a(n) — n\ if n ΞΞ 0 (mod 4)

nl/2 if n = 2 (mod 4)
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Direct application of Morita's work to Proposition 1 shows that;

THEOREM 2. Let Σ2n+1 (n > 1) be a homotopy sphere which bounds
a parallelizable manifold. Then there are at least a(n) contact struc-
tures on Σzn+l any two of which cannot be connected by deformations.

For S3, similar results have been obtained by Lutz [9].

If n is even, then the contact forms η and — η define the different
orientations. The contact forms can never be homotopic. If n is odd,
the conjugation from η to —7] defines an action of order 2 on the set
of homotopy classes of almost contact structures.

To know the classification by the "essentially equivalence", we must
consider the action of the homotopy classes of diffeomorphisms of the
manifold on the set of homotopy classes of almost contact structures.

Let Θ2n+1 be the abelian group of the fc-cobordim classes of the
homotopy (2n + l)-spheres (n > 1).

LEMMA 5. The order of the homotopy classes of diffeomorphisms of
a homotopy sphere Σ2n+ί is one or two according as Σ2n+1$Σ2n+ί is non-
trivial in 02n+1 or not.

The non-zero homotopy class of diffeomorphisms of Σ2n+1 is (if it
exists) given by an orientation reversing diffeomorphism, say /. Let %
and % be two contact forms on Σ*n+1, and let λ0 and \ be their induced
almost contact structures. Denote by —\ the almost contact structure
induced from —?ft, and by λj. the almost contact structure corresponding
to the almost complex structure induced by / x id. on Σ*n+ί x R from
the almost complex structure corresponding to λlβ

PROPOSITION 2. Let Σ2n+1 (n > 1) be a homotopy sphere which bounds
a parallelizable manifold. Then ηQ is essentially different to % if λ0

is not homotopic to

•i when n is even and Σ2n+l%Σ2n+l ^ Q in Θ2n+l ,

,19 nor\ when n is odd and Σ*n+1#Σ**+1 = 0 in Θ2n+ί ,

Λi, nor\19 nor ~\ when n is odd.

We define the number b(n) for n > 2 by

'oo if n is odd,

nl/2 if n = 0 (mod 4),

U!/4 if n = 2 (mod 4).

Combining Proposition 2 with Theorem 2, we have;
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THEOREM 3. Let Σ2n+1 (n > 2) be a homotopy sphere which bounds
a parallelizable manifold. If ΣZn+1%Σ2n+i is non-zero in Θ2n+1, there are
at least a(n) essentially different contact structures on Σ2n+1. If
Σ2n+1j^Σ2n+1 is zero in Θ2n+1

9 there are at least b(n) essentially different
contact structures on Σ2n+1.

Having as the model real strongly pseudo-convex hypersurf aces in
Cn+1, we know the abstract definition of strongly pseudo-convex mani-
folds (see e.g., Polland-Kohn [3] etc.). Universal family of deformations
of strongly pseudo-convex manifolds has been constructed by Kuranishi
[8], A strongly pseudo-convex manifold has a contact structure. The
almost strongly pseudo-convex structure is just equal to the almost
contact structure. Indeed Tanaka [17] has shown that any Brieskorn
manifold has a strongly pseudo-convex structure. Hence we have non-
deformable strongly pseudo-convex structures on homotopy spheres.
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