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Introduction. In this paper we shall study characteristic classes of
Γ-foliations. Our object is to prove a strong vanishing theorem for
Pontrjagin classes of the normal bundles of certain Γ-foliations.

Let Γ be a pseudogroup acting on a smooth manifold B of dimension
q. A Γ-ΐoliation of codimension q on a smooth manifold M is by definition
a maximal family ^ of submersions

fa:Ua->B

of open sets Ua in M such that the family {Ua}a is an open covering of
M and for each xeUaf]Uβ there exists an element Tβa e Γ with fβ =
J%°fa in some neighborhood of x. The kernels of the differentials (/«)*
of submersions fa then constitute a subbundle τ(^~) of the tangent bundle
TM of M. The quotient bundle v[^) = TMJτ{^) is called the normal
bundle of jr. Let Pont^G-^O) denote the subalgebra of H*(M;R)
generated by the real Pontrjagin classes of v{J^). Then the Bott vanishing
theorem [3, 4] states that

Pontfc(y(jr)) = 0 for k>2q ,

Pont*(v(^)) denoting the fc-dimensional homogeneous part of Pont*(v(J^)).
This gives a sharp bound for general Γ-foliations (Thurston [20]).

On the other hand, Pasternack [13] proved a strong vanishing theorem

( * ) Vont\v{^)) = 0 for k > q ,

for riemannian foliations ^ Γ-foliations with Γ consisting of local isome-
tries of a riemannian structure on B. In the previous paper [11] we
improved his result by proving a strong vanishing theorem for conformal
or projective foliations.

The purpose of this paper is to extend these results. We thereby
obtain the following generalization of the strong vanishing theorem.

MAIN THEOREM. Let LJL0 be a semisimple flat homogeneous space
of dimension q associated with a semisimple graded Lie algebra I = g_! +
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9o + βi 0/ΪIΛ ϊ0 be a maximal compact subalgebra of g0. Let Γ be the pseudo-
group of local automorphisms of an L0-structure of second order associated
with L/Lo. Then for a Γ-foliation &~ of codimension q, the strong
vanishing theorem (*) holds if

(1) the Spencer cohomology H2Λ(ΐ) = 0 and
( 2) the Pontrjagin algebra Pont (ϊ0) c IL(t0).

For the terminology and the notation in the Main Theorem, see §§1, 2
and 4.

The method of the proof of the Main Theorem depends heavily on
the differential geometry associated with semisimple flat homogeneous
spaces, which has been developed extensively by Tanaka [19] and Ochiai
[12]. Essentially the idea of the proof is the same as that in [11]. In
fact, we define the "prolongation" of the normal frame bundle of &~ to
construct a "/"-invariant basic" connection. This is done in §3. The
normal Cartan connection plays an important role in the construction.

Examples satisfying the conditions (1) and (2) in the Main Theorem
are given in §5. It is known that the condition (1) holds for a fairly
general family of Γ-foliations under consideration. We also give a criterion
for the condition (2) to be satisfied for every semisimple flat homogeneous
space associated with a given semisimple graded Lie algebra I in terms
of the topology of the symmetric β-space associated with I (Theorem 5.3).
Structure theorems for automorphisms of real semisimple Lie algebras
are of essential use in the argument.

1. Semisimple flat homogeneous spaces. This section is devoted to
a brief survey of the basic material on semisimple flat homogeneous
spaces. For details, see Kobayashi-Nagano [9] and Ochiai [12].

By a (transitive) graded Lie algebra we mean a real Lie algebra I =
Σ g p with a decomposition into a direct sum of subspaces ĝ  (p e Z) satisfying

flp = 0 for p ^ - 2 ,

[βv, flj <= QP+q for all p, q and

[x, g_J Φ 0 for each nonzero x e QP, p ^ 0 .

A graded Lie algebra I = X ĝ  is called semisimple if I is finite dimensional
and semisimple. In the following we are mainly interested in semisimple
graded Lie algebras. Let β be the Killing form of I. It is an immediate
consequence of the nondegeneracy of β that QP — 0 for p ^ 2, that is,
I = g_! + g0 + ft, and g^ is the dual vector space of & under the pairing
g-i x fliSfo v)t-*β(Xf V)> Furthermore there exists a unique element e
in g0 such that for k = — 1, 0 and 1
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gfc = {x e I; [e, x] = kx) .

Let ϊ be a maximal compact subalgebra of I such that β(e, ί) = 0. Define

P by

Then 1 = 1 + 1), which is a Cartan decomposition of I. With respect to
this Cartan decomposition we define an automorphism τ of I by setting
τ\t = lt and τ\p = — lp. A positive definite inner product < , > on I is
then given by

(x, y) = — β(x, τy) for x, y e I .

Semisimple graded Lie algebras have been classified in [9]
The Lie algebra cohomology HQ) = H(Q-ίf adr | g_t, I) of the abelian

Lie algebra Q^ with respect to its adjoint representation on I is called the
Spencer cohomology of a graded Lie algebra ϊ = Σflp More precisely, let

C ^ = 9P-I(XM 9 (9-I)*

be the vector space of all g^-valued ^-linear alternating maps on g_1#

Define a coboundary operator 3: Cp'g -> Cp"1>ff+1 by

for c e O 9 and xx, , xq+ί e g_L. Then 32 = 0 and the Spencer cohomology
HQ) = Σ H' 'Q) is defined by

Let I//Lo be a connected homogeneous space on which a (not necessarily
connected) semisimple Lie group L acts effectively and transitively.
L/Lo is called a semisimple flat homogeneous space if the Lie algebra I
of L has a graded Lie algebra structure I = g_ι + g0 + gL such that g0 + gi
is the Lie algebra of Lo. We define GQ as the normalizer of g0 in Lo,
that is,

Go = NLo(Qo) = {x e Lo; AdO0go = gj .

Then it is known that the Lie algebra of GQ coincides with g0 and Lo is
a semidirect product G0 G1 of Go and the vector group G1 = expgx. Note
that Go is also given by

Go = {x e Lo; Ad(α?)e = e) .

