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1. Introduction. This paper is motivated by the data of numerical
computing experiments by Professor Y. Ueda and his colleagues. In the
study of phase locked loops which are widely used in communication systems
also, in order to utilize the frequency range effectively, it has become
necessary to consider phase locked loops acting in the high frequency range.
In this ease, it is necessary to analyze the acting principles of the sys-
tem with time delays, since we cannot ignore influences to the system
of time delays which arise in the parts of the system. In their studies
for this purpose, the following difference-differential equation arises:

(1.1) 0ty =0 —sin(@(zc — L)), 7=0,0=0,L>0.

Roughly speaking, the variables in (1.1) are related with the model in
the following way: ¢ is the time, 6(zr) denotes the phase difference at
time 7, ¢ is the difference between signal frequency and free-running
frequency of the voltage-controlled oscillator, and L is the sum of the
time delays which arise in the parts of the system. In the case where
0<6=1, (1.1) has trivial periodic solutions, namely, the constant func-
tions 0(t) = ¢, 7 = 0, where « is a number such that sina = 6. In their
experiments, they observed the existence of a nontrivial periodic solu-
tion for 6 = 0.8 and L = 2, a periodic solution of the second kind for
0 = 0.8 and L = 2, and solutions which approach asymptotically to a con-
stant solution. Thus there arise the following problems. Find the rela-
tion between 6 and L so that (1.1) has periodic solutions, or a constant
solution is uniformly asymptotically stable. We shall give sufficient con-
ditions for these problems in Sections 4, 7, and 9.

There are various methods and many results for the existence of
periodic solutions of functional differential equations [cf. 1,2, 3, 4, 5].
We shall show the existence of periodic solutions of a more general
system than (1.1) by using a fixed point theorem for the truncated cones
of Krasnosel’skii in [2] (see Section 8). Particularly, for the existence of
a periodic solution of the second kind of (1.1), we consider also the case
where 6 > 1 (see Section 8). On the other hand, there are many results



14 T. FURUMOCHI

on the stability of solutions of functional differential equations [cf. 6, 7].
Using these results, in Section 6, we shall discuss the uniform asymptotic
stability of a constant solution, the nonexistence of periodic solutions,
and the nonexistence of periodic solutions of the second kind. Moreover,
we shall show another example in Section 5.

2. Notations and assumptions. For a given & > 0, C denotes the
space of continuous functions mapping the interval [—#h, 0] into R, and
for € C, |¢| = SUD_,<0<, |#(0)]. For any continuous function xz(u) defined
on —h=u<A, A>0, and any fixed ¢, 0 <t < A, the symbol z, will
denote the restriction of x(w) to the interval [t — &, t], i.e., z, is an ele-
ment of C defined by x,(0) = z(t + 6), —h <0 < 0.

Consider a nonlinear one-dimensional differential-delay equation

(2.1) &) = f(x(t —h), =0,

where f(x) is assumed to satisfy the following conditions.

(H1) For X, > A4, >0, X,>A4,>0, B,>0, and B, > 0, f(x) is de-
fined and continuous for — X, <z < X,, f(x) <0 for x -0, f(—A4) = B,
f(Az) = —Bz and _Bz = f(w) = Bl for —X1 == Xz-

(H2) —(BJ/Ayz < f(x) = p(x) for —A, =x <0, and p(x) = f(x) =
—(B,/Ayx for 0 = x < A,, where p(x) is a nonincreasing continuous func-
tion defined for — A4, < x < A, and satisfies p(—A4,) = B, and p(— A4,) = — B,.

(H8) f(x) = —Lx + M(x) for L > 0, where M(x) is the higher order
part and satisfies |M(x) — M(y)| = p(o)|z —y| for —X, =2z, y =< X,
||, |ly| < o and p(o) is continuous and nondecreasing with 2(0) = 0.

3. Existence of nontrivial periodic solutions. In this section we
shall discuss the existence of nontrivial periodic solutions of (2.1) for
—X, <z < X,. For any k, such that max (4,/X, 4,/X,) <k, <1, we
define the set K by

8.1) K=1{peC:¢(—h) =0, ¢(0) is nondecreasing on [ —h, 0], 6(0) < k, X,} .

LEMmMA 3.1. (i) Let h = A,/B; be fized. For the positive number
v = min, <,<p,x, | f(@)|, let m be the smallest integer such that m =
(X, — A)/vh. If ¢c K\{0}, then x(t) = x(t, ) has its first zero point t,
such that 0 < t, < (m + 3)h, and it is simple.
Az
(ii) If A/B, s h<(4,+kX)/B,+ (1/B§)S p(s)ds and ¢ € K\{0}, then
0
z(t) has a minimal value at the time t, + h and x(t, + h) = —k,X,.
(iii) Let h satisfy the condition in (ii), and for the positive number
W=Mmin_, y c,<_4 | f(@)], let n be the smallest integer such that n =
(kb X, — A)Jwh. If ¢e K\{0}, then x(t) has its second zero till the time
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t, + (n + 4)h.

ProOF. (i) First, we consider the case A4, < ¢(0) = k,X,. In this
case, x(t) is nonincreasing for ¢t = 0 and #(¢t) £ —v for £ = h as long as
x(t) > A,. Hence if z(h) > A4,, we have

2(t) L xh) — (&t — h)v, t=h.

Now assume that z(¢) does not reach A, till the time (m + 1)h. Then
we obtain

x((m + Dh) < xth) —moh S xth) — X, + A, < A, .

This contradiction shows that x(t) reaches A, till the time (m + 1)h. Let
t, be the first time such that x(¢) = 4,. Then z(¢) is nonincreasing on
[t, t;, + h]. It remains only to show that x(f{) has a zero point till the
time ¢, + 2h. If we assume that (t) has no zero point in [¢, ¢, + h],
then we have 0 < a(t, + h) £ x(t) for t, <t <t, + h. Thus we obtain
ot + 20) = att, -+ b + | fGals — s

1

31
t+

< a(t, + h) + S t’{-%m — 1) }ds

gx(t,+h)(1—%h)§0,

and hence z(¢) has a zero point till the time (m + 3)h. In the second
case 0 < ¢(0) < A,, we can apply the same argument for ¢, = 0. It is

clear that the zero is simple.
(ii) It is clear that x(¢) attains a minimal value at the time ¢, + h.

Let y € C be a function such that

) _Bg, —%:<0§0,
x =
4, —hso<-t
Since p(x) is nonincreasing on [0, 4,] and p(4,) = — B,, we have

Sa(t, + 0)) =z p(a(t, + 0)) =z p(y(0)) for all 6e[—h, 0],

and hence the minimal value is estimated as follows.

oty =z | fatty+ sz | pends + || plutsds
(3.2) oA B 1
= A, — Dyh + E

2

SA2p(s)ds > _LX,.
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Thus (ii) is true.

