TOEPLITZ OPERATORS FOR UNIFORM ALGEBRAS

JUN TOMIYAMA AND KÔZÔ YABUTA

(Received November 18, 1976)

Let $C(T)$ be the Banach algebra of complex valued continuous functions on the unit circle T in the complex plane and $P(T)$ be the subalgebra of $C(T)$ consisting of those functions with continuous extensions to the closed unit disc which are holomorphic in the open unit disc. Let m be the normalized Lebesgue measure on T and $H^2(T)$ be the $L^2(m)$ -closure of $P(T)$. Let P denote the orthogonal projection of $L^2(m)$ onto $H^2(T)$. For ϕ in $L^{\infty}(m)$ the Toeplitz operator T_{ϕ} on $H^2(T)$ is defined by $T_{\phi}(f) =$ *P(* ϕf *)* for *f* in *H*²(*T*). Let $\mathcal{T}(C(T))$ be the C^{*}-algebra generated by the set ${T_e; \phi \in C(T)}$ and $\mathcal{C}(C(T))$ be the commutator ideal of $\mathcal{I}(C(T))$. Then it is known that there exists a *-homomorphism ρ from $\mathcal{T}(C(T))$ onto $C(T)$ such that the following sequence is exact,

$$
(*) \qquad \qquad \{0\} \longrightarrow \mathcal{C}(C(T)) \stackrel{i}{\longrightarrow} \mathcal{F}(C(T)) \stackrel{\rho}{\longrightarrow} C(T) \longrightarrow \{0\}
$$

and $\rho(T_{\phi}) = \phi$, where *i* is the inclusion map. Further in this case $\mathscr C$ coincides with the closed ideal $\mathscr{L}\mathscr{C}(H^2(T))$ consisting of all bounded linear compact operators on $H^2(T)$ and it holds

$$
(**) \qquad \qquad \{0\} \longrightarrow \mathcal{L} \mathcal{C}(H^2(T)) \longrightarrow \mathcal{F}(C(T)) \xrightarrow{\rho} C(T) \longrightarrow \{0\}
$$

is exact and $\rho(T_{\phi}) = \phi$ for all $\phi \in C(T)$. This fact is generalized to many cases, to multiply connected domains in the complex plane [1] and to strongly pseudo-convex domains in *Cⁿ* [16], [10], [17] and in Stein spaces [13]. In order to obtain the exact sequence $(**)$ it is important to get the exact sequence $(*)$. On the other hand, from an exact sequence of type (*), itself, one can deduce some consequences (see [7, Section 3] and Corollaries 1.6, 2.2, 2.3 and Proposition 2.8 in this note).

In this note we regard the notion of $\mathcal{T}(C(T))$ as a linear representation τ of $C(X) = C(T)$ on a compact Hausdorff space $X = T$ into the C^* -algebra of all bounded linear operators on a Hilbert space $H = H^2(T)$ satisfying

(1) $||\tau|| \leq 1$ and $\tau(1) = 1$: identity operator,

- (2) τ is isometric on the uniform algebra $A = P(T)$,
- (3) $\tau(\phi \varphi) = \tau(\phi) \tau(\varphi)$ for all $\phi \in C(X)$ and $\varphi \in A$.

In Section 1 we set up this formulation for any uniform algebra and will obtain an exact sequence of type (*) (Theorem 1.4). Relating to it we give an ideal theoretic characterization of joint approximate point spectrum within the category of C^* -algebras. These are closely related to the Bunce's results in $[2]$. In Section 2 we introduce a notion of Toeplitz operator for uniform algebras and apply our results in Section 1. In Section 3 we treat applications of the results in Section 2 to some concrete cases.

For any topological space X we always denote by $C(X)$ the C^* -algebra of all complex valued continuous functions on *X,* endowed with supremum norm.

1. Toeplitz operators in an abstract setting. Let *X* be a compact Hausdorff space and *A* be a uniform algebra on *X,* i.e., *A* is a uniformly closed subalgebra of $C(X)$ which contains the constants and separates points in *X.* We will denote by *Γ(A)* the Shilov boundary of *A* and by $Q(A)$ the Choquet boundary (=strong boundary) of A. A bounded linear functional α of A is said to be a state if it satisfies the condition $\alpha(1) =$ $1 = ||\alpha||$. The set of all states of A forms a weak^{*} compact convex subset in the dual space of *A.* We also call an extreme point of this state space a pure state of *A.* One may employ these definitions for any linear subspace of a C^* -algebra which contains the unit of the algebra. In case of the algebra *A,* the set of pure states corresponds to the evaluations of the Choquet boundary points (cf. [12, Section 6]). Thus, a pure state of A has a unique pure state extension to $C(X)$, and hence by the theorem of Krein-Milman its state extension is unique, too. We shall often use this observation in our subsequent discussions. We identify the points of *X* with characters. The Shilov boundary is, as a subset of characters of *A,* the weak* closure of the set of pure states.

Now let *τ* be a linear representation of *C(X)* into the algebra of all bounded linear operators, $\mathscr{L}(H)$, on a Hilbert space H. We assume that τ is contractive, i.e., $||\tau|| \leq 1$, and $\tau(1) = 1$, the identity operator in H. This implies that τ is a positive map of $C(X)$ into $\mathscr{L}(H)$.

PROPOSITION 1.1. *Suppose that τ is isometric on A. Then for every function* ϕ *of C(X) we have the inequality* $|\tau(\phi)| \ge \max \{|\phi(t)|; t \in \Gamma(A)\}.$ *In particular, if* $X = \Gamma(A)$ the representation τ is an isometry.

PROOF. Let t be a point in $Q(A)$, then it gives rise to a pure state *a* of $\tau(A)$. Let $\hat{\alpha}$ be a norm preserving extension of α on the subspace $\tau(C(X))$. One easily sees that the functional $\hat{\alpha} \circ \tau$ is a state extension of the character *t* of *A.* From the observation stated before, we have

$$
|\hspace{0.02cm} \phi(t) \hspace{0.02cm} | = |\hspace{0.02cm} \widehat{\alpha} \hspace{0.02cm} \circ \hspace{0.02cm} \tau(\phi) \hspace{0.02cm} | \hspace{0.02cm} \leq \hspace{0.02cm} || \hspace{0.02cm} \tau(\phi) \hspace{0.02cm} || \hspace{0.02cm} \centerdot
$$

Taking the closure of *Q(A),* we get the conclusion.

