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1. Introduction. The purpose of this paper is to investigate the
differential geometric structure of the set of closed geodesies in a compact
locally Riemannian symmetric space with non-positive sectional curvature.
In our argument we shall use largely Morse theory for closed curves
developed by R. S. Palais [7] and the others, which gives a connection
between the set of closed geodesies and the topological structure of the
space of all closed curves.

Let Geo (M) be the set of all closed geodesies in a Riemannian manifold
(M, g), which is the critical point set of the energy function defined on
a Hubert manifold of closed curves (see H. I. Eliasson [2], W. Klingenberg
[4]). Though Geo(Λsf) is of finite dimension, it has, in general, complicated
aspect. But, in our case, we obtain the following result which will be
proved in §4.

THEOREM A. Let (M, g) be a compact locally Riemannian symmetric
space with non-postive sectional curvature. Then, Geo (M) is, in the
sense of R. Bott [1], W. Meyer [5], a disjoint union of finite dimensional
non-degenerate critical manifolds of index 0.

In §5, we shall discuss the existence and uniqueness of maximal
family of closed geodesies. Then Theorem A and the argument in §3
allow us to describe more precisely the differential geometric aspect of
Geo (M).

2. The energy function. Let us begin with a review of Morse theory
for closed curves; the basic reference here is H. I. Eliasson [2],

Let (M, g) be a compact connected, ̂ -dimensional Riemannian manifold
of class C°°, without boundary. As is usual, π: TM-+M will denote its
tangent bundle, and D: Γ(ΓΛf) -> Γ(Γ*ikΓ(x) TM) the covariant differentia-
tion associated with the metric g. We shall use Wι to denote the class
of mappings which have square integrable derivatives. Then Wι(S\ M),
the set of mappings c\ S1 —> M of class WL, is a C°°-Hilbert manifold and
the tangent space at c can be identified with the Hubert space of Wι-
vector fields X: S1^ TM along c, which is denoted by WXc'ΎM). The
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Riemannian metric g of M induces a Riemannian metric < , X on Wι(Sι, M)
which is given by

(X, Y\ = \ g(X(t), Y(t))dt + \ g(-%-X{t), -£-Y{t))dt,
Js1 Js1 \ dt dt /

where D/dt is the covariant derivative along c. With this metric, W1

is a complete Riemannian manifold of class C°°.
On WXS1, M) we consider the energy function:

which is a C°°-function on W\S\ M) and its derivative is

dcE(X) = \ g{% -£x)dt, Xe WXc^TM).
J^1 \ dt dt /

This means that the critical points of E are exactly the closed geodesies
in M. Furthermore, E satisfies the condition (C) of Palais and Smale, cf.
R. S. Palais [7]: Given any sequence ck in TΓXS1, M) such that E(ck) is
bounded and \\dCkE\\ converges to zero, then (ck) possesses a convergent
subsequence.

We denote by R: Γikίcg) ΓMcg) TM-+ TM the curvature tensor on
(M, g) which is given by

R(X, Y)Z = -DXDYZ + DYDXZ + DίX)JΊZ .

We define an operator Rc;W
1(c-1TM)~*Wί(c~iTM) by

R.(X) = R(^L, X)^£. for ceC"(S\M).
V a t / a t

Then the Hessian of E at a critial point c of E is given by

H(E)C(X, Y) - ί oi^rX, -^rY)te - ί 9&JLX), Y)dt .
hi \ dt dt / J^1

A C°°-field X along a geodesic c is called a Jacobi field, iff it satisfies
the differential equation:

The space of Jacobi fields along c will be denoted by Jc. Then we put

Nullity (c) = dim Jc = dim Ker (ψ- + Rc) (< <~) .
\df /

Index (c) - dim Σ Ker f— + Rc + λ) (< oo) .
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Finally, we denote by Geo (M) the set of closed geodesies in Λf.

3. Locally Riemannian symmetric space. In this section we assume
the basic facts on symmetric spaces (see S. Helgason [3]). In what follows
(Mt g) is a compact locally Riemannian symmetric space with non-positive
sectional curvature, that is to say, each point x e M has an open neigh-
borhood on which the geodesic symmetry is an isometry, and

g(R(Xf Y)Xt Y) ^ 0 for X, Ye TM.

ώ;M~+M will denote its universal covering and Exp: TM-* M (resp.
Exp: TM—+M) the exponential mapping of M (resp. of M). Then the
following diagram is commutative:

H
Since M is a globally Riemannian symmetric space with non-positive

sectional curvature, the largest connected group G of isometries of M
operates transitively on M and for each x e M the restriction Exp,.: TXM^>
M is a diffeomorphism. Moreover

Exp dg(X) - g E^p (X) for geG,XeTM.