(iii) We first show that x(f) reaches — A, till the time ¢, + (n + 2)h
even if —kX Za(t, +h) < —A,. x(t) is increasing for ¢t =t¢, + h as
long as x(t — h) < 0. If we assume that x(¢, + 2h) < —A4,, then —k X, <
x(t —h) < —A, and 4(t) = w for t = ¢, + 2k as long as z(f) < —A4,, and
hence we obtain

2(t) = x(ty, + 2h) + (& — ¢, — 2h)w = — kX, + & — t, — 2h)w
as long as x(t) < —A,. Therefore, if x(¢, + (v + 2)h) < —A,, we have
2, +(n + 2)h) = —kX, + nwh = —A4, .

This contradiction shows that x(t) reaches — A, till the time ¢, + (n + 2)h
even if —kX Zat, +h)< —A,. Let t,elt, +h,t -+ (n+ 2h] be a
number such that —A4, < x(¢,) < 0. If x(f) does not reach the t-axis
before the time ¢, + 2h, then x(t) is increasing on [%,, ¢, + k] and we have

(b, + 2h) = x(ty + h) + Sf”f(x(g))ds

> a(t, + h) + S::M{—%x(s)}ds = a(t, + m(1 — %h) >0.

2
Since this is a contradiction, «z(t) reaches the t-axis till the time ¢, +
(n + 4)h again,

LEMMA 8.2. Suppose that h satisfies condition in (i) of Lemma 3.1,
and 0 <k, <k <1.

(i) If AJB, < (A + kX)/B, — 1/B? S p(s)ds = hy, b < by and e
K\{0}, then the maximal value of x(t) is fn,:)%11 greater than k.X,.

(ii) Suppose that x(t, + h) = —pu> —A, and A,/B, < (¢t + k,X,)]a—
1/a? SO p(8)ds = h, where @ = MaX_,<,< f(x). If A)/B, < h =< h,, then the
maxi;ﬁal values of x(t) are not greater than k,X,.

(iii) Let x(t) attain its first maximal value at the time (g) > 0.
Then we have 2k < t(¢) < (m + n + 8)h and .4 € K.

PrROOF. (i) Since h satisfies the condition in (ii) of Lemma 3.1, the
minimal value of z(¢) is estimated by (8.1). Let ¢, = inf {¢: ¢ > &, x(¢) = 0}.
As we have A,/B, = A,/B, by assumption (H2), we consider the function

B, —‘%<a§o.
11’1(0)= ' A
'—Au —héﬁé——l,

B,
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Since p(x) is nonincreasing on [—A,, 0] and p(—A4,) = B,, we have
St + 0) < p(a(t, + 0)) < p(y,(0)) for all de[—h, 0].
This yields the following estimate of the maximal value.
0 1/By
st + = | fett +onds < | plnnds + |

(3.3) Lo
SBh—A+1 S o(s)ds < kX, .
A

1 YA

/Blp(«lfl(S))ds

A

(ii) As we have 4,/B, = p/a by assumption (H2), we consider the
function

'9’/'2(0) =

Since p,(x) = min (p(x), @) is nonincreasing on [—g, 0] and p,(—p) = e is
its maximum value, we obtain
fla(t, + 0) = py(a(t, + 0)) < p(¥:(0)) for all fe[—h, 0],
which implies
0 —~u/a 0
ot + 0 < | fatt,+ o)ds = | pinds + | prio)ds

(3.4) 1t
§ah—#+—8 p(8)ds < kX, .
a J-n

(iii) From Lemma 3.1, we have 2h < 7(¢) < (m + n» + 8)h. More-
over, z., is clearly an element of K, and thus the other extremum
values are similarly estimated.

DEFINITION 3.1. Let E be a Banach space. A set KC E is a cone if
(i) K is closed and convex,
(ii) if ¢ is in K, then Mgec K, N = 0,
(iii) for any ¢ + 0 in E, both ¢ and —¢ cannot belong to K.
A truncated cone is the intersection of a cone with a convex neighbor-
hood of zero. The neighborhood does not need to be closed.

The set K in (3.1) cosidered above is a truncated cone. For ge¢
K\{0}, define the mapping A by
Ag = To4(9) -

Then, under the assumptions in Lemma 3.2, A is a positive mapping rela-
tive to K, that is, A(K) < K. Since we have 2n < 7(¢) < (m + n + 8)h,
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define 7(0) = lim sup,_,7(¢). Then 7: K—|[0, =) takes closed bounded sets
into bounded sets. Furthermore, since (¢, ¢) is continuous in (¢, ¢), 7(4)
is continuous on K\{0}. On the other hand, A takes bounded sets into
bounded sets because |Ag| < k,X,. Moreover, the following lemmas hold.

LEMMA 3.3. If the conditions in Lemma 3.2 hold and if G is an
open bounded meighborhood of zero, then

inf [Ag]>0.

$eaGNK

Proor. If inf,.,cqx|A¢| = 0, then there is a sequence {¢,} such that
$,€0G N K and | A¢,| —0 as n— . Taking a subsequence if necessary,
we can assume that 7(4,)—7, as n— o and 2k <7,< . Since {z(¢, ¢,)}
is uniformly bounded and equicontinuous on [0, 7,], we can choose a sub-
sequence of the {x(¢, ¢,)} so that (¢, ¢,) — %(¢) uniformly for ¢¢€|0, 7,] as
#— oo. This y(t) must correspond to a solution of (2.1) on [k, 7). It
is clear from (2.1) that y(¢) =0, 0 <t < 7,. Consequently ¢,(0)— 0 as
n — co and the monotonicity of the ¢, implies that ¢,—0 as n — co.
But this is impossible since there is a » > 0 such that |¢,| = 7. This
contradiction proves the lemma.

LEMMA 3.4. If h > w/2L, there is a zero . = p + 10 of
(3.5) et = —L
with p >0, 0 < oh < 7.

For the proof, refer to Lemma 29.4 in [8].

The linear part of (2.1) is
(3.6) #(t) = —Lxz(t — h), t=0,

and (3.5) is the characteristic equation of (3.6). Let (A, X,) be the char-
acteristic roots of (3.5) whose existence was guaranteed by Lemma 3.4.
We decompose C by Ay, Ao) a8 C = U@ S, dim U = 2, and denote by 17,
the projection operator onto U.