Let T0(L/LQ) be the tangent space of L/Lo at the origin o = Lo, which
is linearly isomorphic to g_le We identify g_i and hence To(LIL0) with
a euclidean vector space Rq, q = dim g_x, in a natural manner by choosing
an orthonormal basis of g^ with respect to the inner product < , > restricted
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to g_x. Since LQ is the isotropy subgroup of L at the origin o, there is
a natural representation λ of Lo, called the linear isotropy representation
of Lo, on the tangent space To(L/L0). λ is a homomorphism from Lo into
GL(g_!) = GL(q, R). It follows from the effectiveness of the action of
L that the kernel of λ coincides with Gx so that the restriction λ|G0

identifies Go with the linear isotropy subgroup in GL(q, R). Corresponding
to this identification, g0 is regarded as a subalgebra of the Lie algebra
QΪ(q, R) of GL(q, R). Let Ko be the normalizer of ϊ in Go, that is,

t being a maximal compact subalgebra of I with β(e, ϊ) = 0, and let !0 be
the Lie algebra of Ko. Then ϊ0 = ϊ n 9o> and we have a Cartan decomposi-
tion g0 = fo + ί>0 of g0 by setting p0 = g0 Π p. Note that Ko is regarded as
a subgroup of the orthogonal group O(g), for the inner product < , ) is
invariant under the adjoint action of the normalizer of ϊ in L. It follows
from the following lemma that the structure group of any principal Go-
bundle is reducible to the subgroup Ko.

LEMMA 1.1. Ko is a maximal compact subgroup of Go. The map
of K x p0 into Go defined by

(k, x)\-+k exp x

is a diffeomorphism.

PROOF. Let Aut (I) be the group of automorphisms of I. Define a
closed subgroup Aut (I, e) of Aut (I) by

Aut (I, e) = {ae Aut (I); ae = e) .

Note that the Lie algebra of Aut (I, e) may be identified with g0 provided
we identify the Lie algebra of Aut (I) with I.

We first prove that the homomorphism Aut (I, β)—>GL(g_1) defined
by a\-^a\Q^ is injective. In fact, suppose a\$-x = h_λ. Then CC\Q1 =
lβl, for «!& is the contragredient of α|g_lβ Since g0 = [Q_19 gj, α|g0 = lβo

and hence a = l r.
It follows from this fact that Ad: Go —> Aut (I, e) is an injective homo-

morphism. We identify Go with the subgroup Ad (Go) of Aut (I, e).
Aut (ϊ, e) is an algebraic subgroup of GL(ΐ) and is invariant under

taking transpose with respect to the inner product < , >. Hence Aut (I, e)
has a polar decomposition, that is, there is a diffeomorphism

Aut (I, ϊ, e) x ft, -> Aut (I, e)

defined by (fc, x)v->k exp x, where Aut (ϊ, ϊ, e) is a maximal compact sub-
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group of Aut (I, e) defined by

Aut (ϊ, ϊ, e) = {ae Aut (I, e); at = ϊ } ,

whose Lie algebra coincides with ϊ0 (cf. Chevalley [6]).

Since Aut0 (I, ϊ, β ) c Kod Aut (ϊ, ϊ, e), where Aut0 (I, ϊ, e) denotes the
identity component of Aut (I, ϊ, e), Ko is compact.

For g 6 Go, let g = k exp x (k e Aut (ϊ, ϊ, e), x e pQ) be the polar decom-
position of g. Then it is easy to see that k — #(exp x)'1 is in the normalizer
NGQ(t) of ϊ in Go, that is, in Ko. Hence we obtain the polar decomposition
Go = Ko exp p, which shows that Ko is a maximal compact subgroup of
Go. q.e.d.

REMARKS. 1) I t is well-known that the maximal compact subalgebras
of g0 are conjugate with each other under the adjoint action of Go. Hence
each maximal compact subalgebra ϊ0 of g0 is obtained as

lo = * n 9o

from a maximal compact subalgebra ϊ of I satisfying β(e, ϊ) = 0.
2) It follows from Lemma 1.1 that the maximal compact subgroups

of Go are conjugate with each other under the inner automorphisms of
Go. Hence each maximal compact subgroup KQ of Go is obtained as

Ko = NGβ)

from a maximal compact subalgebra ϊ of I satisfying β(e, ϊ) = 0.
3) Let ϊ and V be two maximal compact subalgebras of I such that

β{ρ, ϊ) = β(e, V) = 0. Corresponding to ϊ and V we get positive definite
inner products < , > and < , >' on I respectively in the same way as above.
It is then not difficult to show that there exists an element goeGo such
that

< α , V)9 = (Aά(go)xf A ά ( g o ) y ) f o r x , y e l .

2. Lo-Structures of 2nd order associated with L/Lo. Let L/Lo be a
semisimple flat homogeneous space as in § 1 and Go be the linear isotropy
subgroup at the origin so that Go c GL(q, R), q = dim L/LQ.

Let B be a smooth manifold of dimension q. Fix a point o of B as
the origin. Let Γ{B) be the pseudogroup of local diffeomorphisms of B.
For each integer r ^ 1, let Pr(B) denote the set of all r-jets jr

0(f) at o of
the local diffeomorphisms / e Γ(B) defined around o. Let Gr(q) be the set

Then Pr(B) is, in a natural manner, a principal Gr(#)-bundle on B with
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the natural projection πr defined by πr(jζ(f)) — /(o). For details, see
Ochiai [12]. Consequently, we have a protective system

by defining the forgetful map π\\ Pr(B) -> P\B) (r > s ^ 1) by πs

r(jr

0(f)) =
Λ(/). Each / 6 Γ(5) is naturally prolonged to a local bundle isomorphism
/ ( r ) of Pr(B) by

f{r)Ul(g)) = J:(fog) for j:(g)eP'(B).

From now on we are mainly interested in PX(J5) and P\B). Note
that Gx(g) is isomorphic to GL(q, R) and is imbedded canonically into
Gr(q), in particular into G\q). With respect to this imbedding, π\ is
GXgO-equivariant. By means of the into diffeomorphism Exp defined by
Rq = 9_! 9 x h-> (exp aj)L0 e L/Lo, we have a natural map *: Lo —> G2(g) defined
by

Then it is known (Ochiai [12]) that c is an injective homomorphism, and
we have the following commutative diagrams:

G\q)

/ U-^G\q)

Lo πi ί

*\ i
By this homomorphism c, we regard Lo as a subgroup of G2(q).

Let Q be an L0-reduction of the principal G2(g)-bundle P2(J5) on B,
that is, Q is a principal L0-subbundle of P\B). Q is called an Lostructure
of 2nd order on B associated with a semisimple flat homogeneous space
L/Lo. For each L0-structure Q of 2nd order, let Γ denote the pseudogroup
of local automorphisms of Q, that is,

Since Lo is the semidirect product of Go and the vector group Gι — exp a,
the principal L0-bundle Q has a Go-reduction P' on B. Then P = π\{Pr)
is a principal Gv-subbundle of P\B). It is also given by P = τrJ(Q) by
virtue of the above diagrams. P is called the G0-structure of 1st order
associated with Q. Note that each element 7 e Γ is a local automorphism
of P as well, that is, 7(1)P c P.
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3. Γ-foliations associated with L/LQ. Let L/Lo be a semisimple flat
homogeneous space and Γ be the pseudogroup of local automorphisms of
an associated L0-structure Q of 2nd order on μ smooth manifold B of
dimension q = dim L/LQ as in § 2.