From now on we keep the following conditions for τ :

- (a) τ is isometric on A,
- (b) $\tau(\varphi \phi) = \tau(\varphi) \tau(\phi)$ for all $\varphi \in C(X)$ and $\phi \in A$.

The assumptions are abstract setting of the family of Toeplitz opera tors (cf. [7]) and our later result (Theorem 1.4) gives a general structure theorem for the C^{*}-algebra generated by the family $\{\tau(\phi); \phi \in C(X)\}\$. With these conditions $\tau|_A$, the restriction τ in A, becomes an algebraic isomorphism and $\tau(A)$ is a commutative Banach subalgebra of $\mathscr{L}(H)$ containing the identity operator in *H.* Moreover we can show the following

LEMMA 1.2. For every function ϕ of A, $\tau(\phi)$ is a subnormal operator *and hence a hyponormal operator.*

We recall that an operator *T* is hyponormal if $TT^* \leq T^*T$.

PROOF. Since the map τ is a positive map of $C(X)$ into $\mathscr{L}(H)$ with $\tau(1) = 1$, it is completely positive and by the theorem of Stinespring [14] there exists a dilation space *K* of *H* and a *-homomorphism π of $C(X)$ into $\mathscr{L}(K)$ such that $\tau(\phi) = P\pi(\phi)P$, where *P* denotes the projection of *K* onto the subspace *H.* Hence, by the assumption (b), we have for every $\phi \in A$

$$
P\pi(\phi)^*\pi(\phi)P=P\pi(\phi)^*P\pi(\phi)P.
$$

Since $1 - P$ is also a projection, we get

 $[P\pi(\phi)^*(1-P)][(1-P)\pi(\phi)P]=0$,

and hence

 $(1 - P)\pi(\phi)P = 0$,

i.e.,

$$
\tau(\phi) = P\pi(\phi)P = \pi(\phi)P.
$$

This means $\tau(\phi)$ is subnormal. As is well known, every subnormal operator is hyponormal.

Let $\mathcal{T}(C(X))$ be the C^{*}-algebra generated by the operators { $\tau(\phi)$; $\phi \in C(X)$. Since *A* is a uniform algebra on *X* the algebra $C(X)$ is the closed linear span of the set $\{\varphi\psi$; $\varphi, \psi \in A\}$ by the Stone-Weierstrass theorem, and so one may regard $\mathcal{T}(C(X))$ as the C^{*}-algebra generated by the set $\{\tau(\varphi); \varphi \in A\}$, the commutative Banach algebra of subnormal operators in *H*. Let α_t be the pure state of $\tau(A)$ induced by a point t

of *Q(A).* The following is a key lemma for our main result.

LEMMA 1.3. The state α_t extends uniquely to a state of and the extended state is a character of $\mathscr{T}(C(X))$.

PROOF. Since $\tau(A)$ separates the characters of $\mathscr{T}(C(X))$, it suffices to prove that any state extension $\hat{\alpha}$ of α_t is necessarily a character of $\mathscr{I}(C(X))$. Let *L* be the left kernel of $\hat{\alpha}$ i.e., $L = \{S \in \mathscr{I}(C(X)); \hat{\alpha}(S^*S) = 0\}.$ We note first that $\hat{\alpha}(\tau(\phi)) = \phi(t)$ for every ϕ of $C(X)$ by the uniqueness of the state extension of the state *t* on *A.* Hence, for every function φ of A we have

(1)
$$
\hat{\alpha}((\tau(\varphi)-\varphi(t))^*(\tau(\varphi)-\varphi(t))=\hat{\alpha}(\tau(\overline{\varphi}-\overline{\varphi(t)})\tau(\varphi-\varphi(t)))
$$

$$
=\hat{\alpha}\circ\tau(|\varphi-\varphi(t)|^2)=0.
$$

Thus, the operator $\tau(\varphi) - \varphi(t)$ belongs to L and as L is a left ideal of $\mathscr{T}(C(X))$ the set $\mathscr{T}(C(X))(\tau(\varphi) - \varphi(t))$ is contained in *L*. Therefore, $\hat{\alpha}(S(\tau(\varphi)-\varphi(t)))=0$ for every element *S* of $\mathscr{T}(C(X))$. This implies that

 $\widehat{\alpha}(ST) = \widehat{\alpha}(S)\widehat{\alpha}(T)$ for all $S \in \mathscr{T}(C(X))$ and $T \in \tau(A)$.

Next, by Lemma 1.2 $\tau(\varphi) - \varphi(t)$ is hyponormal and so using (1) we get

$$
\widehat{\alpha}((\tau(\varphi)-\varphi(t))(\tau(\varphi)-\varphi(t))^*)=0,
$$

and $\tau(\varphi - \varphi(t))^*$ belongs to L. Hence the same argument as above shows that

$$
\widehat{\alpha}(ST^*)=\widehat{\alpha}(S)\widehat{\alpha}(T^*)=\widehat{\alpha}(S)\overline{\widehat{\alpha}(T)}\;,
$$

and

 $\hat{\alpha}(TS) = \hat{\alpha}(T)\hat{\alpha}(S)$ for all $S \in \mathscr{T}(C(X))$ and $T \in \tau(A)$.

As $\mathscr{T}(C(X))$ is the C^{*}-algebra generated by $\tau(A)$ one may easily conclude that $\hat{\alpha}$ is a character of $\mathcal{T}(C(X))$. This completes the proof.