LeMMmA 3.5. If h < /2L, then for any &, 0 < e =< kX,, we have
inf |I,6] >0,

9edB(e)NK
where B(e) = {¢€C: |p] < &}
PROOF. Let ¢(6) = ¢/(L + hry), —h <0 <0, w(s) = ¢, 0<s =< h,

® = (g, §), and ¥ = (g) The adjoint equation for (3.6) is

y(¢) = Lyt + h)
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and the bilinear form is given by
(9, 8) = HOH0) — L (s + Wp(o)ds .

We have (¥, @) = identity, and I, = @, &) for any £eC. If thereisa
sequence {¢,} in dB(¢) N K such that 7,4, — 0 as % — <, then necessarily
(¥, ¢,)] —0 as m— co. This implies that (v, 4,)— 0 as n— . Since
8.(0) = ¢, if we let R, and I, be the real and imaginary parts of (v, 8,),
respectively, then

R,—¢— L SO h«p'n(s)e*"o‘”’” cos o,(s + h)ds,
h

I,=1L SO h¢n(8)‘3_”°“+h) sinoy(s + h)ds = LS @.(8 — h)e ° sin g,sds .
— 0

Since 0 < oh <7 and I,—0 as n— o, it follows that ¢,(0)— 0 as n— co
for —h £6 < 0. Thus R,—¢ as n— . This contradiction yields the

desired inequality.

We are now ready to show the existence of a nontrivial periodic
solution of (2.1) for — X, < x < X, by using the following theorem, which
is found in [8].

Suppose K is a cone (or a truncated cone) such that for any ¢¢€ K,
there is a time 7(¢) > 0 such that z.,(¢)e K. If we let Ag = x.,(9),
s K, then A: K— K is a positive operator.

THEOREM 3.1. Suppose A is the same as defined above, A 1is con-
tinuwous, (¢) = h, pc K, v and A take closed bounded sets into bounded

sets and the following conditions are satisfied:
(I) For any open bounded set G < C, 0€@G,

inf |Ag| > 0.

$edGNK

(I1) If F 1is the set of positive etgenvectors of A, there is an M >0
such that ¢ F, |¢| = M, A¢ = g imply p < 1.
(II1) For any & > 0,

inf [II.¢|>0.

$edB(e)NK
Uuder these conditions, there exists a montrivial periodic solution of
(2.1) with period greater than h. In (II), ¢ + 0 is called a positive
eigenvector if Ag = pg for a positive operator A.

Among the assumptions of Theorem 3.1, the continuity of A is given
by the continuity of solutions for the initial conditions. Also we have
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shown that 7 and A take closed bounded sets into bounded sets. Fur-
thermore, under the conditions of Lemma 3.2, (I) holds by Lemma 3.3,
(IT) holds for M > k,X, by Lemma 3.2, and (III) also holds by Lemma
3.5. Hence we have the following theorem.

THEOREM 3.2. Under the conditions of Lemma 3.2, there exists a
nontrivial periodic solution of (2.1) for —X, < x < X,, and its period
is greater than 2h and less than (m + n + 8)h.

4. The equation #(t) = 0 — sin (u(t — h)). Consider the difference-
differential equation

(4.1) w(t) = 0 — sin (u(t — h)) , t=0, 0=0<1.

Let a==sin"'d. Then (4.1) has a constant solution u(t) = . Substituting
x(t) = u(t) — a, t = —h into (4.1), we have an equivalent equation

(4.2) () =0 — sin(x(t — h) + @), t=0, 0o0<1,

which has the zero solution «(t) = 0. (4.2) is a special case of (2.1) where
f(x) =6 — sin(z + &) and f(x) satisfies (H1) for X, =7 + 2, X, =7 —
20, A, =7n/2+a, A,=7/2—a, B,=1+0, B,=1—4. Let

1+59 w%“a§x<—a_1y
—rx+o0—a, —a—1=Zz<—a,
_ﬁ_x, _a§x<0’
p(x) = a
VI=—oz, 0< 1-0
¢ TSVT=&
1—94 T
é—1, —_— Lt — .
vi—e ooz

Then f(x) satisfies (H2) for this p(x). Also f(x) satisfies (H3) for L =
v1—20% For k, 1/2<k <1, we define the following truncated cone
K by

K={pecC:¢(—h)=0, ¢(0) is nondecreasing on [ —h, 0], 4(0) < (7 — 2a)k,} .
LEmMMA 4.1. Let

W — 22) _ (37 — 1da) + 16(3% — W0@)sina o, - 37
e — 8 12842 14
19(7 — 2a) Mg @

16a ’ 14 = 2
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where a=sin a+cos (Ta/4+7n/8), and let G(a)=min (3(x—2a)/8(1—sina)+
1/(2cos o), F(@)) and H(a)=max (7 —2a)/(1+sina)+ (7 +2a—2 cos @)/2(1+
sin ), G(). If (m—2a)/2(1—6)<h< H(c), then there exist k,, k, such that
12 <k, <k, <1, and for all e K\{0}, the minimal values of x(t) are
greater than —(w + 2a)k,, and the maximal values of x(t) are less than
(mr — 2a)k,. Furthermore, we have 2h < 7(¢) < (m + n + 8)h and . € K.

Proor. First of all, we prove the following inequality

(4.3) né(”_za)V1_52<4, 0sa<X,
1—-946 2

where the equality holds only if @ =0. Put k(@)= (7—2a)cos a/(1 — sin @),
0<a<mn/2. Then we have k'(a) = (x — 2a — 2cos @)/(1L — sina)* > 0,
k(0) =z, lim,_..,, , k() = 4, and consequently (4.3).

Next, we prove (7—2a)/2(1—6)< H(e). Let g(@)=3(w—2a)/8(1—sin @)+
1/(2 cos @) and k(@) = (x — 2a)/(1 + sin @) + (7 + 2a — 2 cos a)/2(1 + sin a)?,
0 < a < n/2. Since g(e) is increasing and h(a) is decreasing and since
9(7/8) < h(x/8), we have G(a) < g(a) < Ma) < H(a) for 0 £ ¢ =< x/8. On
the other hand, we obtain (7 - 2a)/2(1 — 6) < H(«) for 0 < a < 7/8 since
we have g(a) > (r — 2a)/2(1 — 6) by (4.3). It remains only to show the
following two inequalities

1 (37w — 1l4a)* + 16(87w — 10@) sinax _ 11 =« 3

4.4 + =, <a<l—,
(4.4) 2(L — ) 1280 (mw — 2x) < 8« 8 14
. 3 T

4.5) 8 19 19, 2L <<=,
(4.5) 8a + 19sina < 4 < 5

Let g(a) = sin @ + cos ((Ta/4) + (7/8)) = ¢ and r(a) = (sin a)/(x — 2a),
0<a<(m/2). Since q'(r/8)< 0 and ¢"'(a)= —sina— (49/16) cos ((Te/4) + (7/8)) <0
for (z/8) < a < (3m/14), q(a) is decreasing for (7/8) < & < (3n/14). Thus
we have a = ¢(x/6) = 0.758 for (n/8) < @ < (/6), and consequently 128a* =
73.544. Moreover, we obtain the following inequality.