Now let c: Sι ~*Λf be a geodesic, and c:R^>M a lifting of c. We
set c(0) = 0. Then the Cartan involution Ad (s) of G where s is the
symmetry of M at 0 yields the decomposition of Lie algebra g of G:

g = k + p

satisfying [k, p] czp and [p, p] c k, where A is the Lie algebra correspond-
ing to the isotropy subgroup K = {geG; gθ = 0}. p can be naturally
identified with TQM and for X ep we have

X = exp O

where exp: g —> G is the exponential mapping of Lie group G. Further,
for X, Yep, d(expY)X is the parallel translate of X along the geodesic
Exp£Y(0^ ί ^ 1).

LEMMA 1. Let X be a Jacobί field along c. Then X is parallel (i.e.,
(D/dt)X - 0) and g(R(c, X)δ, X) = 0 (δ = de/dt).

PROOF. By the definition of Jacobi field, we have
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gί^jrX, -jrX)dt - \ g(R(ό, X)c, X)dt = 0 .
\ at at / Js1

Since M has non-positive sectional curvature, the second integrand is
a non-positive function, so

ί g(^-X, -£-x)dt = 0, ( g(R(ό, X)c, X)dt = 0 .
JSX \ at at / Js1

dt

This implies that (D/dt)X - 0 and g(R(c, X)c, X) - 0.

LEMMA 2. Let X be a Jacobi field along e, and Xo be a (unique)
tangent vector in T0M(—p) satisfying dώ(X0) — X(0). Then

[ίf(0), Xo] = 0 .

PROOF. We denote by g (resp. R) the Riemannian metric of M (resp.
curvature tensor). The standard symmetric space theory says

RQ(Xy Y)Z - [[X, Y], Z] for X, Y, Z ep ,

so that

0 -

Thus it is enough to show that gQ(R(X, Y)X, Y) = 0 if and only if
[X, Y] — 0. Let b denote the endomorphism of p given by

g^OJi.f I ) — £>\Λ., X ) , JLf X t; P ,

B denoting the Killing form of g. Since go(bX, Y) = go(X, bY), the
eigenvalues βlf , βk of b are non-negative. Let pLt * -, pk be the corre-
sponding eigenspaces of b. Then it is easy to see that if i Φ j , the spaces
Pt and pά are orthogonal with respect to B as well as gOf [A:, pt] c />£ and
\Pif PJ] = 0. Further if ft - 0, then B(pi9 pt) and [i>£, p,] = 0. Let Xif

Yi(l ^ i ^ k) be the components of X and Y, respectively, in the eigen-
spaces Pi. Then

[X, Γ] = Σ[X i f Y (], [[X,, Y(],X] =

so

' Y)X Y) =

= Σ

= Σ 4- B ([ y« γ*l lχ*> γ&
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Since B is strictly negative definite on k, we have

go(R(X, Y)Xf Y) = 0 iff [Xt, Yi] - 0 for any i .

This proves our assertion.

LEMMA 3. Let X be a Jacobi field along c. Then the mapping cx:
Sι —> M given by cx(t) — Expc U ) X(t) is a geodesic in M.

PROOF. Let X\R-^ TM be a lifting of X which is a filed along c.
Then the mapping cx\R-+M defined by cx(t) = Exp^(ί)X(έ) is a lifting of
cx. We shall show that cx is a geodesic in M For this porpose, we set

c(t) = Exp tY = exp tY-0 , Yep .

Since X is parallel along c,

X(t) = d(exptY)X(0) .

Thus

cx(t) -

= expέFexpX(0) 0

- exp X(0) exp έΓ O - exp

where we have used the fact [X(0), Y] = 0. This implies that ex is a
geodesic.

4. The space of closed geodesies. Again, let (M, g) be a compact
locally Riemannian symmetric space with non-positive sectional curvature.
The notations of the preceding section will be preserved.

We consider the mapping

μc:Jc^W\S\M)

defined by μc(X) = cx, which is of class C°° as is easily checked. Moreover,
by Lemma 3, μc(Jc) c Geo (M).

LEMMA 4. The differential of Jΰ at 0 (zero section of Γ(c~ιTM))
coincides with the injection: JcczW1(c~1TM). Here Jc is regarded as
a manifold in the usual way and whose tangent space at 0 is identified
with Jc itself

PROOF. For Xe TOJC( = JC), the differential is given by

d ddoμc(X)(s) = Ji- μc(tX)(s) - -£-
dt to dt

Exp0 ( ί ) tX(s) = X(s) ,
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where we have used that the differential of Expj,: TPM—*M at 0 is the
identity mapping. Thus doμc is the injection: ^(zWXc^TM).