L e t &~ b e a Γ-foliation of codimension g o n a s m o o t h m a n i f o l d M.
is by definition a maximal family ^ — {/α}α of submersions

of open subsets Ua in M to JB such that the family {Ua}a is an open
covering of M and for each x e Ua Π Uβ there exists an element Tβa e Γ
with

fβ = Tβaofa

in some neighborhood of x. The fibres of each submersion fa are then
pieced together to define the leaves of the foliation ^~. The kernels of
the differentials (jQ* of submersions fa e ^ constitute a subbundle τ{^)
of the tangent bundle TM of M. τ{^) is a bundle tangent to the
leaves of ^ The quotient bundle v{^) = TM/τ(^~) is called the normal
bundle of j^~.

With each Γ-foliation ά^ we associate a Γ(I?)-foliation ^ which
contains ^ Γ ^ is defined in the same way as in the definition of ^
by replacing Γ with the pseudogroup Γ(B) of local diίfeomorphisms of B.
Note that β~ has the same structure of leaves as that of ^ 7 We are
now in a position to define the "prolongation" of the normal frame bundle
of ^ . Let Pr{β^) be the set of all r-jets jl{fu) at x of submersions/^
defined on open subsets U in M such that fυ is constant on the leaves
of ^ and sends x to the origin o of B, that is,

eUf fax) = 0}.

Then P r ( ^ ) is a principal (?r(g0-bundle on ilί with the natural projection
πr defined by πT(jl(fπ)) = a?, where the group Gr(q) acts on Pr(^) from
the right by

for Jl(fu)ePr(β~) and jr

0(k)eGr(q). In fact, the restriction of
to £7 is isomorphic to the pull back by fπ e ̂  of the bundle Pr(B) on

tt(P'(B)) =

The isomorphism is given by
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In particular, P\^~) is the principal GL(q, Λ)-bundle associated with the
normal bundle v{^) of ^ T

Prom now on we are mainly interested in P\άβ~) and P\jβ~). Note
that the prolonged bundle P\J?~) of 2nd order has an L0-reduction Q on
M, which is isomorphic locally to the pull back fι

aQ by fa e &~ of the
L0-reduction Q of P\B) on B. In fact, since each 7 6 f , or more precisely
the prolongation 7(2), preserves the L0-reduction Q of P\B), the family
of pull back bundles

is glued together to define a principal L0-bundle on M, which naturally
induces an L0-reduction Q of P\β~).

Let Go be the linear isotropy subgroup of L/Lo as in §1. In the
same way as above we get a Go-reduction P of P\jβ~), whose restriction
P\Ua to Ua is isomorphic to the pull back f«P by / α e ^ of the Go-
reduction P of P\B) in §2. P is a principal G0-bundle associated with
the normal bundle v{^) of ^ .

Let QL and QL be the group extensions of Q and Q by L respectively,
that is, QL = Q XLQL and QL = Q xLoL. Each element ΎeΓ naturally
induces a local bundle isomorphism 7(2) of QL, and a local bundle map
/L2) of QL to QL is naturally induced by each element fa e ^\

With these understood, we can state the following lemma which is
of essential use.

LEMMA 3.1 (Tanaka-Ochiai). // the Spencer cohomology H2A(ΐ) of the
graded Lie algebra I of L vanishes, then QL has an L-principal connection
β), called the normal Cartan connection of type L/LQ, which is invariant
under Γ in the sense that for each 7 6 Γ,

For the proof, see [12, Theorem 11.1]. It should be noted here that
ω restricted to the subbundle Q defines an absolute parallelism on Q.

By each submersion fa e J^, or more precisely by the naturally induced
bundle map f{

a

2): QL —> QL, we can pull back ω, the normal Cartan con-
nection of type L/Lo in Lemma 3.1, to get a family of local forms
{Λ2)*ω}α.

LEMMA 3.2. The local forms {7L2)*̂ }α define a global connection form
ώ on QL.

PROOF. The local forms f(

a

2)*ω and f{

β

2)*ω are identical on QL\UaΠ Uβ.
In fact, let x e Ua Π Uβ and W be a neighborhood of x on which fβ =
Tβaofa with TβaeΓ. Then
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ff*ω = fv*oy$*ω = fTω o n QL\W 9

since ω is Γ-invariant. q.e.d.

4. A strong vanishing theorem. Let L/Lo be a semisimple flat
homogeneous space with linear isotropy subgroup Go c GL(q, R) as in § 1.
Let Ko be a maximal compact subgroup of Go and ϊ0 be its Lie algebra
(cf. §1).

For later use, some notations are prepared. For a pair of a given
Lie group G with Lie algebra g and a subgroup H of G with Lie algebra
§, a subalgebra of g, let IG(ί)) denote the set of the restrictions φ\% to
ί) of Ad(G)-invariant polynomials φ on g, that is,

IG(§) = [φ I ^ φ is an Ad (G)-invariant polynomial on g} .

Iff(Ij) is a graded commutative algebra in a natural manner and consists
of Ad(iϊ)-invariant polynomials on ί) which can be extended to Ad ((?)-
invariant polynomials on g. For a Lie subgroup G of (?L(g, B) and its
Lie algebra g, define φkeIG(Q) by

&(X) = trace X2k for X e g c gl(g, Λ) .

Let Pont (g) denote the subalgebra of IG(Q) generated by φk, 1 <g Λ ̂  to/2].
Pont(g) is called the Pontrjagin algebra of g. The significance of Pont (g)
is as follows. In general, let ξ be a smooth real vector bundle on M of
rank <? such that the frame bundle of ξ has a G-reduction P, and w(P)
denote the Weil homomorphism of P :

W(P):IG(Q)->H*(M;R).

Then the subalgebra Pont*(f) of Jϊ*(ikf; Λ) generated by the real Pontrjagin
classes of ξ is given by

Pont*(f) = w(P)(Pont(β)) .

In the following, we are mainly interested in IL(t0) and Pont(f0).
Let Q be an L0-structure of 2nd order on a smooth manifold B of

dimension q, which is associated with L/LQ as in §2. Let Γ be the pseu-
dogroup of local automorphisms of Q. Consider a Γ-foliation ^ of
codimension q on a smooth manifold M. Let v{^) denote the normal
bundle of &~ and Pontfc(v(^)) be the fc-dimensional homogeneous part
of the subalgebra Pont*(v(^)) of ίP(ikΓ; B).