We denote by Δ the character space of $\mathscr{T}(C(X))$ with the weak^{*} topology. Let $\mathcal{C}(C(X))$ be the commutator ideal of $\mathcal{F}(C(X))$. We define a map of \varDelta into X as follows. Take a character β of $\mathscr{T}(C(X))$ *f* and consider the state $\alpha = (\beta | \tau(C(X))) \circ \tau$ of $C(X)$ where $\beta | \tau(C(X))$ means the restriction of β to $\tau(C(X))$. We have

$$
\begin{aligned} \alpha(\varphi\phi) &= \alpha(\phi\varphi) = \beta(\tau(\phi\varphi)) = \beta(\tau(\phi)\tau(\varphi)) \\ &= \beta(\tau(\phi))\beta(\tau(\varphi)) = \alpha(\phi)\alpha(\varphi) = \alpha(\varphi)\alpha(\phi) \end{aligned}
$$

for all $\phi \in C(X)$ and $\phi \in A$. Therefore, since $C(X)$ is the closed linear span of the set $\{\varphi\overline{\psi}; \varphi, \psi \in A\}$, α is a character of $C(X)$ and there is a point t_{β} of *X* such that $\alpha(\phi) = \phi(t_{\beta})$ for every $\phi \in C(X)$. The map, $\beta \rightarrow t_{\beta}$,

is clearly a one-to-one continuous mapping of *Δ* into *X.* We denote by $\Gamma(\tau)$ the image of this map. The set $\Gamma(\tau)$ is compact and it is homeomorphic to *Δ.* With this preparation we state our main result in the following.

THEOREM 1.4. $\Gamma(\tau)$ is a closed boundary for A. Moreover, there is $a *-homomorphism \rho \text{ of } \mathcal{T}(C(X))$ to $C(\Gamma(\tau))$ such that the short sequence

$$
\{0\} \longrightarrow \mathcal{C}(C(X)) \xrightarrow{i} \mathcal{J}^-(C(X)) \xrightarrow{\rho} C(\Gamma(\tau)) \longrightarrow \{0\}
$$

is exact and $\rho(\tau(\phi)) = \phi \Gamma(\tau)$ *for all* $\phi \in C(X)$ *, where i is the inclusion map.*

PROOF. By Lemma 1.3, $\Gamma(\tau)$ is a compact subset of X which contains *Q(A),* hence it is a boundary for *A.* On the other hand, the homeomorphism between $\Gamma(\tau)$ and Δ induces a *-isomorphism between the algebras $C(\Gamma(\tau))$ and $C(\Lambda)$, but the latter algebra may be regarded as the quotient C^* algebra $\mathcal{T}(C(X))/\mathcal{C}(C(X))$ because the ideal $\mathcal{C}(C(X))$ is the intersection of the kernels of all characters of $\mathcal{T}(C(X))$. Thus, this defines naturally a *-homomorphism ρ of $\mathscr{T}(C(X))$ onto $C(\Gamma(\tau))$ and by definition $\rho(\tau(\phi)) =$ $\phi | \Gamma(\tau)$ for every $\phi \in C(X)$. This completes the proof.

Next, let *J* be the kernel of *τ,* then *J* is a closed self-adjomt subspace of $C(X)$. Besides, from the assumption for τ , the function $\phi\varphi$ belongs to *J* for all $\phi \in J$ and $\phi \in A$. Hence, $\phi \overline{\phi} = (\overline{\phi} \overline{\phi}) \in J$. It follows that *J* is an ideal of $C(X)$, and there exists a closed subset $S(\tau)$ of X such that

$$
J=\{\phi\in C(X);\ \phi|_{S(\sigma)}=0\}\ .
$$

One easily verifies that *S(τ)* is the smallest closed set for which *τ* an nihilates the set $\{\phi \in C(X); \ \phi|_{S(\tau)} = 0\}$. We call $S(\tau)$ the support of τ . Then the following corollary of the above theorem is a sharpened estima tion of the norm of $\tau(\phi)$ in the present situation.

COROLLARY 1.5. For every function ϕ of $C(X)$ *, we have the estimation;*

$$
\max \left\{\|\phi(t)|; \ t \in S(\tau)\right\} \geqq \|\tau(\phi)\| \geqq \|\tau(\phi)\|_{\mathrm{sp}} \geqq \max \left\{\|\phi(t)|; \ t \in \Gamma(\tau)\right\}.
$$

In particular, if τ(ϕ) *is quasi-nilpotent* ϕ *vanishes on* $\Gamma(\tau)$ *. Here* $\|\ \|_{\text{sp}}$ *denotes the spectral norm.*

PROOF. The last estimation is a consequence of the theorem. For the first inequality it is enough to mention that the maximum is equal to the quotient norm of ϕ in $C(X)/J$.

The above inequalities show that $S(\tau)$ contains $\Gamma(\tau)$ but the support

 $S(\tau)$ may or may not coincide with $\Gamma(\tau)$. One can say the same thing about $\Gamma(\tau)$ and $\Gamma(A)$ as well.

COROLLARY 1.6. Suppose that the weak closure of $\mathcal{C}(C(X))$ coincides *with the weak closure of* $\mathscr{T}(C(X))$ *. Then, if* $\sum_{i=1}^{n} \prod_{i=1}^{m} \tau(\phi_{i,i})$ *is compact, the function* $\sum_{i=1}^{n} \prod_{j=1}^{m} \phi_{ij}$ vanishes on $\Gamma(\tau)$.

The assumption is particularly satisfied when $\mathcal{T}(C(X))$ is irreducible *and* $\mathcal{C}(C(X)) \neq \{0\}.$

PROOF. Let β be a character of $\mathscr{T}(C(X))$ and $\widehat{\beta}$ be its pure state extension to $\mathscr{L}(H)$. Let $\mathscr{L}\mathscr{C}(H)$ be the ideal of $\mathscr{L}(H)$ consisting of all compact operators on H. Since the dual space of $\mathscr{L}(H)$ is the *l*₁-sum of the dual of $\mathscr{L}\mathscr{C}(H)$, i.e., the space of σ -weakly continuous linear functionals on $\mathscr{L}(H)$ and the polar of $\mathscr{L}\mathscr{C}(H)$ (Dixmier [4; Theorem 3]), $\hat{\beta}$ is either *σ*-weakly continuous or vanishing on $\mathscr{L}\mathscr{C}(H)$. *^{H).* From the assumption, however, $\hat{\beta}$ can not be σ -weakly continuous, hence it vanishes on $\mathscr{L}\mathscr{C}(H)$. It follows that the intersection $\mathscr{L}\mathscr{C}(H) \cap \mathscr{T}(C(X))$ is necessarily contained in $\mathcal{C}(C(X))$, so that the function $\sum_i \prod_j \phi_{ij} =$ $\rho(\sum_i \prod_i \tau(\phi_{ii}))$ vanishes on $\Gamma(\tau)$.

