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1. Introduction. In quantum field theory and in quantum statistical
mechanics the multiple time Green’s function [1, 16, 17, 18, 19, 24] has
been studied from different points of view. In [24] it is shown that the
vacuum expectation values of a neutral scalar field, interacting with it-
self, gives rise to a dynamics of a large algebra generated by an abstract
“time evolution” together with the time zero field algebra. In [19] the
same algebraic considerations are used in describing the dynamiecs and
the Gibbs states of quantum lattice systems with “bad” potentials, i.e.,
potentials where the time development cannot be described with a one-
parameter group of *-automorphisms of the given C*-algebra of time
zero observables. The two approaches, summarized above, have been
extended in a recent paper [7] by Bratteli and Robinson.

Common to the earlier works is that the attention has been restricted
to Gibbs states and KMS states. In this paper we adapt the algebraic
tools of the articles cited above to arbitrary time invariant states. As
applications we propose an infinitesimal KMS condition (and ground state
condition) for unbounded derivations. Existence theorems are proved for
inner limit derivations.

The paper [7] also constructs modular states for derivations (in a
special class of nest algebras) which are not generators of one-parameter
groups of automorphisms, but the analysis in [7] is based on the one-
time Green’s function. The conclusions in [7] are therefore of a different
kind than the present ones, based on the convergence of the multi-time
Green’s functions of locally time-invariant states.

Existence theorems for KMS states and ground states have recently
been proved in [15] and further analyzed in [10]. Those papers treat
the general setting of C*-algebras, but assume that the derivation is a
generator. Our present results are different from [15] in several respects.
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Firstly, they apply to arbitrary inner limit derivations which are not
assumed to generate one-parameter groups of automorphisms. This is
the essential reason why the multi-time Green’s functions are needed.
In the case of generators, the states alone suffice.

In the first section we establish a correspondence between dynamics
and extensions of certain states on the algebra of time-dependent observa-
bles associated with the multi-time Green’s function. (Our first theorem
is an abstraction of a special case which first appeared in [19].) We have
stated these results in the generality of unbounded representations [13],
although only bounded representations are needed in the main section.
Only little additional work is needed for the extra generality, and appli-
cations are pointed out along the way.

Let 6 be an unbounded densely defined *-derivation in a C*-algebra
A, and let w, be a representation of A on a Hilbert space 2. Finally,
let H be an unbounded self-adjoint operator in .%. We say that H ex-
tends ¢ in the representation w, if 7,(A)fe D(H) for all Ae D(6) and
feD(H), and

(%) 1Hr(A)f = my(0(A)S + my(A)iHf .

In the main section of the paper we construct for a general class of
derivations ¢ a variety of physically relevant representations 7,: ¥ — B(.¢")
and self-adjoint operators H which extend ¢ in the respective representa-
tions m,. The above mentioned extension theorem is used in combination
with the Arzela-Ascoli theorem in constructing the representations =,.

2. Extension of states and dynamics.

DEFINITION 1. If ¥ is a *-algebra over the complex numbers with
identity I, then we denote by B = B(A) the free *-algebra generated by
pairs of elements (A, t) with Ae ¥ and te€ R, modulo the relations

(A4, (A 8) = (A4, 1), MAL 1) + (Ay B) = VAL + A 1),

and (I, t) = (I, 0) for all te R, neC and A, A,€U. More specifically, let
<7~ denote the *-algebra spanned linearly over the complex numbers by
strings of elements

(1) P=(A,t)A,t)- - (A,t) with A,eA and t,eR.

Define the *-operation by P* = (4}, t,) --- (4F, t) with P as above. Let
J denote the two sided *-ideal generated by the elements

(2) (Au t)(Azr t) - (AlAzr t)7 7\'(‘Au t) + (Azy t) - (NAI + Az’ t) ’
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and (1, t) — (I, 0). Then B() is the quotient *-algebra 9%#7J. Note that
B(A) has an identity.

Following [19], [16] and [24], we define a one-parameter group of
*-automorphisms {g,;: — <t < =} of 7~ by

gt((Au tl) cee (Ak’ tk)) = (Au b+ ) (At +8) e (Ak’ b + t) .