With these understood, we can state our strong vanishing theorem.

THEOREM 4.1. Let L/Lo be a semisimple flat homogeneous space of
dimension q associated with a semisimple graded Lie algebra I = g_x +
g0 + gt and ϊ0 be a maximal compact subalgebra of g0. Let Γ be the
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pseudogroup of local automorphisms of an LQ-structure Q of 2nd order
associated with L/Lo on a smooth manifold B of dimension q. Suppose
that

(1) H2>\1) = 0 and
( 2 ) Pont(«o)cIL(l0).

Then for a Γ-foliation ^~ of codimension q on a smooth manifold M,
we have

) = 0 for k> q .

PROOF. Let QL -> B be the group extension of Q by L. It then
follows from the assumption (1) and Lemma 3.1 that QL has the normal
Car tan connection ω of type L/Lo. Denote by Ω the curvature form of
ω, that is,

Q = dω + — [(0, o)] .

As in §3, the prolonged bundle P\^r) of 2nd order has an L0-reduction
Q on M which is naturally induced from Q. Let QL —> M be the group
extension of Q by L. Then by Lemma 3.2, QL has an L-principal con-
nection ώ such that for each fa e ^

ώ = fa

2)*ω on QL\Ua.

Denote by Ω the curvature form of ώ. Then by the naturality of the
exterior derivative

Ω=fa

2)*Ω on QL\Ua,

from which we get

(4.1) Φ(Ω)=Γrφ(Ω) on QL\Ua

for each φeIL(ΐ).

Let P be the G0-reduction on M of the prolonged bundle P\β~) of
1st order associated with Q as in §3. P is a principal G0-bundle associated
with the normal bundle v(J^~) of ^ . As is seen in § 1, P has a J8Γ0-
reduction P^o on ilf. Corresponding to this reduction, we have, by the
naturality of the Weil homomorphism, the following commutative diagram:

(4.2) \
w(QL)\ /

H*(M; R)

where r is the restriction homomorphism, and w(QL) and w(PKo) denote
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the Weil homomorphisms. By virtue of the diagram (4.2), the assumption
(2) implies the strong vanishing

Pont* (u(JH) = 0 for k > Q

In fact, let fkePont\v(^)). Then, there exists an element Ψ e
Pont(ϊ0) such that

w(PKo)(Ψ) = ψk .

By the assumption (2) we have an element Ψ' e /L(I) such that r(Ψ') = Ψ'.
Note that w(QL)(Ψ') = ψk by virtue of (4.2). Consider the Jfc-forms Ψ'Φ)
and Ψ'{Ω). These are L-invariant and horizontal forms on QL and QL

respectively. Hence Ψ'φ) is pushed down to a A -form Ψ'φ) on M and
Ψ\Ω) to a k-ίoτm Ψ'(Ω) on B. Then it follows from (4.1) that

(4.3) Ψ'φ)=f*Ψ'(Ω) on Ua.

Since dim B = q, Ψ\Ω) vanishes if k > q, and hence by (4.3) so does Ψ'φ).
Then we have only to recall that by the definition of the Weil homomorphism

w{QLW) = [Ψ'φ)] ,

where [•] denotes cohomology class in JH"*(M; R). This completes the
proof. q.e.d.

5. The conditions (1) and (2). In this section we study the conditions
(1) and (2) in Theorem 4.1 in detail. First, we recall the relevant facts
about the structure of automorphisms of real semisimple Lie algebras.
For details, see Matsumoto [10], Satake [14] and Takeuchi [17].

For a given Lie algebra g, let Aut (g) and Inn (g) denote the group
of automorphisms of g and the group of inner automorphisms of g res-
pectively. If A, B, are subsets of g, then we put

Aut (g, A, B, •••) = {«€ Aut(g); aA = A, aB = B, •} ,

Inn (g, A, B, •) = {a e Inn (g); aA = A, aB = B, •} .

Let I = g_x + g0 + gx be a semisimple graded Lie algebra and put
Io r=r g0 + Q19 a subalgebra of I. Let L/Lo be a semisimple flat homogeneous
space associated with ϊ. As in § 1, let I = ϊ + p be a Cartan decomposition
of I and e be a unique distinguished element of g0. Set ϊ0 = ϊ Π g» Go =
NLO{QQ) and KQ = NGo(ΐ). Take a maximal abelian subalgebra α of p such
that α contains e. a can be extended to a Cartan subalgebra § of I. Let
Ic and ίf denote the complexifications of I and ϊj respectively. Let
σ:Ic—>ϊc be the complex conjugation of lc with respect to I. By setting
δ = Jj π f, we have a direct sum decomposition § = h + a. Then ί)R =
l / ^ l b + aaty, where τ / ^ I is the imaginary unit, is the real part of
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ίf. σ defines an involutive linear automorphism of §R. Let Σ denote
the root system of ϊ c with respect to ψ. We regard Σ as a subset of
§Λ, that is Σ ai)R, by means of the duality defined by the Killing form
β of Ic. Choose a σ-order > of §R in the sense of Satake [14] such that
β(a, e) ^ 0 for each positive root a. Let Π be the fundamental system
of Σ corresponding to > , the σ-fundamental system. We denote by Πo

the set of roots a e Π satisfying β(a, e) = 0, and put

Autσ(/7) = {seGL(ί)R); sΣ = Σ,sΠ = Π, sσ = <τs} ,

Autσ(/7, Πo) = {se Autσ(/7); s/Z0 = /70} .

Considering that Aut (Ic, I) = Aut(I), we have

Aut (I) - Aut (I, ϊ, $, Π) Inn (F, I) .

The restriction homomorphism Aut (I, ϊ, % Π) —> Autσ(/7) then defines a
homomorphism 7: Aut (ϊ) —> Autσ(/7), and we have an exact sequence

1 -> Inn (Ic, I) -> Aut (I) - U Autσ(/7) -> 1 .

This is, in fact, a split exact sequence, that is, there exists a homo-
morphism 3: Autσ(/7) —> Aut (I, ϊ, \ Π) such that 7°δ = id. Hence we have
a semidirect decomposition

(5.1) Aut (I) = Inn (Ic, I). δ(Autσ (77))

from which we obtain a semidirect decomposition

(5.2) Aut (I, Io) - Inn (F, ϊ, Io) δ(Autσ(/7, 770))

also. In fact, it is easy to see that

Inn (Ic, I, Io) δ(Autσ(i7, Πo)) c Aut(I, Io) .