In general, the ideal $\mathscr{C}(C(X))$ could be zero so that $\mathscr{T}(C(X))$ would become a commutative C^* -algebra. But this happens only in trivial cases because if it is the case then τ turns out to be a *-homomorphism of $C(X)$ to $\mathscr{T}(C(X)) = \tau(C(X))$ and there are no nontrivial dilations for τ .

Let (T_1, T_2, \dots, T_n) be an *n*-tuple of commuting bounded operators on *H*. Define the joint approximate point spectrum $\sigma_x(T_1, T_2, \dots, T_n)$ to be the set of all complex *n*-tuples $(\lambda_1, \lambda_2, \cdots, \lambda_n)$ such that the set

$$
\mathscr{L}(H)(T_{1}-\lambda_{1})+\mathscr{L}(H)(T_{2}-\lambda_{2})+\cdots+\mathscr{L}(H)(T_{n}-\lambda_{n})
$$

forms a proper left ideal of $\mathscr{L}(H)$. In [2], Bunce has shown that the joint spectrum $\sigma_x(T_1, T_2, \cdots, T_n)$ for those operators T_i 's in $\tau(A)$ consists of the *n*-tuples $\{(\alpha(T_1), \alpha(T_2), \cdots, \alpha(T_n))\colon \alpha \in \Delta\}$. In connection with this we shall show an improved version of the essential part of Bunce's arguments in $[2]$. Namely, we have

PROPOSITION 1.7. Let (T_1, T_2, \cdots, T_n) be an n-tuple of commuting *operators on H and let B be a C*-subalgebra of* $\mathscr{L}(H)$ with unit which $contains \{T_{1}, T_{2}, \cdots, T_{n}\}.$ Then, the following statements are equivalent *for a complex n-tuple* $(\lambda_1, \lambda_2, \dots, \lambda_n)$.

 (1) $(\lambda_1, \lambda_2, \cdots, \lambda_n) \in \sigma_\pi(T_1, T_2, \cdots, T_n)$

 $B(T_1 - \lambda_1) + B(T_2 - \lambda_2) + \cdots + B(T_n - \lambda_n)$ *is a proper left ideal of B,*

(3) there exists a state α of B such that $\alpha(T_i) = \lambda_i$ and $\alpha(ST_i) =$ $\alpha(S)\alpha(T_i)$ for all $S \in B$ and *i*,

(4) there exists a state β of $\mathscr{L}(H)$ such that $\beta(T_i) = \lambda_i$ and $\beta(ST_i) = \alpha_i$ $\beta(S)\beta(T_i)$ for all $S \in B$ and *i*.

PROOF. $(1) \Rightarrow (2)$. Suppose that

$$
B(T_1-\lambda_1)+B(T_2-\lambda_2)+\cdots+B(T_n-\lambda_n)=B.
$$

Then, there exists an *n*-tuple (R_1, R_2, \dots, R_n) of operators in *B* such that

$$
R_{1}(T_{1}-\lambda_{1})+R_{2}(T_{2}-\lambda_{2})+\cdots+R_{n}(T_{n}-\lambda_{n})=1.
$$

But this means that

$$
\mathscr{L}(H)(T_1-\lambda_1)+\mathscr{L}(H)(T_2-\lambda_2)+\cdots+\mathscr{L}(H)(T_r-\lambda_n)=\mathscr{L}(H),
$$

whence $(\lambda_1, \lambda_2, \cdots, \lambda_n)$ does not belong to $\sigma_x(T_1, T_2, \cdots, T_n)$.

 $(2) \Rightarrow (3)$. From the assumption one sees that the closure of the set, $B(T_1 - \lambda_1) + B(T_2 - \lambda_2) + \cdots + B(T_n - \lambda_n)$, is a proper left ideal of *B,* too. Hence, there exists a state of *B* which vanishes on this left ideal (by [5, Theorem 2.9.5] the state can even be a pure state). Thus, the assertion (3) follows.

 $(3) \rightarrow (4)$. Let $\hat{\alpha}$ be a state extension of α to $\mathscr{L}(H)$ and let \hat{L} and *L* be left kernels of $\hat{\alpha}$ and α , respectively. By the assumption, $T_i - \lambda_i \in$ $L \subset L$ for all i, so that the set $\mathscr{L}(H)(T_i - \lambda_i)$ is contained in L for all *i.* Hence, $\hat{\alpha}$ vanishes on these sets. The assertion $(4) \rightarrow (1)$ is immediate, for *β* vanishes on the set

 $\mathscr{L}(H)(T_1 - \lambda_1) + \mathscr{L}(H)(T_2 - \lambda_2) + \cdots + \mathscr{L}(H)(T_n - \lambda_n)$.

This completes the proof.

The proposition says that at least within the category of C^* -algebras we get a nice ideal theoretic characterization of the joint spectrum that does not depend on the choice of the algebra containing ${T_1, T_2, \cdots, T_n}$. It is also to be noticed that in case $B = C^*(T_1, T_2, \dots, T_n)$ the required state α in the assertion (3) turns out to be a character whenever we have an implication, $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \sigma_x(T_1, T_2, \dots, T_n) \to (\bar{\lambda}_1, \bar{\lambda}_2, \dots, \bar{\lambda}_n) \in$ $T(T^*, T^*, \dots, T^*),$ The hyponormality of operators in Bunce's theorem is one of the typical conditions to yield the above implication.