(B — Me) (37 140)(7 — —4F 2T - 6545 for L < a
T — 2 = (37 a)( 7r—2a><12<' Or8<

IA
o)A

In addition, we have the estimate

16(3 — 102) sin o _ 16<5 _ 2w ) < 23.673
T — 2 - T - 20 o

since 7'(a) = (r — 2a) cos @ + 2sin @)/(r — 2a)* > 0. By these estimates,
the second term in the left-hand side of (4.4) is less than 0.411. From
this and 1/2(1 — 6) < 1, we can conclude that the left-hand side of (4.4)
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is less than 1.411. For the right-hand side of (4.4), we obtain (11/8a) >
1.608 since @ < p(7/8) < 0.855. Thus (4.4) holds for (n/8) < a < (/6).
Similarly we can prove (4.4) for the cases (n/6) < a@ < (n/5) and (z/5) <
a < (3n/14).

Now we prove (4.5). Let s(a) = 27sina + 8 cos (Ta/4) + (x/8)) and
S(a) = s((n/2) — @), 0 < @ < (7/2). It is sufficient to show

(4.6) Se) < 19, 0<a§—2-7£.

Since we have S(0) = 19, it is sufficient to prove S'(a) <0 for 0 < a <
2z/7). 8'(0) =0, S§"(0) <0, and S"(@) <0 for 0 < a < (2r/7) imply
S”(a) < 0 and S'(a) < 0 for 0 < @ < (27/7). From this, we obtain (4.6)
and consequently (4.5).

Now, let (x — 2a)/2(1 — ) £ h < (7 + 2a)/(1 — ). Then, by (3.2), we
have

1—94

211 — &
This yields that if we choose k,, (1/2) < k, < 1, sufficiently near 1, then
minimal values of x(t) are greater than —(x + 2@)k, uniformly for ¢e
K\{0}. For the estimate of maximal values, by (3.3),

4.7 x(t, + h) = (0 — h + > - — 2.

T+ 2ax — 2cos @

(4.8) 2(t, + h) S (1 + 0h o1+ sma)

Thus for (7 —2a)/2(1 — )= h <(w—2a)/(1 +sina) + (7 +2a— 2cosa)/2(1 + sina)?,
A+ h — (r + 20 — 2 cos @)/2(1 + sin @) is less than 7w — 2, and hence
if we choose k, (1/2) < k, < 1, sufficiently near 1, then maximal values
are less than (w — 2a)k, uniformly for ¢ e K\{0} by (4.8). Clearly, since
the above argument has no meaning for large a, we need an estimate
for arbitrary a. For (7 — 2a)/2(1 — 6) < h < 8(w — 2)/8(1 — 8) + 1/(2 cos ),
minimal values of x(f) are greater than —(3(w — 2a)/8) by (4.7). If we
choose ¢ = 3(w — 2a)/8 in Lemma 3.2, then we have max_,.,., f(x) =
0—sin(—pg+a)=a. We can easily prove 3(x — 2a)/8a < (& — 2a)/2(1 — §)
by the similar method to the one for (4.6). From this and (3.4), if
0 = @ < (37/14), then ¢ > a and maximal values are estimated by

3(r — 2a) L (B3 — 1l4a)® + 16(87 — 10a) sin @ ]

4.9 alt, + h) < ah —
4.9) wlt.+h)=a 8 1284

Thus for

T — 2 << 1z — 2a) (3w — 14a)® 4 16(37 — 10a) sin
20 —6) ~ 8a 128a? ’
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the right-hand side of (4.9) is less than # — 2a, and therefore, if we
choose k, (1/2) < k, < 1, sufficiently near 1, maximal values are less
than (7 — 2a)k, uniformly for ¢ K\{0}. Similarly, maximal values for
Br/14) £ a < (w/2) are estimated by

3(r — 2a)
ds < ah — 22 =77
Plas)ds = a 16

Hence for (r — 2a)/2(1 — d) £ h < (19(7 — 2a)/16a), if we choose k,, (1/2) <
k, < 1, sufficiently near 1, maximal values are less than (z — 2a)k, uni-
formly for ¢< K\{0}. Since we can change k, into a greater one if
necessary, we can assume k, < k, < 1. Also x., € K and we have 2h <
7(¢) < (m + n + 8h by Lemma 3.2.

(4.10)  a(t,+ h) = ah — p+ S°_

I3

REMARK. Since f(x) satisfies (H2) by setting p(x) = f(x), we can
change F(a) in (4.3) into a greater one, namely,

L — 3

3(7r—2a)sina+8cosa—8cos< 3

We have the following theorem by Theorem 3.1 and Lemma 4.1.
THEOREM 4.1. Let (7 —2a)/2(1 — 6) < h < H{a) be fixed, where (z/2) <

h < HO) for @ = 0. Then (4.1) has a nontrivial periodic solution for
< u< 7w Its period is greater than 2h and less than (m + n + 8)h.

REMARK. (i) In particular, for 6 = 0.8 and & = 2, Ueda and his
colleagues have observed the existence of a nontrivial periodic solution.
We can conclude from Theorem 4.1 that there exists a nontrivial periodic
solution for 6 = 0.3, 1.81 < h < 2.45, and k = 2, || =< 0.445.

(ii) It is easy to see that (4.1) has a nontrivial periodic solution for
—w < u < 7w if 7/(2cos @) < h < H,(a), where H,(a) corresponds to Fi(a)
in (4.4).

5. Another application. Consider the difference-differential equation
(56.1) w(t) = 6 — glu(t — h)), t=0, 0=20<1,

where g(x) = 1/2)(jx + 1| — |# — 1]). Since ¢g(0) = 6 for 0 < d <1, (5.1)
has a constant solution u(f) = 6. Substituting z(t) = uw(t) — 6, t = —h
into (5.1), we have an equivalent equation

(5.2) () = 6 — glw(t — h) + o), t=0, 0=20<1,

which has the zero solution x(¢) = 0. For a fixed h > (#n/2), let X, =
X, <(@2h—1)1+0)2, A, =B, =1—4. Then f(x) =06 — g(x + o) satisfies
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(H1) and (H2) by setting p(x) = f(x). As the linear part of f(x) is —uz,
f(x) satisfies (H3) also for L = 1. We consider the truncated cone such
that

K={peC:o6(—h) =0, ¢(@) is nondecreasing on [—F, 0], 4(0) < X }.
We have the following theorem from Theorem 3.1.