Since g, is a *-automorphism of %7~ for each ¢, the set of elements given
by (2) is invariant under g, for all ¢. It follows that the two-sided ideal
J is invariant as well. The corresponding one-parameter group of *-auto-
morphisms of the quotient algebra B(Y) = 7#7/J is also denoted by
{g::t e R}.

THEOREM 1. Let @ be a positive linear functional (w(P*P) = 0 for
all PeBA)) on B(YA) satisfying the following conditions

(i) w(g,(P)) = w(P) for all tc R and PeB(A)

(ii) The mapping t — w(P*g,(P)) is continuous on R for all P e B(A).
I. Then there is a *-representation (closable in the semse of [13]) @ of
B(A) into possibly unbounded operators with a common dense and in-
variant domain < in o Hilbert space 9%, a cyclic vector £€ =, and a
strongly continuous unitary representation U(t) of R on 9% such that

(a) Z =rn(B)

(b) o(P) = (& n(P))

(e) URE=:¢

(d) U)r(P)U(—t) = n(g,(P)) for all PeBA) and all te R.
II. Let w, denote the restriction of @ to A. Then

(3) (D(Au tl)(AZ’ tz) e (Ak’ tk)

= (Er ﬂ:O(Al) U(tz - tl)ﬂ'o(Az) U(ta - tz) e U(tk — tk—x)ﬂo(Ak)E) .
The function ®((4, t,)(4,, t,) s uniformly bounded in (t,t,) € R for
fized A, A, .
III. Moreover, the representation m is determined up to unitary equi-

valence by conditions (a) and (b). The four conditions (a) through (d)
determine © and U(t) up to unitary equivalence.

Proor. We will only outline the proof of this version of the GNS
construction, omitting many details, since the ingredients are essentially
contained in [13], [19] and [21].

I. Let w be a state on B satisfying (i) and (ii). Let & denote the left
ideal of element Pe®B such that w(P*P) = 0. For arbitrary elements
P, Qe®B we have by the generalized Schwarz’s inequality
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We denote by 2 the quotient space B/~ with inner product
(5) (P+ £ Q+ &)= w(P*Q)

It follows from (4) that the inner product is well defined. Similarly
T(P)Q + &) = PQ + & is well defined for all points [Q] =Q + & in .
If & denotes the vector [I] =[(Z, 0)] = [([, t)] then & = n(B)t. We let
¢ denote the completion of & with respect to the inner product given
by (5) and contend that 7 is a *-representation which satisfies (b). <&
is clearly a common dense and invariant domain for this representation.
We now define U(t) for t€ R by

(6) Ut)rn(P)¢ = n(g(P))é ,

and leave to the reader to check that (6) is a good definition; || U(t)x(P)&|* =
[|m(P)&|]* = w(P*P) for all ¢t; and lim {|| U(¢t)x(P)é — w(P)&||: t — 0} = 0.
Here the property (i) and (ii) of the positive linear functional @ are used.
Finally properties (¢) and (d) follow from property (i) and (6) combined.

II. Let 7, denote the restriction of = to A ~ (A, 0). Using (¢) and (d),
we then have, starting with the left hand side of (3)

O((Ayy 8) » - (A 8) = (& w((Ay t) -+ (Ai 8)E)
= (§, 1(g:,(A) + - - 1(g:,(A:))E)
= (& Ut)my(A) U(—t) Ut)my(A) U(—1,) - - - wo(A) U(—1,)8)
= (& T(A) U(t, — t)mo(Ay) «++ Ut — ti-)mo(Ai)E)

and (8) follows. Uniform boundedness of w((4,, t,)(4,, t,)) in (¢, t,) follows
from the estimate

I(Sr TEO(AI) U(tz - tx)n'o(Az)E)[ § Hn'o(AL*)E” Ilno(Az)EH .