Conversely, let a e Aut(I, Io). Then, according to (5.1), a decomposes into

a = gδ(s) , geInn(Ic, I) , seAτAσ(Π) .

Since άί0 — Io, g~% = δ(s)l0. Then it is known (Matsumoto [10]) that ϊ0 =
δ(s)ϊ0 and Πo = sΠ0. Therefore g e Inn (lc, ϊ, Io) and s 6 Autσ(77, Πo). Hence

Aut (I, Io) c Inn (F, I, Io). δ(Autσ(/7, 770)) .

This completes the proof of (5.2).

LEMMA 5.1. Let L/Lo be a semίsimple flat homogeneous space as-
sociated 'with a semisimple graded Lie algebra I = g^ + g0 + fli Let
Ad: L —> Aut (I) be the adjoint representation of L on ϊ. Then

7(Ad L) c Aut,(/7, 770) .

PROOF. Let L* = Ad L and Lo* — L* n Aut (I, Io). We consider that
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L*/L* c Aut (ί)/Aut(I, Io). Since the adjoint representation Ad induces a
covering

(5.3) NL(l0)/LQ -> L/Lϋ - ^ L*/Lt

in a natural manner, L*/Lo* is connected. On the other hand, by virtue
of (5.1) and (5.2), 7 induces a fib'ering

Inn (IS I)/Inn (Ic, I, Io) -> Aut (I)/Aut (I, Io) -^-> Aut, (I)/Autα(/7, Πo)

in a natural way. We know (Takeuchi [18]) that the fibre Inn (ϊc, I)/
Inn (Ic, ϊ, Io) is compact and connected. It follows from these that L*/L*
is diffeomorphic to Inn (Ic, I)/Inn (Ic, ϊ, Io) and 7(L*/L0*) = Autσ(77, Πo). The
lemma is an immediate consequence of this. q.e.d.

We call the space R — Inn (Ic, I)/Inn (Ic, I, Io), which appeared in the
proof of Lemma 5.1, the symmetric R-space associated with L/LQ (or
often, with I). Indeed R is a riemannian symmetric space with respect
to an Inn (Ic, I, ϊ)-invariant metric.

Denote the infinitesimal linear isotropy representation Io —» gl(#, R), q =
dim L/Lo, also by λ. Let t0 be a maximal abelian subalgebra of ϊ0. An
Λ-linear map μ:t0 —>C is called a weight of λ: ϊo->o(q0(cgI(g, C)) with
respect to t0 if μ satisfies the condition: let Vμ denote the linear sub-
space of C9 given by

Vμ = {ve C9; X(H)v = μ(H)v for each H e t j ,

then Vμ Φ 0. The dimension of Vμ is called the multiplicity of μ.
Consider now the multiplicity counted sum

of powers of the weights μ of λ for each k e Z, k ^ 1. Φk is a real valued
homogeneous polynomial on t0 of degree 2k and has the property:

Φk 6 I^o(tO)(to) , φh\to = Φk

Define a closed subgroup L* of Aut (I) by

V = Ύ-\Autσ(Π, 770)) = Inn (Ic, I).δ(Autσ(i7, Πo)) .

Note that the Lie algebra of L* coincides with I.
With these understood, we have the following

THEOREM 5.1. Let I = g^ + g0 + gt be a semisimple graded Lie algebra.
( i ) Let L/Lo be a semisimple flat homogeneous space associated

with I. Then the condition (2) in Theorem 4.1 is equivalent to the con-
dition:
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Φk e IL(t0) for each k e Z, 1 ^ k ^ [q/2] .

(ii) Assume that
(2)' Pontft)cJz (lβ).

Then, for an arbitrary semisimple flat homogeneous space L/Lo associated
with I, the condition (2) holds. The condition (2)' is equivalent to the
condition:

Φk e IL* (t0) for each k e Z, 1 ^ k ^ [?/2] .

PROOF, (i) follows directly from the fact that restriction homomor-
phism /jfo(ϊo) —• /Λ^ (to>(*o) is an isomorphism, (ii) is an immediate consequence
of (i) and Lemma 5.1.

THEOREM 5.2. Let L/LQ be a semisimple flat homogeneous space
associated with a semisimple graded Lie algebra I = g-i + ft> + 8i If
L/Lo is compact, and if the condition (2) is satisfied, then the real total
Pontrjagin class p(R) of the symmetric R-space R associated with L/Lo

is trivial: p(R) = 1.

PROOF. Let K = NL(t). Then, the Lie algebra of K is f and, as in
Lemma 1.1, we get a polar decomposition of L: L = Kexipp. Let L°
denote the identity component of L. Then we have the Iwasawa decom-
position L° = K°AN of L°, where K° is the identity component of K. In
consequence we have a decomposition L = KAN of L. Noticing that
ANdLQ, we finally get

L = KL0 .

Hence K/NLβ) is diffeomorphic to L/LQ.
We next prove that NLQ(Ϊ) = Ko and hence

(5.4) K/KQ is diffeomorphic to LjL0 .

In fact, it is verified in the same way as in Lemma 1.1 that NLfβ) is
compact and its Lie algebra is f0. Consider the restriction λ' = X\NLQ(Ϊ)

to NLo(t) of the linear isotropy representation λ: Lo —> Go. Then the
image X(NLβ)) of λ' is a compact subgroup of Go which contains
Ko = NGβ). Hence X(NLo(t)) — Ko, for Ko is a maximal compact subgroup
of Go by Lemma 1.1. On the other hand, the kernel Gt Π NLo(ΐ) of λ' is
a compact subgroup of the vector group G1 so that Gx Π NLfβ) = {1} (cf.
§1). Therefore ^ 0 ( ! ) = Ko. Since L/Lo is compact by assumption, K/Ko

is also compact, and hence K is compact. (In fact, K is a maximal
compact subgroup of L.)

Now, let Bκ and BKo denote the classifying spaces of principal Un-
bundles and of principal iΓ0-bund]es respectively. Let
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K/Ko • BKo > Bκ

be the canonical fiber ing of BKo over Bκ. Let

Wx:Ix(ΐ)-^>H*{Bx;R) and

WXo:IKo(l>)-^H*(BKo;R)

be the (universal) Weil homomorphisms, which are isomorphisms, since
K and Ko are both compact. We denote by Pont*(f*0) the subalgebra
of H*(BKQ; R) generated by the real Pontrjagin classes pk of the real
vector bundle ξXQ of rank q, q = dim K/KQ = dim L/Lo, associated with
the universal ϋΓ0-bundle on BKo. Font*(K/K0) denotes the subalgebra of
H*(K/K0; R) generated by the real Pontrjagin classes pk(K/K0) of K/Ko.