THEOREM 5.1. If h > (w/2), then (5.1) has a montrivial periodic
solution.

It is not difficult to prove this theorem. Since & > (7/2) > (A4,/B,),
we can easily prove by the similar method to the one for Lemma 3.1
that «.4(¢) € K for a 7(¢) > 0, where {z(¢)} is uniformly bounded for
¢ € K\{0}. Also, the maximal value x(z(g)) is estimated by

wee) = |+ ods + | 7@+ oysyas 5 B DAED

Moreover, since h > (n/2L) = (x/2), Lemmas 3.3, 3.4, and 3.5 hold. Thus
all assumptions of Theorem 3.1 are satisfied, and hence we have Theo-
rem 5.1.

6. Stability of a constant solution. In this section, using a theorem
of Yorke [6], we consider the nonexistence of nontrivial periodic solu-
tions of (2.1) for —X, < ¢ < X, and the uniform asymptotic stability of
the zero solution of (2.1) when £ is smaller than that in Theorem 3.2.
Furthermore, we consider the nonexistence of periodic solutions of the
second kind when f(z) can be extended as a continuous periodic function
with period X, + X,, where x(t) is called a periodic solution of the second
kind if there exist X = 0 and T > 0 such that x(t + T) = «(¢) + X for
t = 0.

Consider a nonlinear one-dimensional differential-delay equation
(6.1) a(t) = F(t, =), t=0.
Let C; ={¢eC:|¢| < B} and let F:[0, o) x C; — R be continuous.

DEFINITION 6.1. We say 0 is uniformly stable for (6.1) if for any
7 > 0 there exists a p = p(») in (0, 7] such that for any ¢, = 0 and ¢ C;
and any solution x(t) = «(t, ¢, ¢) we have for all ¢ > t, in the domain of
x(?)
l¢| < o implies |x(t, £, )| < 7.
DEFINITION 6.2. Let ¥ > 0. We say 0 is uniformly asymptotically
stable with attraction radius v for (6.1) if
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(1) O is uniformly stable,

(ii) for each t, = 0, each solution (¢, t, ¢) with |¢| < 7 exists for
all ¢t = ¢,

(iii) there exists T = T(7,) for each 7,€(0,7) such that for each
t, = 0 and each solution w(t) of (6.1) with |¢| < 7, |x(t, + 8)| < (7,/2) for
all s = T(7).

For ¢ € C;, define M(¢) = max {0, sup_,<s<, 4(6)}. The following theo-
rem can be found in [6].

TueoreEM 6.1 (Yorke). Let 8> 0 and h > 0. Let F:[0, )X C;— R
be continuous. Assume for some ¢ = 0

(6.2) —cM(g) = F(t, ¢) < cM(—9¢) for all ¢€Cs.

(i) Assume ch < (3/2). Then x(t) =0 is a solution and ts uni-
Jormly stable.
(ii) Assume 0 < ch < (3/2) and
6.3) {fo'r all sequences t,— > and ¢, € C; converges to a constant nonzero
’ Sunction in C,; F(t,, ¢,) does not converge to 0.

Then 0 is uniformly asymptotically stable, and if t, = 0 and || < (28/5),
then x(t)—0 as t— oo,

REMARK. (i) and (ii) can be made more specific as follows [6].
( {If t, = 0 and |¢| < (28/5), then the solution x(t) is defined and

satisfies |x(t)| < (5/2)|¢| for all t = ¢,

V(t) = sup |#(s)| is a monotonic nonincreasing function for

t<s<t+8h

t=t, and if 0 < ch < (3/2), then V(t)— 0.

(6.5)

Let i < (A,/B,), & = min (X, X,), & = max(—xl, g hp<~st>ds), and
0 —
let & = min (X, (4,B/B) — 4, + <1/Bl>§ ) p)ds). Tet ¢, ¢, = (B4
satisfy ‘

(6.6) @ > ¢ for all z 0 in [2, &l
X

and

6.7) f@ > o forall @0 in [~ &) -
X

Then we have the following results as a corollary of Theorem 6.1.
COROLLARY 6.1. (i) If h < 8/(2¢), then (2.1) has mo montrivial
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periodic solution for —X, <z < X,.

(ii) If h < (8/2¢c,), then for any v, 0 < v < (25/5), 0 is uniformly
asymptotically stable with attraction radius v for (2.1).

(iii) Suppose that f(x) can be extended as a continuous periodic
Sunction with period X, + X,. If h <min (3/(2¢c,), 45,/(6B,), 4¢,/(5By)), then
(2.1) has no periodic solution of the second kind.

PrOOF., (i) Let h < (3/2¢,). Let q(t) be a nontrivial periodic solu-
tion of (2.1) for —X, <z < X,, and let {,, {; be numbers such that & <,
L<é, 6 Sqt) =28, for t = 0. If we take a positive number 7, 0 <
N < min &, — &, & — &), then from (6.6), we have (f(x)/x) = —e¢, for all
zw#0in [{, — 9, + 7). If we define

f(Cl—v)v x<C1_‘7],
fl(x>: f(x), C1~77§x§Cz+77y
f(C2+7])’ x>0+ 7,

then clearly xzf,(x) < 0 for = = 0, f,(0) = 0, and hence f(x) satisfies (6.3)
for B = (5/2)max (p — {, &, + ), and for ¢ = ¢,, we have

(6.8) Ji@%—c, x 0.
x

Moreover, q(t) is a solution of the equation

(6.9) i(t) = filet - h), t=0.

Since we have f(¢) = fi(¢(—h)), it is clear that (6.2) and (6.8) are equiva-
lent. From this and Theorem 6.1, 0 is uniformly asymptotically stable
for (6.9). On the other hand, since |q,| < (26/5), we have q(t)— 0 as
t — oo, and this is a contradiction. Therefore, if h < (8/2¢,), then (2.1)
has no periodic solution for — X, < z < X,.

(ii) For 0 < 7 < (2&/5), let

f(—5—7>, z < —%/,

2
£@) = 1 f@) —%’—Ygxg%”,
5y 5
f(g): x>3;

and let B = (67/2). Then, using Theorem 6.1, in a similar way to the
above, we can show that if 4 < 3/(2¢;), then 0 is uniformly asymptotically
stable with attraction radius 7 for (6.9). On the other hand, since
lx(t, ¢)] < (57/2) < & for all ¢t = 0 if |¢| <7, the solution (¢, ¢) of (6.9)
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for |¢| < v is also a solution of (2.1), and thus we obtain the same
stability for (2.1).