III. The uniqueness of = and U(t) follows as in [13] and [21].

Our next result concerns extensions of positive linear functionals on
A. (A positive linear functional will be called a state in the sequel even
if it is not normalized). We know that states on the subalgebra o of
B(A) always extend to states of AMB). See for example [20]. But the
extension may in general be highly non-unique. However, we have

THEOREM 2. Let U be a *-algebra over the complexr numbers, and
let T, be a *-representation of A with a common dense and invariont
domain < in a Hilbert space 22, Let & be a vector in 2 and let w,
be the vector state on U given by w,(A) = (&, w,(A)E) for Ac.

If Ut) is a strongly continuous unitary one-parameter group on .25
satisfying

(e) Ut)=z = =2, and
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(f) U@R)E =E¢& for all teR,
then the linear extension @ given by (3) to BA) of w, is positive, i.e.,
o(P*P) =z 0 for all Pe®B(), and satisfies conditions (i) and (ii) of
Theorem 1.

ProOF. Note that since € 92, (A C =z, and (e) hold, we may
define w((A,, t,) --- (4, t,)) by the right hand side of (8) for every product
of the form (4,, t,) «+- (A4, t,) in B(A). Since B(A) is spanned as a linear
space by such products, the linear extension of ®, to B(Y) is uniquely
given this way, and it is clear that @ extends w,.

Using Definition 1 we see that for every PecB(A) there is a positive
integer k& such that P = >, P,, where the elements P, are all of the form
(1) and where n runs over a finite index set, also depending on P. (To
see this, we may insert the identity element appropriately and use the
multi linearity built into Definition 1.) We must show that

o(P*P) = >, w(PyP,) =0

where w(P*P,) is defined by (3) for each pair of indices #» and m. In
order to avoid too heavy index notation, we restrict ourself to the case
k = 2 leaving the analogues cases k > 2 to the reader. Thus we assume
that for each index % there are pairs A,, B,e¥ and s,, t,€ R such that
P, = (4,, t.)(B,, s.). Then

a)(P:Pm) = (nO(An) U(s'n - tn)ﬂ‘-o(Bn)E) 7r0(‘4'711) U(sm - tm)no(Bm)§>
If we define vectors 7, and 7 by
Nw = T(A,)U(s, — t)n(B,)é and 7 = Zﬂ‘, Vu s

it follows that W(P*P) = 3. m us W) = in Vs Zim W) = (0, 7)) = |IPIF = 0
showing that @ is a positive linear functional.

It is clear from (3) that @ extends w,. We must finally verify con-
ditions (i) and (ii).

By linearity it is enough to verify these conditions for elements P
of the form (1). For such elements condition (i) is clear because w(P)
depends only on the differences (¢, — ¢, «--, t, — t,—,), and the k vectors
(t, +++, ty and (¢, + t, ---, ¢, + t) have the same difference-vector. Finally
condition (ii) follows immediately from the strong continuity of U(¢).

g.e.d.
REMARK 1. For many interesting states ® on B(A), the correspond-

ing representation 7 described in Theorem 1 is bounded, i.e., @(P) is
bounded on .9 for all Pe®B(A). This is the case when U(t) in (3)
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implements an automorphism group of U and for weak * limits of such
states w. These states satisfy the following conditon
(8) o(P*(A*A, t)P) < ||Alfw(P*P)

for PeB(A), Ac, and te R, which in turn implies boundedness of
w((4, t)), and hence of 7(Q) for all Q e B(A).
As a corollary to this remark we have

COROLLARY 2. Suppose the representation wm, of Theorem 2 is «
bounded representation of a C*-algebra U on the Hilbert space 2. Then
the representation w induced by the extended state @ ts also bounded on
7, i.e., w(Q) bounded for all @ cB(N).

PrROOF. We need only to verify the estimate (8) for the extended
state w. With P given by (1) we have

w(P*(A*A, t)P) = w((4, t)P)*((4, t)P)
= Hﬂ:o(A) U(tl - t)ﬂ:o(AJ U(tz - t1) et U(tk - tk—1)7to(Ak)E”z
é Hﬂ-o(A)Hz”ﬂ:o(AJ U(tz - t1) et U(tk - tk—l)ﬂo(Ak)EHZ
< ||A|Pw(P*P) q.e.d.