PROPOSITION. Geo (M) is a finite dimensional, closed C^-submanifold
in Wι(Sι, M) {with many components). Moreover, μc: Jc~*Geo(M) yields
a local diffeomorphism in a neighborhood of 0.

This follows from the implicit function theorem, in view of Lemma
4. For the sake of completeness we shall prove this in appendix.

PROOF OF THEOREM A. By assumption of sectional curvature

H(E)e(X, X) = \sig((j^ + R.)X, X)dt ί 0 ,

so Index (c) = 0 for each geodesic c. Further

dim Tc Geo (M) = dim Jc = Nullity (c)

which implies that each component of Geo (M) is a non-degenerate, q.e.d.
5. Family of closed geodesic. In this section, we shall investigate

the differential geometric structure of Geo (M), by using the result of §4.
Generally, by a C°°-family of closed geodesies in a Riemannian manifold

(M, g) we mean a connected C°°-manifold F with a O-mapping φ: F x S 1 ^
M such that for each point p of F the mapping φp;S

ι-+M given by
φp(t) — φ(p9 t) is a geodesic in M. For instance, a geodesic, c\ Sι ~>M
always yields a one-parameter family ψ\ S1 x S1 —> M given by <p(s, t) =
c(s + t).

In the following we fix a geodesic c: S1 —> M. We are interested in
how we can so to speak deform c. To be more precise, by "deforming
c" we mean a connected C^-manifold F together with a reference point

p0 and a C°°-f amily of closed geodesic in M: F x Sι^M with φPo = c.
Furthermore, a C°°-family (F, p0) of deformations of c will be called
maximal if for any C°°-family (F\ pΌ) of deformations of c there exists
a unique C°°-mapping μ: (F'f p'0)—>(F, p) such that φ-(μ x id) — ψf. By
the definition of maximal family, if it exists, it is uniquely determined
up to diffeomorphism. In general, there does not always exist a maxima]
family of deformations of a given one.

In our case, we have the following results.

THEOREM B. Let (M, g) be a compact locally Riemannian symmetric
space with non-positive sectional curvature. Then, for any closed geodesic
c0 in M. there exists a C°°-maximal family φ: (F, p0) x S1 —> M of defor-
mations of c with the following properties:
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( i ) For any teS\ the mapping φt:F-^M defined by φι{p) —
φ(p, t) is an immersion.

(ii) The induced metric (φ*)*g of F does not depend on teS1, and
with respect to this metric, F is a compact locally Riemannian symmetric
space with non-positive sectional curvature. Further', φ% is a totally
geodesic mapping.

(iii) If a closed geodesic cf in M is homotopic to c0, then there exists
a unique point p of F with ψv = c\

(iv) Let [c0] e π^M, c9(0)) be the homotopy class determined by c0. Then
the fundamental group of F is isomorphic to the centralizer of [c0].
More precisely, the induced homomorphism φ\\ πx(F9 p0) —> 7CX(M, c0(0)) is
injective and the image of φ\ is equal to {μeπ,(M, c0(0)); μ[c0] — [co]μ}.

PROOF. Let F be the connected component of Geo (M) containing e
which is compact in view of the condition (C). Let φ: F x Sι—>M be
the mapping defined by the evaluation: (c, t) \-+ c(ί). Since

φ(tf μ£X)) = Expc(ί) X(t) for XeJe9

F gives a C°°-family of deformations of c0. Maximality of F follows at
once from the definition.

We identify Jc with the tangent space TCF via doμc. Then the differen-
tial of φι\ F-* M at c is given by

dcφ\X) - X{t)

which is injective, so that φt is an immersion ((i) of Theorem). Further,

ίφTgc(Xf Y) = gcU){dφ\X), dΨ\Y)) = gc{t){X(t\ Y(t)) for X, YeJc .

Since X, Y are parallel, the function gc[t){X(t), Y{t)) on Sι is constant, so
the metric {φ^g does not depend on teS1.

To prove that φ* is totally geodesic, let Nc be a normal neighborhood
of c in F such that the restriction φu.Nc-+M is an embedding. Let v
be a vector of Tc(t)M which is tangent to φ\Nc). Then there exists a
vector Xe TCF such that v = (φ%X and

Exp sv = Expc U ) s(<p*)*X = Expc { f ) sX(t) = φ(t, μJβX)) ,

which is contained in φ%Nc) if | s | is taken small enough. This implies
that the curve given by s —> μc(sX) is a geodesic in F and φ% is totally
geodesic. From these arguments, it follows immediately that F is locally
symmetric and has non-positive sectional curvature.

The proof of (iii), (iv) is broken up into a few lemmas.

LEMMA 5. The injection: Geo(ilί) c W\S\ M) is a homotopy eqiva-
lence.
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In view of Theorem A, we can apply the results of W. Meyer [5] to
the energy function. Our assertion follows from that each component
of Geo (M) is of index 0.