(iii) Let h <min (3/(2c,), 4&,/(6B,), 4¢,/(6B,)) be fixed. If we choose 7,
0 <7 < (2¢,/5), sufficiently near (2&,/5), then we have h < min (27/B,, 27/B,).
Now, let 2(t, ) be a positive solution of the second kind of (2.1) such
that (¢, ¢) — o as t— o, and let n be the smallest integer for which
we have |g| < —7 + (X, + X,). If we let ¢, =inf {t: z(¢, ¢) =7 + (X, + X,)},
then |z(t) — n(X, + X,)| <27 for t,— h <t < t, because #(t) < B,. On
the other hand, since 7 is an attraction radius of 0 for (2.1) by (ii) and
since the extended f(x) is a periodic function with period X, + X,, 7 is
also an attraction radius of n(X, + X,) for (2.1), and hence we must
have x(t, ¢) —n(X, + X,) as t-— . This contradicts the fact that
x(t, ¢) —> co as t— oo,

In a similar way to the above, we have a contradiction also in the
case x(t, §)— —co as t— . Thus we can conclude that (2.1) for the
extended f(x) has no periodic solution of the second kind.

7. Applications of Corollary 6.1. 1. For equation (4.2), let f(x) =
0 — sin(x + a@). Let y = —c(a)x be tangential to the curve y = f(x) at
the point (—&(a@), f(—&@))) for —(n/2)—a < —&@) < —a. Moreover, let
{i(@)=min(&(@), (1—sina)/(cosa)), {(@)=min(&(@), ©—2a), H(x)=3x/(2f (—x))
(x = 0), and let H(0) = 3/2. We obtain the following proposition by ap-
plying Corollary 6.1.

ProrosITION 7.1. (1) If h < H({ (), then (4.2) has no nontrivial
periodic solution for —w — 2a < x < w — 2a.

(ii) If h < H((@)), then for any v, 0 <7 < (2(x — 2a)/5), 0 s unt-
formly asymptotically stable with attraction radius Y for (4.2).

(iii) If b < min (H({(a)), (4(w — 2a)/5(1 + sin @))), then (4.2) has no
periodic solution of the second kind.

Proor. It is easy to see that H({(a)) < 3/(2cosa). First, we prove
that any periodic solution of (4.2) in —7 — 2a < x < & — 2a is greater
than (sina — 1)/cos@ if h < 3/(2cosa). Now let g(t) be a nontrivial
periodic solution of (4.2) such that —7 — 2a < q(t) <7 — 2« for t = 0,
and let ¢(t) be its minimum value. Clearly ¢(¢,) < 0. By changing ¢,
into a larger one if necessary, we may assume that ¢, = sup{t <¢;:
qgit) =0} =0. For ¢=¢(0) =@ —1)0, —h <6 <0, we have q(t, + 0) =
#(0) < (m/2) — e for all 8 e[—h, 0] since 3/(2cos @) < (7 — 2a)/2(1 — o) from
(4.8), and consequently q(¢,) = x(h, ¢). It is sufficient to show w(k, ¢) >
(sina@ — 1)/cos @ only for (l/cosa) < h < 3/(2cosca). In this case, we
have
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1/e 0

(—1VT=5% — 1)s)ds = 0@ —1
—1/cos a cos &

ﬂm@>§ m@—nw+§

—~h
and thus ¢(t,) > (sina@ — 1)/ecos@. Let k, 0 < k, <1, be a number such
that ¢(t) < (x — 2a)k,, and let

sina — 1 sinae — 1
IEET N e
cos @ cos «

fi(z) = f), %:;—;L <z = (m— 2wk, ,

fl(mw — 2a)k,) , = > (T — 2a)k, .

Since zfi(x) <0 for =0 and f(0) =10, f(x) satisfies (6.3) for B =
(5/2) max ((1 — sin @)/cos @, (* — 2a)k,). Furthermore, ¢(¢) also is a solu-
tion of #(¢) = fi(x(t — h)). Let ¢ = (f(—{,(a))/¢(@)). Then clearly ¢ > 0
and (fi(x)/x) = —c¢ for x # 0. From this, fi(¢) = fi(¢(—h)) satisfies (6.2)
for the same ¢. Therefore, if 0 < h < H({(«)), then (4.2) has no non-
trivial periodic solution in —7 — 2a <z < 7w — 2a by Corollary 6.1.(3).
Similarly, (ii) and (iii) hold by (ii) and (iii) of Corollary 6.1, respectively.

REMARK 1. Since (1 — sin@)/cos a < (7 — 2a)/r < 7w — 2c by (4.3), we
have (@) < {(a) < &a) and consequently H(C(a)) = H((«)). On the
other hand, for any given & > 0, a, 0 < @ < (x/2), sufficiently near (7/2),
satisfies conditions in (i) and (ii), since lim,_./,_, H({,(@)) = oo.

REMARK 2. In the above proof, since 0 < ¢ < (sina + 1)/(@ + 1), (6.2)
holds for ¢ = (sina + 1)/(« + 1). Hence if 0 < h < 3(a + 1)/2(sin ¢ + 1)),
then (i) and (ii) hold. Moreover, since &@) = @ and (1 — sin@)/cos @ is
decreasing, if we let a,cosa, =1 — sina, (7/6) < 0.555 < @, < 0.556 <
(7/5), then { (@) = (1 — sin @)/cos @ < « and consequently H({,(a)) = H(a) =
3a/(2sina) for a, < a < (x/2). Therefore, if 0 < h < 3a/(2sina), then
the condition in (i) holds for a, < a < (7/2). Similarly, if 0 <h <
3a/(2 sin ), then the condition in (ii) holds for a = (z/3).

REMARK 3. If 0 < h < 3/(2cos @), then for sufficiently small v > 0,
0 is uniformly asymptotically stable with attraction radius v for (4.2).

2. For equation (5.2), if we let f(x) =6 — g(x + 0), then f(¢) =
f(¢(—h)) satisfies (6.2) and (6.3) for ¢ = 1. Define G(x) by

g(x)’ —lgﬁ')él,

and extend G(x) as a continuous periodic function with period 4. We
denote this extended function by G(x) again. For F(x) = 6 — G(x + 9),

G(z) = {
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consider
(7.1) () = F(x(t — h)), t=0.

For equations (5.2) and (7.1), we describe the following proposition with-
out proof.

ProposiTIiON 7.2. (i) If h < (3/2), then 0 is globally uniformly
asymptotically stable for (5.2). Moreover, for any 7, 0 <7 < (2(1 —6)/5),
0 7s untformly asymptotically stable with attraction radius ¥ for (7.1).

(i) If h < (8/2), then (5.2) has no nontrivial periodic solution, and
(7.1) has no nontrivial periodic solution in —1 — 06 < x <1 — 4.

(iii) If h < min((3/2), (4A — 8)/(BA + 0)))), then (7.1) has no periodic
solution of the second kind.