3. KMS states on B(A).

DEFINITION 2. Let 2 be a *-algebra over C, and let 7, be a *-re-
presentation of 9 on a common dense and invariant domain & in a
Hilbert space .#. Let U(t) be a strongly continuous representation of
R satisfying conditions (e) and (f) for some vector £€ 2. We then say
that the state ®,(4) = (& w,(A)¢) is KMS at inverse temperature B >0
for U(t) if one of the following two equivalent conditions hold

@) |7 et maUbm BRI =" ot + iB)E 7B U—tm( ARt

for every entire analytic function ¢ such that
H(x) = S o~ itgp(t)dt

belongs to the space 2(R) of compactly supported C=-functions on the line.
(h) There is a bounded continuous function F'(z) on
{2:0<Imz =< B}
which is analytic in the interior of this strip and satisfies
F(t) = (& m(A)Ut)n(B)8) and F(t + iB) = (§ m(B)U(—t)my(A)E)

for te R.
Naturally there are similar but quite symmetric conditions for B8 < 0.

|
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The equivalence of (g) and (h) is a consequence of the following
lemma which is implicit in [2].

LEMMA 1. Let f, and f; be bounded continuous functions on R,
which are both Fourier transforms of finite complex measures on R.
Then the following conditions are equivalent.

@ |" pwrwa=\" ot + )bt for every  as in (g), and

(M) There is a bound_ec:i analytic function F as in (h) such that F(t)=
fi@®) and F(t + 18) = fi(t) for all teR.

Note that the lemma does indeed apply. The function fi(t) =
(&, mw(A)Ut)m(B)E) is bounded (by |7, (A*)&||||7,(B)é||) and continuous on R.
Let U(t) = Se“”E(dx) be the spectral decomposition of U(t), and put
to(dx) = (wy(A*)E, E(dx)my(B)E). Then ||g4]] < oo and f, = .

The significance of Definition 2 is due to the fact that the states in
question are modular states. Starting with a state @,(4) = (& 7,(A4)&)
for some representation w, of U on a Hilbert space .o, we define the

cyclic subspace 7 as the closed linear subspace spanned by w, ()¢ and
denote by =, the restriction of m, to 57 .

PROPOSITION 1. Suppose that 7, is a bounded representation on SF,
and ®, is a KMS state for some 8> 0. Then & is a cyclic and separat-
ing vector for the von Neumann algebra w (N)’, i.e., the bi-commutant
of m(A) in B(SF).

PrOOF. It is clear that ¢ is eyclic for z,(2)’. Let Xem (W) be such
that X*& = 0. By Kaplansky’s density theorem there is a bounded
sequence B, e such that w,(B,)¢— X¢& and #,(B})&—0. We conclude

from (g) that ng)(t)(n'o(A)E, U#)Xe)dt = 0 for all ¢ with § € = and all

AecU. This in turn implies X¢ = 0. For arbitrary Y en,(A)’ we then
have (XY)*¢ = Y*X*¢ =0, and by the above XY& = 0. Hence, X is
identically zero, since this holds for all Y. g.e.d.

The conditions of Definition 2 are formulated in such a way that
they are easy to check in applications. However, the dynamics is
described by a one-parameter group of *-automorphisms g, and a state
o on B(A). Therefore one is really interested in knowing the KMS
property for the data (B(Y), g,, w).

DEFINITION 3. We say that a state @ on B() is a KMS state for
inverse temperature B > 0 if condition (g’) (or equivalently (h’)) is
satisfied for the functions
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i) = o(Pg(Q) and fy(t) = @(g.(Q)P)

for every pair of elements P and @ in B(N).
The following theorem is therefore of principal importance.

THEOREM 3. Let the data (w, A, 5%, & U(t)) be as above and as in
Theorem 2. Let w, be the vector state given by w,(A) = (&, w,(A)E), A€,
and let @ be the extemsion given by (3) to B(A) of w,.