Consider the following diagram:

IL(Ϊ) > Ix(t) > Iκβ0) — Pont(fo)

^wκ ^Wκ0

H*(BK; R) - ^ H*(BXo; R) —

H*(K/KQ; R) — Pont*(X/ίΓo)

where the first two arrows in the first row are the restriction homo-
morphisms. This is a commutative diagram, and

pk(K/K0) = i*pk

holds (cf. Borel [1] and Borel-Hirzebruch [2]). Hence we have the following
implications:

(2) Pont(ίo)c/L(to)

— Pontflo) c Iκ(t0)

~V<mt*(ξXo)<zp*H*(Bx; R)

=> Font*(K/K0) c i>*H*(βx; R) = (poi)*H*(Bκ; R)

=> ¥ont+(KIKQ) = 0 ,

where Pont+(ίC/iίΓ0) denotes the sum of positive-dimensional homogeneous
parts of Pont*(£/JKo). Therefore p(K/K0) = 1, and hence by (5.4), p(L/L0) =
1. Since L/Lo is compact,

Ad

(5.3) NL(ί0)/L0^L/L0 >R

is a finite covering. Consequently, we have
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p(R) = 1 . q.e.d.

Before proceeding, let us pay attention to the following observations,
which are not difficult to make.

OBSERVATIONS. 1) Let ϊ = g_x + g0 + & be a semisimple graded Lie
algebra and I = Σ * ® I(Aj) be the decomposition of I into its simple factors.
Put g<fc) = I(fc> n βp Then

for each k, and each I(fc) is also a semisimple graded Lie algebra.
2) If each simple factor ϊ{k) of I satisfies the condition (1), then I

also satisfies (1).
3) If each simple factor Vk) of I satisfies the condition (2)', then I

also satisfies (2)'.
4) Let L/Lo be a semisimple flat homogeneous space associated with

ϊ. Let Γ be the pseudogroup of local automorphisms of an L0-structure
Q of 2nd order associated with L/Lo on a smooth manifold B. If ϊ is
the scalar restriction to R of a complex Lie algebra, then L/Lo has an
L-invariant complex structure, B is a complex manifold and Γ is a
pseudogroup of local holomorphic transformations of B.

5) If Γ is a pseudogroup of local holomorphic transformations of
a complex manifold B, then the strong vanishing theorem (*) holds for
a Γ-foliation &~ (cf. Bott [3] and Bott-Haefliger [4]).

6) If ϊ is simple and if I is not the scalar restriction to R of a
complex Lie algebra, that is, if Ic is a complex simple Lie algebra, then
the condition (1) holds except the case

(cf. Ochiai [12]).

We shall now examine the conditions (1) and (2)' for semisimple
graded Lie algebras I = g_x + g0 + 9i such that lc is simple and p(R) = 1.
In the following, we keep our previous notations. lq denotes the identity
matrix of degree q, and Tr abbreviates the trace of a matrix unless
otherwise mentioned.

First we consider I of classical type.

EXAMPLE 1. I = δί(q + 1, R) (q ^ 1);

• = • - • _ i
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The condition (1) holds if and only if q ^ 2. The graded decomposition

I = Q-ι + 9o + 9i is given by

S-i =

βo =

X

a

B

XeR"

BeQl(q,R)

a= -ΎTB

)

The associated symmetric j?-space R is diffeomorphic to a real projective
space Pq(R) of dimension q.

Take f = o(q + 1). Then

0
Beo(q)

The infinitesimal linear isotropy representation λ: g0 —> gl(g, R) is given by

B

which is an isomorphism. Note that λ induces an isomorphism λ: ϊ0

o(q).
Set

\

H(xu •••,«,) =

where Xi&R, 1 ^ ΐ ^ i = [q/2], and 0 at the (q, ^-component appears
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only when q is odd. Then take

0 \\ H(xu ;x,)

Denoting by x{ the linear form on t0 defided by

/0

H(xlt ••-,*,)

we get

Define a homogeneous polynomial Pk on I by

for Xel.

Then Pk\t0 = Φk.
By the explicit computation of Aut(I) it is known (Takeuchi [17]) that

L* = Inn (§I(g + 1, C), §l(q + 1, B)) .

Hence Pk e IL* (βί(q + 1, JB)), which shows that the condition (2)' is satisfied
for Sί(q + l, R),

An example of associated semisimple flat homogeneous spaces L/Lo

is given as follows:

L = PL(q + 1, R) - GL(q + 1, R)/R*lg+1 ,

0
l, R) Lq+l

where /ϊ* is the multiplicative group of nonzero reals. Then L/Lo is
diffeomorphic to a real protective space Pg(R) of dimension q.

In this case,

a

0

0
\eGL(q

and the linear isotropy representation λ: Go —> GL{q, R) is an isomorphism
defined by

a
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Γ is nothing but the pseudogroup of local projective transformations of
a torsionfree linear connection on B.

EXAMPLE 2. I = o(S)

+ 2, B); *XS + SX = 0}

1

e =

\

0

\

- 1 /

where and

/

\ -1

l r

- 1 .

- l \

/

For this I the condition (1) always holds. Set

o(r, s) = {XeQl(q, R); *XS0 + S0X = 0} ,

co(r, β) = { I G gl(g, Λ); 3α e R with *XS0 + S0X = aS0) ,

where

Then the graded decomposition ϊ = g_i + g0 + 9i is given by

x'eRr

x" 6 R*
9-i = •

i

x'
x"

<x' - < x "
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B
aeR

B 6 *>(r, s)

I

ζ' ζ"

1
Ψ'eR8

Let Sr x Ss be the product of two euclidean spheres of dimension r and
s respectively and Ert8 denote the quotient space Sr x S8/~ of Sr x S*
by the equivalence relation ~ defined by (x, y)~(—x, —y) for (x,y)e
Sr x S*. Then the associated symmetric iϋ-space R is diίfeomorphic to
Er,8 (Takeuchi [18]).

If we take ϊ = o(q + 2) n I, then

(/ 0

B'
B"

B'eo(r)

B" e o(s)

The infinitesimal linear isotropy representation λ: g0 -»gl(g, R) is given by

la

λ defines isomorphisms λ: g0

Take

*0

s) and λ: ϊ0 = o(r) φ o(s) (direct sum).