8. Existence of periodic solutions of the second kind. In this sec-
tion, we assume that f(x) of (2.1) is a continuous and periodic function
with period X, + X,. Consider the equation

8.1) #(t) = f(x(t — h)) + B, t=0, B>B,.

Employing the following theorem, which is found in [8], we show the
existence of periodic solutions of the second kind for (2.1) and (8.1).

THEOREM 8.1. Suppose K is a cone (or a truncated come), A 1is
positive with respect to K, is completely continuous and F is the set
of positive eigenvectors of A, If

(i) for any open set GCC, 0e@,

inf |Ag| >0,
¢edGNK
(ii) there exists an M > 0 such that ¢ F, |¢] = M, Ap = po imply

©n<1,

(iii) there exists an open neighborhood H of zero, Hc B(M), such
that g cdH N F, Ap = up imply p> 1,
then A has a fived point in KN (B(M)\H).

First, we consider equation (2.1). Let &, &, —X, <& < & <0, be
fixed, and let

K, = {¢ € C: ¥(—h) = &, v¥(0) is nondecreasing on [—h, 0], ¥(0) < &},
and
K ={$cC:¢ = — [ for some € K},

where (0) =y, —h <6 <£0. Then K is a truncated cone. We assume
the following conditions.
(I) Any solution x(t, 4») of (2.1) reaches & + X, + X, in finite time
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uniformly for + € K.

(II) For ¢, =inf{t:at, v =5+ X, + X}, X, =2, =&+ X+ X,
for t, — h <t <,

(IIl) For k, 0 < k, < 1, sufficiently near 1, x(t, + h, v) — x(t, o) =
(& — &)k, uniformly for € K,.

For ¢e K and v =g+ %, let ©(¢) =t,+ h, and let A:g—¢ = x.(3) —
gootft¥e . Under assumptions (I), (II), and (III), A is a positive mapping
with respect to K, is continuous and takes closed bounded sets into
bounded sets, and we have the following lemma.

LEMMA 8.1. Under assumptions (I) and (II), there exists an 7 >0
such that |A¢| = 0 uniformly for ¢¢c K.

PrROOF. Suppose not. Then there is a subsequence {¢,} in K such
that |A¢,|—0 as n—c. We can assume that z(g,)— 7, > 2h as n— co.
Since {x(¢, ¥.)}, ¥ = ¢, + %, is uniformly bounded and equicontinuous
on [0, 7,], there exists a uniformly convergent subsequence. For the
simplicity, we assume x(t, 4,) — y(t) uniformly for te[0, 7,] as n — oo.
Then y(t) is a solution of (2.1) on [h, 7,]. Since %(t) =0 for 7, — h =
t <7, we have f(y(s)) = 0, namely, y(s) £ X,, for 7, — 2h < s < 7, — h.
This contradicts the continuity of %(¢) on [0, z,], and hence the con-
clution holds.

Under assumptions (I), (II), and (III), condition (i) in Theorem 8.1 is
satisfied by Lemma 8.1. Condition (ii) is satisfied for M > (&, — &)k,
and condition (iii) holds for H = B(»/2) by Lemma 8.1. Thus we have
the following theorem.

THEOREM 8.2. Under assumptions (I), (II), and (III), (2.1) has «a
periodic solution of the second kind.

Next we consider equation (8.1). If we define
K, ={y € C: y(—h)=A4,, ¥(0) is nondecreasing on | —#, 0], s(0)= X, + X,— A},
and
K ={pecC:¢ = — (% for some e K},
then K is a truncated cone.

LEMMA 8.2. Any solution x(t, 4) of (8.1) for + e K, is imcreasing,
and reaches X, + X, + A, till the time (X, + X,)/(B — B,). Moreover, if
0
B2 (A +A)XB+B)+ | pe)ds < B(X, + X)+ L

and if
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1 AB, 1
8.3 _ e e M
8.3) M g (X1 + X+ Bjﬁﬁp(s)ds) ,

then for k, 0 <k, <1, suffictently near 1, we have
(B - Bz)h é x(to + h’ "/r) - w(tm "/") é (X1 + Xz - A1 - Az)ko
uniformly for + ¢ K, where x(t, ¥) = X, + X, + A,.

PRrRoOOF. Since #(t) = B — B, > 0, it is clear that xz(t) = (¢, ) reaches
X, + X, + A4, till the time (X, + X,)/(B — B,). Let 2(t,) = X, + X, + A..
By (8.2), there exists an % which satisfies h = (4, + 4,)/B, and (8.3), and
for such an %, we have

—(A;+439)/ By — 49/ B,

B.ds + S p(Bis + A)ds

—(dy+49) /By

w(t, + h) — w(t.) < Bh + S

—h

+ S {~ B, (Bs + Az)}ds
—49/By Az

<(B+B)h— A — A, + B%S p(s)ds

1Y 4

AZBZ

2—191<X1+X2 A, — A, .
From this, for k&, 0 < k, < 1, sufficiently near 1, we obtain (¢, + &) —
x(t) = (X, + X, — A, — Apk, uniformly for e K,. We have the same
estimate for h < (4, + 4,)/B,. Finally, it holds clearly that xz(¢, + h) —
x(t,) = (B — B,)h uniformly for + ¢ K,.

For ¢eK and  =¢ + (%, let 7(¢) =t, + h, and let A:g—¢ =

T () — {Brtier42 . Under the conditions of Lemma 8.2, A is a positive
mapping with respect to K, is continuous and takes closed bounded sets
into bounded sets. Furthermore, condition (i) in Theorem 8.1 is satisfied
from |A¢| = (B — B,)h > 0 uniformly for +re K,. (ii) and (iii) hold for
M>X, + X,— A, — A)k, and H = B(n), 0 <7 < (B — B,)h, respectively.
Thus we obtain the following theorem.

THEOREM 8.3. Under the conditions of Lemma 8.2, (8.1) has «
periodic solution of the second kind.

9. Applications. First, consider equation (4.2) for 0 <6 < 1. Let
—(7/2) — 2a < &) < —(m/2) — a. For a fixed @, consider K, and the
corresponding K in Section 8 for & = &(a) and & = —(x/2). The fol-
lowing lemma holds.