Then @ is KMS for inverse temperature B if and only if for
every positive integer k and every set A,, ---, A, of elements in U there
exists & holomorphic F(z, ---, z,) in the region 0 <Imz <Imz,<---<
Im z, < B, continuous up to the boundary, such that the boundary value
of F for Imz =-+--=Imz2;=0 and Imz;, =--- =Imz, =8, ie.,
F(t, «-«, tj tjr, + 18, <+, t, + 1B), s the function

(S, 71,'0(A,-+1) U(tj+2 - t:‘+1) °tt U(tlc - tk—1)7to(Ak)
U(t1 - tk)n'o(Al) e U(tj - tj—1)7ro(Aj)§) .

PrOOF. The proof depends in a crucial way on the main result of
[2], Theorem 3.1, or rather the proof of this result. It is pointed out
in [2, Remark 3.2] that [2, Theorem 3.1] and its proof are stated in a
form which includes the applications to Wightman fields. By the same
reasoning it follows that [2] applies to the present case with unbounded
representations w,.

Suppose first that o is KMS for some 8 > 0. By [2, Theorem 3.1]
we see that there is a holomorphic function F in 0 <Imz < --- <
Im z, < B, continuous up to the boundary, such that for all j =1, ---, &k

F(ty <=+ ti ti + 8y + v, b + 1B)
= &9, (Ain) ** 9,(4)9:,(4) -+ g:,(4)))
= w((A.Hu t:i+1) °ce (Ak’ tlc)(Au AREE (A‘f9 t:i))
= (E’ n'o(Aiﬂ) U(ti+2 - tj+1) e no(Ak) U(tl. - tk)n'o(Al) e U(ta’ - ti—1)7ro(Aj)E) .

Conversely, suppose that for every k-tuple of elements in ¥ there exists
a holomorphic function with the stated boundary values. We must show
that for every pair of elements P, Q ¢ B(A) there exists a bounded holo-
morphic function @(z) say in 0 < Im z < B, continuous up to the boundary,
which satisfies

(9) P(t) = @(Pg(@)) and O + i8) = w(g(@)P) .

By linearity it is enough to consider elements P and @ in B(A) of the
form P=(4,s)+-(4,, 8, and Q@ = (B, t)+-- (B, t,). Corresponding
to the (k = m + n) tuple of elements (4,, ---, 4, B, ---, B,) there exists
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a holomorphic function F(z, -++, 2,,) in 0 <Imz < --- <Im=z,,., <pB
with the boundary values stated in the theorem. In particular

(10) F(su"°7Smyt1+t+7:3:"'7tn+t+i18)
= (E; no(B1) U(tz - tl) tc EO(B,,) U(Sl —t, — t)n'o(Ax) U(sz - 31) ot

U(sm - sm—l)n.o(Am)E)
= a)((B], b+ t) °tc (Bm t, + t)(Au sl) ttc (Am’ sm)) .

Similarly
11) F(sy ooy Spyty + 8 oo, t, + 1)
= w((A, 8)  + (Ap 8p) By t, + ) -+« (B, t, + 1)) .
For teR and 0 < o < 8 we now define
Ot + 1) =F(sy *++y 8yt +t + i, -+, t, + ¢ + 1@) .

Since F' is analytic as a function of m + n complex variables 0 <
Imz < .-+ <Imz,,, < B and continuous up to the boundary, we conclude
that @(z) is analytic in the complex variable z =t + 1, 0 < @ < B, and
continuous up to the boundary. We recall that the numbers s, +--, s,
t, +++, t,, depending only on P and @, are fixed. It follows from (10)
and (11) that @(z) satisfies the right boundary conditions (9).

To conclude the proof we only need to show that &(¢ + i) is uni-
formly bounded in the strip 0 < a <. By the three-line lemma of
Doetsch, it is enough to show that sup {|@(¢)|: t € R} and sup {|@(t + i8)|:
te R} are finite. But it follows from (11) and (10) that the first number
is dominated by

HEO(A’::) U(Sm—1 - Sm) ccc 71'0(A1*)EH Hﬂ:o(B1> U(tz - tl) M ﬂo(Bn)EH ’
and the second by

Ilﬂ:o(BvT) U(t'n—l - tn) e TCO(Bl*)EH HTCO(Al) U(Sz - 81) e ﬂ:o(Am)E” .
q.e.d.