2. **Toeplitz operators for uniform algebras.** As in Section 1 let *X* be a compact Hausdorff space and *A* be a uniform algebra on *X,* and *Γ(A)* be the Shilov boundary of *A.* Now let *μ* be a finite nonnegative regular Borel measure on X. Then we define $H^2(\mu)$ as the $L^2(\mu)$ closure of *A* and for every $\phi \in L^{\infty}(\mu)$ we denote by M_{ϕ} the multiplication operator

on $L^2(\mu)$, defined by $M_{\phi} f = \phi f$ for $f \in L^2(\mu)$ and by *P* the orthogonal projection of $L^2(\mu)$ onto $H^2(\mu)$. We define Toeplitz operator T_{ϕ} on $H^2(\mu)$ with $L^{\infty}(\mu)$ symbol ϕ by

$$
T_{\phi}f=PM_{\phi}f \qquad \text{for} \quad f \in H^2(\mu) .
$$

Let $H^{\infty}(\mu)$ be the weak* closure of A in $L^{\infty}(\mu)$. Then it is easily seen that for each $\phi \in L^{\infty}(\mu)$ and $\phi \in H^{\infty}(\mu)$

$$
T_{\varphi}f = \varphi f
$$
 and $T_{\varphi}T_{\varphi}f = T_{\varphi\varphi}f$ for $f \in H^2(\mu)$.

Hence T_{φ} is a subnormal operator on $H^2(\mu)$ if $\varphi \in H^{\infty}(\mu)$. It is also clear that the mapping $\phi \to T_{\phi}$ is contractive for $\phi \in L^{\infty}(\mu) \cup C(X)$. Further we have

$$
|| T_{\varphi} || = || \varphi ||_{L^{\infty}(\mu)} \quad \text{for} \quad \varphi \in H^{\infty}(\mu) .
$$

Indeed, if $\varphi \in H^{\infty}(\mu)$, we have

$$
\left(\int \lvert \varphi \rvert^j d\mu \right)^{1/j} = \left(\int \rvert \ T^i_\varphi 1 \rvert \, d\mu \right)^{1/j} \leqq \lvert \rvert \ T^i_\varphi 1 \rvert \rvert^{1/j} \lvert \rvert 1 \rvert \rvert^{1/j} \leq \lvert \rvert \ T_\varphi \rvert \rvert \ \lvert \rvert 1 \rvert \rvert^{2/j} \qquad (j=1,\,2,\,\cdots) \; .
$$

Letting $j \rightarrow \infty$ we have $||\varphi||_{L^{\infty}(\mu)} \leq ||T_{\varphi}||$. Since T_{φ} is a contraction we have $||\varphi||_{L^{\infty}(\mu)} = ||T_{\varphi}||$. Now let τ be a linear mapping from $C(X)$ into $\mathscr{L}(H^2(\mu))$ defined by

$$
\tau(\phi) = T_{\phi} \quad \text{for} \quad \phi \in C(X) .
$$

Then τ is a linear representation of $C(X)$ into $\mathscr{L}(H^2(\mu))$ satisfying all the conditions for τ in Section 1, whenever supp $\mu \supset \Gamma(A)$. Hence applying Theorem 1.4 we have

THEOREM 2.1. Suppose support $\mu = \Gamma(A)$. Then there exists a **-homomorphism* ρ *from* $\mathscr{T}(C(X))$ *onto* $C(\Gamma(A))$ *such that the short sequence*

$$
\{0\} \longrightarrow \mathcal{C}(C(X)) \stackrel{i}{\longrightarrow} \mathcal{F}(C(X)) \stackrel{\rho}{\longrightarrow} C(\Gamma(A)) \longrightarrow \{0\}
$$

is exact and $\rho(T_{\phi}) = \phi|_{\Gamma(A)}$ *for all* $\phi \in C(X)$ *, where i is the inclusion map.*

PROOF. In this case we have

$$
\Gamma(A) = \text{supp } \mu \supset S(\tau) \supset \Gamma(\tau) \supset \Gamma(A) ,
$$

and hence $\Gamma(A) = \Gamma(\tau)$. Using Theorem 1.4 we get the desired conclusion.

REMARK. From a uniform algebra *A* we can always construct a model satisfying the assumptions in Theorem 2.1. Let *Φ* be a nonzero multiplicative linear functional on *A* and *μ* be a representing measure

for \varPhi , i.e., $\bigl\vert fd\mu=\varPhi(f)$ for all $f\in A,$ concentrated on the strong boundary of *A* (see Gamelin [9, p. 60] for the definition of strong boundary and p. 60 for the existence of such measures). Then $\Gamma(A|_{\text{supp}\mu}) = \text{supp }\mu$. Let *A'* be the uniform closure of $A|_{\text{supp}\mu}$. Then *A'* is a uniform algebra on supp μ and A' and μ satisfy the assumptions in Theorem 2.1.

As consequences of Theorem 2.1 we have

COROLLARY 2.2. Let A, μ be as in Theorem 2.1. Then if $\phi \in C(X)$, $||T_{\phi}|| = ||T_{\phi}||_{sp} = \max{(|\phi(x)|; x \in \Gamma(A))}$.

In particular, if $\phi \in C(X)$ *,* T_{ϕ} *is quasi-nilpotent if and only if* $\phi|_{F(A)} = 0$.

COROLLARY 2.3. Let A, μ be as in Theorem 2.1. Suppose $H^2(\mu) \neq$ $L^2(\mu)$ and every real valued function in $H^2(\mu)$ is a constant function. Then *if* $\{\phi_{ij}, i = 1, 2, \dots, n, j = 1, 2, \dots, m\}$ are functions in $C(X)$ and $\sum_{i=1}^{n} \prod_{j=1}^{m} T_{\phi_{ij}}$ *is compact, the function* $\sum_{i=1}^{n} \prod_{j=1}^{m} \phi_{ij} = 0$ on $\Gamma(A)$. In particular, if $\phi \in C(X)$, then T_{ϕ} is compact if and only if $\phi = 0$ on $\Gamma(A)$.