\

mχ[,...,»;.)

o /

xf

i9x
f/eR

where V = [r/2], Z" = [s/2], 1 ^ i ^ Γ, 1 ^ i ^ r . Then, in the same way
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as in Example 1, we get

Define a homogeneous polynomial Pk on I by

for Xel.

Then Pk\t0 = Φk.
It is known (Takeuchi [17]) that L* = Inn (Ic, I) if q is odd, and L* is

generated by Inn(Ic, I) and the involutive automorphism Γ Ϊ H — %X of
I if q is even. Hence Pk e IL* (I), which shows that the condition (2)' is
satisfied for I = o(S).

An example of associated semisimple flat homogeneous spaces L/Lo

is given as follows:

L = O(S)/{± W

= {xe GL(q + 2, B); *xSx - S}/{±lg+2} ,

i Γ *
Lo = \x = 0 * *

\0 0 *
Then L/Lo is diίfeomorphic to Er,a.

Set

O(r, s) = {xe GL(q, B); ιxSox = So},

CO(r, s) = {x e GL(q, R); 3α > 0 with 'xSox = aS0} .

Then

<xSx = S /{±l5+2} .

1 1

a

λ

b

a"1

1

b e O(r, s)

and the linear isotropy representation λ: GQ -»GL(q, R) is given by

la

b

λ induces an isomorphism λ: Go = CO(r, s). Note that Γ is nothing but
the pseudogroup of local conformal transformations of a pseudoriemannian
metric on B with signature (r, s).
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In the same way, we can see that the following Examples 3, 4 and
5 also satisfy the condition (1) and (2)'. Let F denote R, C or the real
quaternion algebra H. The standard units of H are denoted by 1, i, j
and k.

EXAMPLE 3.

{{Xe Ql(2n, F); *XH + HX = 0} if F = R or H
1 = \{XeQl(2nf F); Tr + HX=0} if F=

e =
l/li 0

w h e r e n ^ 5 i f F = R , n ^ Z i f F = C, n ^ 2 i f F = H, X d e n o t e s t h e
conjugate matix of X, and

Ό

0

I is isomorphic to o(n, n) if F = Jfϊ, 3u(w, w) if F = C and &Kw, n) if F= H
in terms of the standard notations.

In this case, the dimension q is:

if F= R

ίi(2» + 1) if F = H.

The associated symmetric i?-sace R is diffeomorphic respectively to:

SO(n) if F = Λ

R M Z7(n) if F = C

.Sp(») if F= H.

EXAMPLE 4. I = &K»» -β) (» ^ 3);

1 /J, 0

In this case, the dimension q = n(n + l)/2 and the associated symmetric
i?-space R <*>* U(n)/0(n).

EXAMPLE 5. I = {XeQΪ(2n, H); *XA + AX = 0} (n ^ 3);

0 ί
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where A = jlzn.
In this case, the dimension q = n(2n — 1) and the associated symmetric

22-space R & U(2ri)/Sp(ri). I is isomorphic to 3o*(4w) in terms of the
standard notations.

Note that these five examples give all the semisimple graded Lie
algebras I of classical type such that Ic is simple and p{R) = 1 (cf.
Takeuchi [16]).

We shall now consider the exceptional types.

EXAMPLE 6. There are two types of semisimple graded Lie algebras
I = g_! + g0 + 9i such that I is a simple Lie algebra of exceptional type,
ϊc is simple and p{R) = 1:

l = EV, $0 = EI®R, and

l = EVII, Qo = EIV®R.

The condition (1) holds for these I. We show that both I satisfy the
condition (2)' also.

Let lc = g£i + g? + gf be the complexification of I and λ: g£ —> gl(gίii)
denote the complexified infinitesimal linear isotropy representation defined
by

Hx)y = [x, v] for xe$,ye g^ .

Denote by g5 the derived algebra of g0 and define a homogeneous polynomial
φk on the complexification QΌC of Q'Q by

φk(x) = Tr(X(x)2k) for XGQ'O
C .

First we prove the following fact: If there exists a faithful repre-
sentation lc <=—> gϊ( V) of lc on a complex vector space V such that for
some ck 6 R*

(#) Ύτ(X2k) = ckφk(X) for X e g ; c c I c c g I ( F )

holds, then the condition (2)' is satisfied for I.
Take e, ϊ, p, τ, Io as in § 1 and extend τ to a conjugate linear automor-

phism τ of Ic. Then ϊu = t + V—Vς> is a compact real form of Ic. Choose
an ϊ%-invariant hermitian inner product < , > on V and let X* denote the
adjoint of X with respect to < , > for XegΙ(F). Then τX = -X* holds
for X e Ic. Denote by a the complex conjugation of Ic with respect to I.
Then θ — στ is an involutive automorphism of lc and the 1-eigenspace
of θ coincides with the complexification ϊc of ϊ. Note that in our case f
is βu(8) or E6®R according as I = EV or I = EVIL So ϊ has the same
rank as that of I, and thus θ is an inner automorphism of lc. Therefore,
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since σ = θr, there exists an element A e GL{ V) such that

(5.4) σX=-AX*A~ι for Xelc.

Define an Inn (F)-invariant polynomial Pk on Ic by

Pk(X) = Tr (X2k) for X e lc c gl( F) .

Then it follows from (5.4) that for Xelc

Pk(σX) = Tr ((AX*A~Jk) = Tr (X*2*) = Tr (X2k)

Hence, for l e i we have

Thus, putting Pk — Pk\I, we get

Pk 6 IiBn(,Cfl)(I) .

Since ϊ0 c gj and φk \ ϊ0 = ^fc, it follows from (#) that

P*|ϊo = C A .

Consequently, Pont (ϊ0) c /inn(ϊc,ϊ)(I). On the other hand, it is known (Takeu-
chi [17]) that in our case

L* = Inn (Ic, ϊ) .

Hence the condition (2)' is satisfied.
Now let us construct a faithful representation ICc=->gI(F) of lc with

the property (#).
Let K be the Cayley algebra over C and x H> X denote the canonical

involution of K. Identifying Cl with C, we define a linear form tr and
a quadratic form n on K respectively by

tr (x) = x + x , n(x) = xx for x e K .

Let -Mβ(-K) denote the total matrix algebra of degree 3 over JfiΓ, and put

J={ue M3(K); 'ΰ = u}.

We make / an algebra over C by defining a bilinear product ° on J by

wo'y = —(uv + tra) for u, v eJ,

and denote it by $. Then ^ is a complex simple Jordan algebra.
We define a linear form Tr and a cubic form N on J respectively by

Tr (u) - ζx + f2 + f3,
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for

| f2 xA, ^ e C , α^eJΓ.