4, Existence of KMS states and ground states for C*-systems. We
shall show in this section that if % is a C*-algebra with unit and with
at least one-trace state, then there is associated to each inner limit
derivation in %, and each non-zero inverse temperature, a dynamical
system which is in “equilibrium” KMS state. This result is a natural
generalization of the result [15, Theorem 3.2] which states that every
approximately inner one-parameter group of *-automorphisms of a C*-
algebra as above has KMS states at every non-zero inverse temperature.
The formulation of our result at the same time proposes an infinitesimal
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definition of KMS states. We give a similar discussion of ground states
for an inner limit derivation 6 in an arbitrary C*-algebra.

The section concludes with a discussion ‘of extensions of ¢ in the
representations induced by the above mentioned states. In the case of
ground states, we compare our extension with the Friedrichs extension,
and with the extension obtained in classical dilation theory.

DEFINITION 4. Following [5] we say that an unbounded *-derivation
0 in a C*-algebra 9 is an inner limit derivation if there is a core ¥, for
0 and a sequence 9, of inner *-derivations on ¥ such that 6(4) = lim, 6,(4)
for all Ae%, Specifically, the requirement on 9, is that for every ele-
ment A in the domain of ¢ there is a sequence A, of elements in 2, such
that A, — A and 6(4,) — 6(4).

Note that normal derivations [14] are a special class of inner limit
derivations. Also note that, since bounded derivations are inner if 9 is
simple [20], it is enough to assume that the approximating derivations
0, are bounded if ¥ is simple.

An inner limit derivation is said to be regular if it is possible to
choose the core 2, and the approximating sequence {6,} in such a way
that sup||0i(A)|| is finite for all Ae®,. It is known, [14], that every
normal derivation of finite type is a regular inner limit derivation.

NOTATION. Suppose 6,(4A) = [+H,, A] for a sequence of elements
H, = H} e, then we put a,(t)(A) = e*HnAe ""n,

LEMMA 2. Let 0 be an inner limit derivation in a C*-algebra U
with unit. Let A, be a core for 0, and let {H,} be a sequence of hermitian

elements in A such that 6(A) = lim, [tH,, A] for all Ae,. Let {w,} be
a corresponding sequence of states on U such that

12) (6T Ae=n) = w (A) for all tecR and Ac¥.

Then there exists a state @& on B(N), such that for every k-tuple of
elements A,, -+, A, in U there is a subsequence {m,} of the integers
satisfying

(13) (D(Au t\) e (Ak’ tk) = lim (an(anp(tl)(Al) e anp(thAk)) ’
"p
the convergence being uniform for (t, ---, t,) in compact subsets of RF.

The state @ satisfies conditions (i) and (ii) of Theorem 1 and (8) of
Remark 3(b).

We conclude from Theorem 1 and Remark 3(b) that there is a bounded
representation 7 of B(A) on a Hilbert space .7; a vector £€.9%; and a
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continuous unitary representation U(t) on .2 such that @&(P) = (&, n(P)¢),
Ui)¢ = ¢, and UR)r(P)U(—t) = n(g,P) for all PeB(A) and tecR.

LEMMA 3. Let 0 be an inner limit derivation which is also regular
and let w, be a sequence of a,(t)-tnvariant states as in Lemma 2. Let
H be the infinitesimal generator of U(t), and let m, be the restriction
of @ to .

If D(6) denotes the domain of 8, then w,(D(6))é ts contained in the
domain of H and

(14) 1H(m(A)g) = my(0(A)E for all Ae D).

Before starting the proof, we comment on the conclusion (14) and,
point out two consequences.