PROOF. By corollary 1.6 it suffices to show that $\mathcal{T}(C(X))$ is irreducible and $\mathcal{C}(C(X)) \neq \{0\}$. Assume $\mathcal{T}(C(X))$ is not irreducible. Then there exists an orthogonal projection *Q* of $H^2(\mu)$ such that $Q \neq 0$, 1 and $QT_s =$ *T*_{*s*}Q for all *φ* in *A*. Set $g = Q1 \in H^2(\mu)$. Then for any $\varphi \in A$ we have $Q\varphi = Q(T_{\varphi}1) = T_{\varphi}(Q1) = \varphi g$. Hence for any $\varphi, \psi \in A$ we have

 $(g\varphi, \psi) = (Q\varphi, \psi) = (Q^2\varphi, \psi) = (Q\varphi, Q\psi) = (g\varphi, g\psi) = (g|^2\varphi, \psi)$

and hence

$$
\Big\!\{ (g-|g|^{\rm p})\!\!\not{\hspace{-1.2mm}\bar{}\hspace{1pt}}\! \bar{}\hspace{1pt} \psi \, d\mu =0\; .
$$

Since A separates points in X, the set $\{\varphi\psi$; φ , $\psi \in A\}$ is linearly dense in $C(X)$ by the Stone-Weierstrass theorem. Hence we get

$$
g=|g|^2 \quad \mu-\text{a.e.}.
$$

By the assumption g must be constant, and hence either $g = 0$ or $g = 1$. This contradicts $Q \neq 0, 1$. Hence $\mathscr{T}(C(X))$ is irreducible. Thus it is weakly dense in $\mathscr{L}(H^2(\mu))$. Now assume $\mathscr{C}(C(X)) = \{0\}$. Then $\mathscr{T}(C(X))$ is commutative and hence $\mathscr{L}(H^2(\mu))$ is also commutative in this case. This implies dim $H^2(\mu) = 1$ and so $H^2(\mu) = L^2(\mu) = C$, a contradiction. This completes the proof.

If we apply Theorem 2.1 to the Banach algebra $H^{\infty}(\mu)$, we have

THEOREM 2.4. *Let A be a uniform algebra on a compact Hausdorff space X and μ a finite nonnegative regular Borel measure on X. Suppose*

Γ(H°°(μ)) is homeomorphic with ^f(L°°(μ)): the space of all non-zero multiplicative linear functionals on $L^{\infty}(\mu)$ *. Then, there exists a *-homomorphism* σ *from* $\mathcal{T}(L^{\infty}(\mu))$ *onto* $L^{\infty}(\mu)$ such that the short sequence

$$
\{0\} \xrightarrow{\quad \ \ } \mathcal{C}(L^{\infty}(\mu))\xrightarrow{\ i\ \ }\mathcal{J}^{\cdot}(L^{\infty}(\mu))\xrightarrow{\ \ \ \, \sigma\ \ }\ L^{\infty}(\mu)\xrightarrow{\quad \ \ }\{0\}
$$

is exact and $\sigma(T_{\phi}) = \phi$ *for all* $\phi \in L^{\infty}(\mu)$ *, where i is the inclusion map and* $\mathscr{T}(L^{\infty}(\mu))$ *is the C*-algebra generated by the set* ${T_s; \phi \in L^{\infty}(\mu)}$ *and* $\mathscr{C}(L^{\infty}(\mu))$ is the commutator ideal of $\mathscr{T}(L^{\infty}(\mu))$.

PROOF. Let $Y = \mathcal{M}(L^{\infty}(\mu))$. Then, as is well known, $L^{\infty}(\mu) \cong C(Y)$ and μ can be seen as a measure on Y with support $\mu = Y$. Further $H^{\infty}(\mu)$ can be seen as a closed subalgebra of $C(Y)$. The assumption $\Gamma(H^{\infty}(\mu)) = Y$ implies that $H^{\infty}(\mu)$ is a uniform algebra on *Y*. Hence applying Theorem 2.1 and using the isomorphism $L^{\infty}(\mu) \cong C(Y)$ we get the desired conclusion.

We shall state some conditions to satisfy the assumptions in Theorem 2.4 as a lemma.

LEMMA 2.5. *The following statement* (1) *implies* (2). (2), (3), *and* (4) *are equivalent each other.*

(1) The set $\{f = \sum_{\text{finite}} |g_j|; g_j \in H^{\infty}(\mu)\}$ is $L^{\infty}(\mu)$ -norm dense in the *set of positive* $L^{\infty}(\mu)$ *functions.*

(2) $H^{\infty}(\mu)$ separates elements in $\mathcal{M}(L^{\infty}(\mu))$ and $\Gamma(H^{\infty}(\mu)) = \mathcal{M}(L^{\infty}(\mu)).$

(3) $\Gamma(H^{\infty}(\mu)) = \mathscr{M}(L^{\infty}(\mu)).$

 (4) $\Gamma(H^{\infty}(\mu)) \supset \mathscr{M}(L^{\infty}(\mu))|_{H^{\infty}(\mu)}$ and the set $\{\varphi \overline{\psi}; \varphi, \psi \in H^{\infty}(\mu)\}\;$ is *linearly dense in L°°(μ).*