Xy. ζj

Let (u, v, w) denote the tri-linear symmetric form on J obtained from
N by linearization and (u, v) denote the nondegenerate symmetric bilinear
form on J defined by

(u, v) — Ίx{uo v) for u, v eJ.

The nondegeneracy of (, ) then defines on J a commutative cross product
u x v by

(u x vf w) = 3(u, v, w) for each w ej.

Let R(u) denote the translation on the algebra $, that is, the linear
operator on / defined by

R(u)v = uov for u, v ej.

We define a subspace & of gl(J) by

& = {i2(u); ί*eJ, Tr(tt) = 0} .

Let 2f denote the subalgebra of gl(J) consisting of the derivations of
the algebra Qf. Then ^ is a complex simple Lie algebra of type J^.
Note that & Π ̂  = {0}. We define if by

gf = ^ + ^ ,

which is a subalgebra of gl(J). Then g7 is a complex simple Lie algebra
of type 2£β.

Let u κ> u* denote the linear isomorphism of J onto the dual space
J* of J defined by

u*(v) = (u, /y) for v eJ.

Take one dimensional complex vector spaces Fx and V29 and let ^ and
f2 denote their bases respectively. Consider the direct sum

of complex vector spaces Vl9 J*, J and y2. We define a bilinear multipli-
cation on F a s follows:

/<•/* = Λ (i = 1, 2) , /,./, - Λ Λ - 0

O o o o
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(5.5) W /L = 0, u f2 — u u* fx = u*, u*-f2 = 0

U'V* = (u, v)flf u*-v = (u, v)f2

w v = 2(u x v)*, w*"y* = 2(u x v) ,

where u, v eJ. Then we get an algebra over C, which is denoted by
T. We define a linear form Trace on V by

Trace (x) = a + β for a? = af± + w* + t; + βf% 6 F .

Let L(x) denote the left translation of the algebra T, that is, the linear
operator on V defined by

L(x)y = x y for x, y e V .

A subspace £f of gl(V) is defined by

^f = {L(a?); a? 6 V, Trace (a?) - 0} .

The transpose of EeQΪ(J) is denoted by *EeQΪ(J*). We consider that
g7 c gl( V) by means of the injective homomorphism g7 —> gl( V) defined
by the correspondence

Then g3 is known to coincide with the subalgebra of gl( V) consisting of
all derivations of the algebra T. Note that g3 Π £f = {0}. We define
© by

© = g7 +£f,

which is a subalgebra of gl( V). Then © is a complex simple Lie algebra
of type EΊ. In more detail, we get the following bracket relations:

[E, L(x)] =

(5.6) ^
ό

[L(f1-fi),L(u*)]= - \
ό

where E 6 g7, a? 6 F, Trace (sc) = 0 and %eJ. For the details of those men-
tioned above, we refer the reader to Brown [5], Ise [7] and Schafer [15].

Now, put

Then it follows from (5.6) that the eigenvalues of adβ are —1, 0 and 1.
The eigenspace decomposition © = ®_t + ©0 + ©x of ad e is given by
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); ueJ} ,

©0 = gf 0 Ce ,

β ι = {L(tt*);tteJ}.

It is known (Kobayashi-Nagano [9]) that each semisimple graded Lie
algebra I = g_i + g0 + Qι in Example 6 is then obtained by setting

βP = i n ® , , p = - l , o , l ,

for an appropriate real form I of ©. In particular, remark that gjc = ST.
We are now in a position to see that the faithful representation

©c^>gI(F) satisfies the condition (#).
In fact, it follows from the first equation of (5.6) that the complexified

infinitesimal linear isotropy representation λ: Q'Q
C —> gϊ(g î) is equivalent to

the natural representation S? ^ gl(J). It is then verified from the defini-
tion of the imbedding S? <=•* gl( V) that

Tr (X2k) = 2Tr (λ(X)2fc) = 20fc(X)

holds for XegJ ccgI(F). Hence the condition (#) is satisfied.

OBSERVATIONS. 7) From the classification of semisimple graded Lie
algebras (Kobayashi-Nagano [9]) and the computation of real Pontrjagin
classes of compact symmetric spaces (Takeuchi [16]) the above Examples
1 to 6 are known to give all the semisimple graded Lie algebras I = g_t +
g0 + Q1 such that I is simple, Ic is simple and p{R) = 1.

8) There exists only one semisimple graded Lie algebra I such that
I is simple, lc is not simple and p(R) = 1:

I = §1(2, C) regarded as a real Lie algebra

e = If1

2lθ -1.
We can see without difficulty that the condition (2)' is satisfied also for
this example. In consequence, we observe that if I is simple and p(R) =
1, then the condition (2)' is satisfied for I.

From the last observation we have the following

THEOREM 5.3. Let ϊ = g_i + g0 + gi be a semisimple graded Lie
algebra. Then the condition (2) is satisfied for every semisimple flat
homogeneous space L/Lo associated with ϊ if and only if the real total
Pontrjagin class p(R) of the symmetric R-space R associated with I is
trivial: p(R) = 1.

PROOF. The only if part follows directly from Theorem 5.2. We
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prove the if part. Let I = I{1) 0 φ I(s) be the decomposition of I into
simple factors. If we denote by Rk the symmetric ϋJ-space associated
with I(*> (1 ̂  k ^ β), then

R = R,x x R8

and hence

H*(R; R) = H^R,; R) (x) (x) H*(R8; R) .

In particular, p(R) = p(Rt) ® (x) p(Rs). Since we assume that p{R) =
1> V(Rh) = 1 for each k. Then, by Observation 8, the condition (2)' is
satisfied for each l{k). So, by Observation 3, I satisfies the condition (2)'.
Hence it follows from Theorem 5.1 (ii) that the condition (2) is satisfied
for every L/LQ associated with I. This completes the proof. q.e.d.

6. Concluding remarks.
1) As a corollary of Theorem 4.1, we obtain the main theorem of

Nishikawa-Sato [11], a strong vanishing theorem for protective or con-
formal foliations. In our terminology of this paper, a Γ-foliation is
called protective or conformal according as Γ is the one in Example 1
or the one in Example 2 (r ^ s = 0).

2) It should be noted that our argument is essentially in the real
category as is clear in the light of Theorem 5.3. Compare Observations
4 and 5.

3) The procedure in § 1 of [11] can be naturally extended to yield
examples of "locally homogeneous" Γ-ίoliations associated with semisimple
flat homogeneous spaces. As a result, we can get examples of /'-foliations
with nontrivial secondary characteristic classes of foliations (see Bott-
Haefliger [4], Kamber-Tondeur [8] and Yamato [21]).
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