As mentioned in the Introduction, we are interested in the cases
where the algebra of time zero observables ¥ is not invariant under the
dynamics. We say that 9 is invariant under the dynamics if for every
A €U the sequence «,(t)(A) is convergent in %, and if a(t)(4) = lim, a,(t)(A)
defines a strongly continuous one-parameter group of *-automorphisms
on .

Using the considerations above, we may regard 7,(%) as an algebra
of operators on 5#. We denote by M the bi-commutant of 7,() in
B(&#), i.e., M = w,(A)’. The invariance conditions

(15) Ut)MU(—t)=M for all teR,
(16) Uty sz = 57 for all teR,

are of interest. It is clear that (15) implies (16), and that both are
satisfied when 9 is invariant.

OBSERVATION 1. Suppose there is a subset S of D.(d) (i.e., elements
in 9% which belong to the domain of each of the operators 4, 6%, ---, %, ---)
such that 7,(S)¢ is dense in 5%, and such that the vectors in 7, (S)¢ are
quasi-analytic [6, 11] for H. Then (16) is satisfied.

PRrROOF. It is enough to show that if AeS and fesFt = 22 O 5%
then (f, Ut)r,(A)%), = 0 for all t. But in view of (14) in Lemma 3 above,
we have

<%>k(ﬁ U(t)nO(A)E)xlmo = (fy ('LH)kn'o(A)E);r = (f, ﬂo(ak(A))E)W =0.

The conclusion follows from the Denjoy-Carleman theorem, since m(A)&
is quasi-analytic for H.
More generally we have
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PROPOSITION 2. Let H, denote the symmetric operator in 5% which
18 given on w(D(0))é by

17) 1Hy(wy(A)S) = mo(3(A))E = 1H(m,(A)S) .

Suppose H, is essentially self-adjoint. (1) Then (16) is satisfied.
2) If @ s also a KMS state, then (15) is satisfied as well, and U(t)
cotncides with the modular group 4% of the cyclic and separating vector &.

PROOF. Since H, is essentially self-adjoint, the closure H, defines a
unitary representation U,(t) = ¢* on 9%, Let f be an arbitrary vector
in D(H,) and let {4,} be a sequence in D(§) such that m,(A4,)¢ — f, and
Hy(n(A,)&) — H,f. From (17) we conclude that H,f = Hf. We therefore
have

—i;—tU(t) U(—t)f = UGH — A)U(—t)f = 0,

Since U,(—t)fe D(H,), and hence U(t) = U,t). This concludes the proof
of part (1). Part (2) follows from [7, Theorem 2]. q.e.d.

The assumptions of Proposition 2 have been verified in applications
to Bose gases [8] in a specific model.

We now use the lemmas to construct, for every inner limit deriva-
tion 6 and every £ >0, an “equilibrium” (or KMS) dynamical system
(7o, A, 5%, &, U()) for inverse temperature 8. We say that the system
is in “equilibrium” if the state on B(A) determined by the invariant
vector & is a KMS state in the sense of Definition 3. The infinitesimal
generator of U(t) turns out to be an extension of 6 in the represen-
tation 7.

THEOREM 4. Let 0 be an inner limit *-derivation in a C*-algebra
A with unit. Suppose A has at least one trace state. Then for each
B > 0 there exists a dynamical system (w, A, °7; & U(t)) such that &
defines a KMS state on B(A) at inverse temperature S.

If 6 is also regular, then the corresponding infinitesimal gemerator
H = —i(d/dt)U(t)],-, satisfies
(14) tH(ry(A))E = m(0(A))é
for all A in the domain of 6.

A completely analogous result holds for ground states. Let U be a
*-algebra. We say that a state & on B(A) is a ground state if for every
positive integer k and every set of elements A, ---, A, in U the multi-
time Green’s function

G(Av ] Ak; tlr ] tk) = (B((Av tl) °tc (Aky tk))
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18 the boundary value on R* of a function F(z, ---, 2,) which s analytic
m Imz, <Imz, < --- <Imgz, and continuous and uniformly bounded
on the closure of this domain.

THEOREM 5. Let 0 be an inner limit *-derivation in a C*-algebre
A with unit. Then there is a dynamical system (m, N, 27, &, U(t)) such
that & defines a ground state om B(A).