PROOF. (1) \Rightarrow (2). Let $Y = \mathcal{M}(L^{\infty}(\mu))$ and η be the Gelfand transform from $L^{\infty}(\mu)$ onto $C(Y)$. Then η is an isometrical isomorphism. Note also $\alpha(f) = \overline{\alpha(f)}$ and $\alpha(g) \geq 0$ for all $\alpha \in Y$, $f \in L^{\infty}(\mu)$ and $g \in L^{\infty}(\mu)$ with $g \geq 0$, since α is a state. Now let α , $\beta \in Y$ and $\alpha(f) = \beta(f)$ for all $f \in H^{\infty}(\mu)$. Then for any $g \in H^{\infty}(\mu)$ we have $(\alpha(|g|))^2 = \alpha(|g|^2) = \alpha(g\bar{g}) = \alpha(g)\alpha(\bar{g}) =$ $\alpha(g)\alpha(g) = \beta(g)\beta(g) = (\beta(|g|))^{2}$. Since $\alpha(|g|) \geq 0, \beta(|g|) \geq 0$, we get $\alpha(|g|) =$ $\beta(|g|)$. Hence by the assumption and the linearity and continuity of α, β we have $\alpha(f) = \beta(f)$ for all $f \in L^{\infty}(\mu)$ with $f \geq 0$, and hence for all $f \in L^{\infty}(\mu)$. This shows that $H^{\infty}(\mu)$ separates elements in Y. Thus the mapping $\xi: \alpha \in Y \to \alpha|_{H^{\infty}(\mu)}$ is a homeomorphism from *Y* into $\mathscr{M}(H^{\infty}(\mu)).$ Now suppose V is a neighborhood of a point v in Y . By Urysohn's lemma there is an $h \in L^{\infty}(\mu)$ such that $0 \leq \eta(h) \leq 1$, $\eta(h)(v) = 1$, and $\eta(h)(y) = 0$ for $y \in Y \setminus V$. By the assumption there are a finite number of $g_1, \cdots, g_k \in$ $H^{\infty}(\mu)$ such that $||h - \sum_{i=1}^{k} |g_i||_{\infty} < 1/4$. Hence we get

$$
\begin{array}{l} \sum\limits_{j=1}^k\eta(\mid g_j\mid)(v)>3/4\ ,\\ \sum\limits_{j=1}^k\eta(\mid g_j\mid)(y)<1/4\quad \text{for}\quad y\in Y\backslash V\ .\end{array}
$$

Here we can take $\eta(|g_j|)(v) = \eta(g_j)(v) \ge 0$ $(j = 1, \dots, k)$, multiplying each g_i by a constant of modulus 1, if necessary. Hence we have

$$
\eta\Bigl(\sum_{j=1}^k g_j\Bigr)(v)> 3/4\,\, ,\\ \Big|\eta\Bigl(\sum_{j=1}^k g_j\Bigr)(y)\Big|<1/4\quad \text{for}\quad y\in Y\backslash V\,\, .
$$

Thus $\xi(v)$ is a point in $\Gamma(H^{\infty}(\mu))$ and hence we have $\xi(Y) = \Gamma(H^{\infty}(\mu))$. $(2) \rightarrow (4)$. Since $H^{\infty}(\mu)$ separates points in $\Gamma(H^{\infty}(\mu)) = Y$ and the set $\{\varphi \psi; \varphi, \varphi\}$ $\psi \in H^{\infty}(\mu)$ is conjugate closed, that set is linearly dense in $C(Y) = L^{\infty}(\mu)$ by the Stone-Weierstrass theorem. $(4) \rightarrow (3)$. As in the proof of the step $(1) \rightarrow (2)$ the mapping $\xi: \alpha \in Y \rightarrow \alpha|_{H^{\infty}(\mu)}$ is one-to-one. Hence Γ $\xi(Y)$, since $\Gamma(H^{\infty}(\mu)) \supset \xi(Y)$. (3) \Rightarrow (2). Clear, since $H^{\infty}(\mu)$ separates points in $\Gamma(H^{\infty}(\mu)).$

Also in this case we can formulate results similar to Corollaries 2.2 and 2.3.

COROLLARY 2.6. Suppose $\Gamma(H^{\infty}(\mu)) = \mathscr{M}(L^{\infty}(\mu))$. Then $||T_{\phi}||_{\text{sp}} =$ $||T_{\phi}||_{op} = ||\phi||_{\infty}$ for all $\phi \in L^{\infty}(\mu)$. In particular, if $\phi \in L^{\infty}(\mu)$, T_{ϕ} is quasi*nilpotent if and only if* $\phi = 0$.

COROLLARY 2.7. Suppose $\Gamma(H^{\infty}(\mu)) = \mathscr{M}(L^{\infty}(\mu))$ and $H^2(\mu) \neq L^2(\mu)$ and *every real valued function in H²(μ) is constant. Then, if* $\phi \in L^{\infty}(\mu)$ *,* T_{ϕ} *is compact if and only if* $\phi = 0$.

Now as to joint approximate point spectrum for *n*-tuple of functions in *A* or $H^{\infty}(\mu)$ we have the following.

PROPOSITION 2.8. *Let A, μ satisfy the assumptions in Theorem* 2.1 $(resp. Theorem 2.4).$ $\phi_2, \dots, \phi_n \in A$ (resp. $H^{\infty}(\mu)$) we have

$$
\sigma_x(T_{\phi_1}, T_{\phi_2}, \cdots, T_{\phi_n}) = \{(\phi_1(x), \phi_2(x), \cdots, \phi_n(x)); x \in \text{supp } \mu(resp. \mathscr{M}(L^{\infty}(\mu)))\}.
$$

PROOF. Immediate from Theorem 2.1 (resp. Theorem 2.4) and Pro position 1.7.

REMARK, One can prove the above proposition by a result of Zelazko ([18] p. 240 in the proof of theorem), and then can prove Theorem 2.1 and 2.4 using it and the Bunce's theorem. Similarly one can prove Theorem 1.4 combining a result of Zelazko and the Bunce's theorem.

Finally in this section we mention essential spectra of Toeplitz operators.