LEMMA 9.1. There exist & = &(a) and 6,, 0 < &, <1, such that for
0, <051,



32 T. FURUMOCHI

-+

(9.1) ' 57
1+0 2(1 + o) 2(sin (& + @) — 9)

and

9.2) T+

T . (& + 2 | w4+ 2a—2cosa T+ 2§, )
26 + VI — oY <mm< '

6(r — 2a)(1 — 0) (r — 2 + 0)0
BT r-378 T ivi—o

Furthermore, if h satisfies

(9.3)

T <n . (& +2r w4 20— 2cosa T+ 28,
o+ 1T <mm(1+5 T d Ty ’2(sin(§0+a)—5))’

then any solution x(t, ) of (4.2) reaches & + 27 in finite time uniformly
for yeK,. Morewer, 7 —2ax < x(l, )< &+ 2n for tL,—h=<t=<t,
where t, = inf {t: 2(t, ¥) = & + 27}, and consequently x,,..(0) is nondecreas-
ing, and for some 1) = 17(6, h) > 0 and k, 0 < k, < 1, sufficiently near 1,
we have N < x(ty, + h, ¥) — 2(t, ¥) < — (7 + 28)ko/2) uniformly for € K,.

ProoF. Since (9.1) and (9.2) hold for & = —(n/2) — (Ta/4) and 0 =1,
for o6,, 0 < 6, < 1, sufficiently near 1, they do for §, <6 <1 also. Any
solution 2(t) = x(t, ¥), ¥ € K,, reaches —(x/2) till the time 2a/(6 + V1 — &°).
Since @(t) = d + V1 — ¢* for t, <t <t, + h, where t, = inf {¢: 2(t) = —(7/2},
if h satisfies (9.3), then we obtain x(¢, + 2) = 0. In the case 6 = 1, x(t)
is increasing and clearly reaches & + 27 in finite time uniformly for
e K, Next, let §,<6 <1 and t, = inf (¢: 2(t) = 0}. Then (¢, + h) is
a maximal value, and it is estimated by (4.8) for h = (7 + 2a)/2(1 + 9).
For h < (m + 2a)/2(1 + §), we have

0 - (r + 2a)0 + 2cos @
< <
9.4 alt. + ) = S-(x+2a)/zu+a>‘f((1 + 0)s)ds = 2(1 + 9)
' g?’?”—za<so+2n.

Thus it follows from (4.8) and (9.4) that x(t, + h) < & + 2x. On the
other hand, by (9.2), and (9.3) we have

—z/ 0

x(t, + h) = S_h ma}ads + S fx(s + t.))ds

—7/(2a)

—a/a —(a—3d)/a
(9.5) >ah—%+§ j( )Bds—i-g (/” (—as — a + 8)ds

2a

where ¢ = 6 + V1 — 6°. From (9.5), since f(x(t —h)) >0 for ¢ such that
0 —a=Zuxz(t—h)<0, we have
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36+ —3V3
6 b

for ¢ such that 0 < x(t) <7 — 2a. Thus if 6 > (8V3 — x)/3, then x(¢)
passes through the strip region 0 < x < 7 — 2a during the time interval
of length (6(xr — 2a)/(86 + = — 31V 3)). If we let t, = inf {¢: 2(t) = & — 2a},
then x(¢, + k) is a maximal value. Since we have %(t) = 6 — 1, it follows
from (9.2) and (9.5) that

&) = f(6 —a) =

t3t+h
a(ty + h) = alt, + k) + S " is)ds
2

(9.6)
(T — 2a + 6) _ 6(w — 2a)(1 — 3) B
>2(5+1/1_3z) 23+n_31/327r 2 .

Thus there exists an ¢ > 0 uniformly for 4 € K, such that
9.7 2, +h)y=7—2a + €.

Therefore x(t) reaches &, + 27 in finite time uniformly for + € K,, and
®,,+1(0) is nondecreasing. Moreover, by (9.3) and (9.7),

ot + 1) — a(t) = | flalt, + 9)ds < flegh = ~EEZ

uniformly for +r € K,, and consequently for k, 0 < k, < 1, sufficiently near
1, we obtain x(t, + h) — 2(t,) < (7w + 2&)k,/2) uniformly for + € K,. Final-
ly, by Lemma 8.1, there exists an » = 9(d, h) > 0 such that x(¢, + h) —
w(t,) = 7.

For ¢ K and + = ¢ + %, let 7(¢) = t, + h, and let A: ¢ — ¢ =x(y) —
¢*t*=, Then, under the assumptions of Lemma 9.1, A satisfies the as-
sumptions of Theorem 8.1. Thus we have the following proposition.

ProposITION 9.1. Uuder the assumptions of Lemma 9.1, (4.1) has a
periodic solution of the second kind.

Next, consider equation (4.1) for 6 > 1. Let x(t) be a periodic solu-
tion of the second kind of (4.1), and let T > 0 be the smallest period.
Then it is easy to see that x(t + T) — a(t) = 2p7 for some integer p.
We consider the case p = 1. Then T must be less than 27/(0 — 1) be-
cause 0 >1, and consequently it is sufficient to consider only h < 27/(6 — 1).
Consider K, and the corresponding K for A, = (7/2) and X, + X, — 4, =
(37/2).

LEMMA 9.2. Let 0 >1 in (4.1). Then any solution 2(t, ) of (4.1)

18 increasing and reaches (5mw/2) till the time 2xw/(6 —1). If h <
72 + 8)/(L + 0)D), then for k, 0 < k, <1, sufficiently near 1, (6 — 1)h <
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x(t, + by ) — 2y, ) < kb uniformly for € K, where x(t, v) = (57/2).

PROOF. Since #(t) =6 — 1 > 0, it is clear that x(¢) is increasing and
reaches (57/2) till the time 2z/(6 — 1). Let x(¢,) = bx/2). If m/1 + 0) <
h < (@@ + 0)/A + 6)*), then we have

S—”“”’(l + 8)ds + S

0

w(ty + h) — o(t) = {a — sin ((1 + 8)s + %”)}ds

—n/(1+43)

<@+ — L
=0+ Oh =g <7

uniformly for + € K,. Similarly, for » < z/(1 + 9),

. %4 T
{3——51n((1+ &)s + 7>}ds§7r— TR
Consequently, for &, 0 < k, < 1, sufficiently near 1, we have (¢, + h) —
x(t,) < kot uniformly for e K, It is clear that =(t, + h) — 2(¢,) =
(60 — 1)h holds.

If we define the mapping A similarly to the case 6 <1, A satisfies
the assumptions of Theorem 8.1 by Lemma 9.2, and hence we have the
following proposition.

[

atty + ) = at) = |

—x/{14+8)

PROPOSITION 9.2. Under the assumptions of Lemma 9.2, (4.1) has a
veriodic solution of the second kind.

ReMARK., (i) (9.2) is true for 0, = sin (87/7), where 0.974 < d, <
0.975. (9.1) holds for a wider region of é than (9.2) for &(a) = —(7/2) —
(Ta/b).

(ii) For the case 0 = 0.8 and h = 2, Ueda and his colleagues have
observed the existence of a periodic solution of the second kind.
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