In particular, each component of W\S\ M) contains a unique com-
ponent of Geo (M). On the other hand, we know, from a general
theorem of Palais [8], that the inclusion W\S\ M) c C\S\ M) (the space
of all continuous mappings of S1 into M) is a homotopy equivalence.
This proves (iii).

LEMMA 6. φ\: π^F, p0) ~* π^M, co(O)) is injective.

It is not hard to see that a lifting of φ° to the universal covering:
F —>M is injective, from which follows lemma.

Now, let C(F) be the component of C°(S\ M) containing Ff and let
Φ: C(F) —* M be the mapping given by Φ(c) = c(0). Then the diagram

F a-—>C(F)

\ /

M

is commutative. For (iv), it is enough to prove the following lemma,
because the inclusion F<zC(F) is a homotopy equivalence as we remarked
above.

LEMMA 7. The image of the induced homomorphism Φf π^CiF), c0)—•
f, co(O)) is the centralizer of [c0].

PROOF. It is known (J. C. Moore [6]) that the evaluation mapping
Φ: C°(S\ M) —> M is a Serre fib ration (namely, it has a structure to insure
the covering homotopy theorem for cells). Thus we have an exact
sequence associated with the fibering:

ι, M), c0) ί t πx{M, c,(0)) -1 πQ(Φ~\c0(0)), e0)

Note π^CXS1, M), c0) = ^(C(F)f c0) and we can identify πo(φ-\co(O)), c0) with
f, c(0)) using the fact that the universal covering M is contractible.

Then Δ is given by Δ(μ) = μOoJμΛ hence we obtain

Im Φ, = A-\[c,}) = {μe πx(M, co(O)); μ[c^μ-' = [c0]} . q.e.d.

6. Appendix. The appendix will give a proof of Proposition in §4.
First we prove the following lemma.

LEMMA. Let X ane Y be C^-Hilbert manifold, Xx (resp. FJ a C°°-
closed submanifold of X (resp.Y), and f:X—»Y a C^-mapping with
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F,. Suppose that for xQeXlf T f ^ Y ^ j
THXX and Im dXQf is a closed subspace of TfiXQ)Y. Then, X1 is a neigh-
borhood of x0 in f~\Yι)f or equivalently (Xίf x0) = (f^XY^, x0) &s germs
of subset at x0.

PROOF. We put Z = Im d^f/T/^^Y^ Without loss of generality we
can assume that there exists a C°°-inapping p: F—»Z such that p{Y±) = 0
and the differential df{XQ)p: Im dXQf-*Z coincides with the natural projection,
because the statement of lemma is local in its nature. Then, the com-

/ v
position: X—>F—>Z is of maximal rank, namely dXo(pof): TXQX-+Z is
surjective. Hence the inverse image (p°f)~\0) gives a germ of closed
submanifold at x0 with the tangent space TXo(p ° fy'iO) ^ Ker dXQ(p°f).
On the other hand

« / Γ ( K e r dfiXQ)p) - « / r ( I m dXQf ΓΊ Ker df^p)

= (d.0/Γ1(Γ/(,0)Yί)

T V

According to the inverse function theorem, Xγ is a neighborhood of x0

in(pof)-\Q)m Since ί c Γ ^ F J c ^ o / ) - ^ ) , it follows that (f^m, xo) =
(Xlf xQ). q.e.d.

We now return to the proof of proposition. Let Uc be an open
neighborhood of 0 in Je such that the restriction μc:Uc—>W1(Sί,M) is
injective. We shall show that μ(Uc) contains an open neighborhood of e
in Geo (ikf). For this, we apply the above lemma as

X = an open subset of WXS1, M) in which μ(Ue) is closed ,

χt = μ(Uc\ Y - Γ*X, F ^ I c Γ*X (as zero section)

/ = dE:X->T*X, xo = c.

Notice that for xeX(a T*X) there exists a canonical identification:

Γ,T*X- T*X@T.X.

In order to check that the assumption of Lemma A is satisfied in our
situation, it suffices to prove:

LEMMA B. The differential of f — dE at x0 is given by

dxof(v) = (H(v)t v) e Γ ; i 0 TXQX (v e TXoX) ,

where H\ TXoX —• T*QX is a homomorphism corresponding to the Hessian
H(E)XQ via the identification Kom(TXoX, T^X)^ T£QX(g) T?0X. Further-
more, Im H is a closed subspace in T*[X.
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The first statement follows by direct computation. For the second,
we identify T*0X with TX(jX using the Riemann metric < , \ . Then
H: TX0X-+ TX0X is given by

which is the self-adjoint Fredholm operator. In particular, Im H is
closed. q.e.d.
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