PROPOSITION 2.9. *Let A, μ satisfy the assumptions in Corollary* 2.3 *(resp. Corollary 2.7). Suppose further* $\mathcal{C}(C(X)) \cap \mathcal{LC}(H^2(\mu)) \neq \{0\}.$ *Then, if* $\phi \in C(X)(resp. L^{\infty}(\mu))$ *, the spectrum* $\sigma(M_{\phi})$ *of* M_{ϕ} *is contained in the essential spectrum* $\sigma_e(T_e)$ *of* T_e *.*

PROOF. In these cases $\mathscr{T}(C(X))$ and $\mathscr{T}(L^{\infty}(\mu))$ are irreducible and $\mathcal{C}(C(X))$ and $\mathcal{C}(L^{\infty}(\mu))$ are non-trivial respectively. Hence the assumption $\mathscr{C}(C(X)) \cap \mathscr{L}(\mathscr{C}(H^2(\mu)) \neq \{0\}$ implies $\mathscr{L}(\mathscr{C}(H^2(\mu)) \subset \mathscr{C}(C(X)) \subset \mathscr{C}(L^{\infty}(\mu)).$ Thus from Theorem 2.1 (resp. Theorem 2.4) it follows that $\sigma(M_e)$ is contained in the essential spectrum (spectrum modulo compact operators) of *T .*

3. Applications. a) Let A be a hypo-Dirichlet algebra on a compact Hausdorff space *X, Φ* be a non-zero multiplicative linear functional, and *μ* be the unique logmodular measure for *Φ.* Then it is known that $\Gamma(H^{\infty}(\mu)) = \mathscr{M}(L^{\infty}(\mu)).$ Hence one can apply Theorem 2.4.

b) Let *D* be a bounded domain in the complex plane whose boundary $X = \partial D$ consists of *n* non-intersecting analytic Jordan curves and let *a* be a point in *D.* Let *A* be the uniform algebra on *X* consisting of continuous functions on \bar{D} which are holomorphic in *D* and let μ be the harmonic measure on *X* with respect to *a* and *D.* Then *A* is a hypo Dirichlet algebra and supp $\mu = X$. Hence by Theorem 2.1 we have $C(X) \cong$ $\mathscr{T}(C(X))/\mathscr{C}(C(X))$. Thus after proving $\mathscr{C}(C(X)) = \mathscr{L}\mathscr{C}(H^2(\mu))$ as in Abrahamse [1, p. 275] one can give a somewhat different proof of the theorem of Abrahamse.

c) Let *Ω* be a relatively compact strongly pseudo-convex domain with smooth boundary *X* in a Stein manifold *M,* and *A* be the uniform closure on *X* of functions holomorphic in a neighborhood of *Ω.* Then *A* is a uniform algebra on X and $\Gamma(A) = X$. Let μ be the canonical measure on *X* induced by a hermitian metric on *M*. Then supp $\mu = X$. Further by a theorem of Folland-Kohn ([8], p. 102, Theorem 5.4.12) one can show $\mathscr{C}(C(X)) \subset \mathscr{L}\mathscr{C}(H^2(\mu))$. Clearly $H^2(\mu) \neq L^2(\mu)$ and every real valued $H^2(\mu)$ function is a constant. Hence $\mathscr{I}(C(X))$ is irreducible and $\mathscr{C}(C(X)) \neq$ {0}, and hence $\mathcal{C}(C(X)) = \mathcal{L}\mathcal{C}(H^2(\mu))$. Now applying Theorem 2.1 we have $\mathscr{T}(C(X))/\mathscr{L}\mathscr{C}(H^2(\mu)) \cong C(X)$. This is also true for some Stein spaces. Similar results are gained if we replace *μ* by the volume form on *Ω.* These are generalizations of the theorem of Venugopalkrishna and Janas. Details will appear elsewhere.

REFERENCES

- [I] M. B. ABRAHAMSE, Toeplitz operators on multiply-connected regions, Amer. J. Math., 96 (1974), 261-297.
- [2] J. BUNCE, The joint spectrum of commuting nonnormal operators, Proc. Amer. Math. Soc, 29 (1971), 499-505.
- [3] L. A. COBURN and R. G. DOUGLAS, C*-algebras of operators on a half-space I, IHES Publ. Math., No. 40 (1971), 59-67.
- [4] J. DIXMIER, Les fonctionelles lineaires sur Γensemble des operateurs bornes d'un espace de Hubert, Ann. of Math., 51 (1950), 387-408.
- [5] J. DIXMIER, Les C*-Algebres et leurs Representations, Gauthier-Villars, Paris, 1964.
- [6] R. G. DOUGLAS, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- [7] R. G. DOUGLAS, Banach Algebra Techniques in the Theory of Toeplitz Operators, CBMS 15, Amer. Math. Soc, Providence, R. I., 1973.
- [8] G. B. FOLLAND and J. J. KOHN, The Neumann Problem for the Cauchy-Riemann Complex, Ann. Math. Studies, Princeton Univ. Press, Princeton, N. J., 1972.
- [9] T. W. GAMELIN, Uniform Algebras, Prentice Hall, Englewood Cliffs, N. J., 1969.
- [10] J. JANAS, Toeplitz operators related to certain domains in $Cⁿ$, Studia Math., 54 (1975), 73-79.
- [II] J. JANAS, Toeplitz operators for a certain class of function algebras, Studia Math., 55 (1975), 157-161.
- [12] R. R, PHELPS, Lectures on Choquet's Theorem, van Nostrand, Princeton, N. J., 1966.
- [13] H. SATO AND K. YABUTA, Toeplitz operators on strongly pseudo-convex domains in Stein spaces, Tόhoku Math. J., 30 (1978), 153-162.
- [14] W. F. STINESPRING, Positive functions on C*-algebras, Proc. Amer. Math. Soc, 6 (1955), 211-216.
- [15] E. L. STOUT, The Theory of Uniform Algebras, Bogden & Quigley, Tarrytown-on-Hudson, New York, 1971.
- [16] U. VENUGOPALKRISHNA, Fredholm operators associated with strongly poseudo-convex do mains in $Cⁿ$, J. Functional Analysis, 9 (1972), 349-372.
- [17] K. YABUTA, A remark to a paper of JANAS: Toeplitz operators related to a certain domains in $Cⁿ$, to appear in Studia Math., 62 (1977).
- [18] W. ZELAZKO, On a problem concerning joint approximate point spectra, Studia Math., 45 (1973), 239-240.

DEPARTMENT OF MATHEMATICS YAMAGATA UNIVERSITY YAMAGATA, JAPAN AND COLLEGE OF TECHNOLOGY KYOTO TECHNICAL UNIVERSITY MATSUGASAKI, KYOTO, JAPAN