In the event that o is also regular, identity (14) holds for the genera-
tor H of U(t), and the restriction of H to w(D(0))é defines a symmetric
operator with mom-negative spectrum.

Note that the theorems may be viewed as corollaries to Lemmas 2
and 3. We now pass to the proofs.

ProoFs. Starting with Lemma 2, we recall that ¢ is an inner limit
derivation with an approximating sequence {H,} of hermitian elements.
{w,} denotes a corresponding sequence of states such that w, is invariant
under a,(t) = eit¥n.¢” s for all n, i.e., 0,a,(t) = o,.

By weak-*compactness of the state space of A, we first note that
there exists a subsequence of {w,} which is weak-* convergent. We shall
denote this subsequence also by {®w,}. We denote the corresponding limit
state by o, i.e.

(18) ® = lim w,
Using a simple version of Theorem 2 and Corollary 2 (or by direct
verification) we then observe that, for each n, the definition
(19) @,((Ay, 1)) - (A, 1) = Ou(@(E)(A) - - - au(t)(4L)
leads to a state @, on B(A).
We shall need the following properties of @,:
(20) @,(9,(P)) = &,(P) for all PeB(YU) and teR.

(21) For every positive integer k¥ and every subset A4, .-, A4, of ele-
ments in ¥, the function (¢, - --, t,) — @,((4, t) - -- (4,, t,)) is uniformly
bounded on R*, in fact by II,|4;|.

(22) Similarly, for every &k and A4,, ---, 4, in %, the partial derivatives
0@,((A, t,) «++ (As, t)/0t; and 0*@,((Ayy t,) «+ (A, tr))/0t;0t;

are uniformly bounded on RF.

The contention (20) is clear, because, since «,(t) defines a *-automor-
phism group of %, the condition that , is invariant under a,(t) is
equivalent to @, on B(YA) being invariant under g,. Indeed @,(g,((A, t,)+--
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(A, 1) = 0, (a, ()@, (t)(AY) «+ » Au(t)(Ar) = @n(@a(t)(A)) -+ - @ (8)(Ar), so
(20) follows by linearity.
The boundedness in (21) follows from (19). Indeed

(23) 0@t - BENAD)] S [ (E)A) - at)ADl
< T la(t)(4)] = TL 1) -

As for (22), we start with the case k= 1. We have @,((4, t)) =
w,(a,(t)A)) = ®,(A,) so the derivatives vanish identically. For k=2
and 4,, +--, 4, €Y,

00,((Ayy 1) +++ (Aw B))08] = |@n( + - @u()(a(A)) -+ )
= IL 114, /110,401 -

The right hand side is bounded since 6,(4;) — 6(4;). (It is important
at this point that the definition of inner limit *-derivations involves
sequences rather than nets, since convergent nets need not be bounded.
We deviate from the definition in [5] at this point.)

Similarly we have for ¢ = j

0 0u((Ay 1) -+ (Au t))/0t0L] = T1 114, [1[10.(ADH04(A] -

Considering finally ¢*/0t? we will assume for the sake of simplicity that
t=1and k= 2.

00,((A,, t.)(Asy t.))/0t, = @, (@u(t,)0,(A,))(2,)(As))
= 0,(0,(4)a,(t; — t.)(4)) ,
and
0@, ((A,, 1,)( Ay 1))08 = — 0,(0,(A))(E, — 1,)(04(Ar))) , -
and hence '
l0°@,( /ot < [10.(AI][10.(A)] -
Since the right hand side is bounded, the proof is completed.

We have checked that for fixed 4,, ---, 4, in ¥U,, the set of functions
K=A{{, t)—a&,(4,¢t) - (4, t)):n=1,2, ---} is bounded in (the
Frechet topology of) C*(R*). By a classical result [23, Theorem 14.4],
based on the Arzela-Ascoli theorem, we conclude that K is relatively
compact in CYR*). Hence, there is a subsequence (depending on
(4, +++, 4,)) of K which converges in the C'(R*) topology. Defining
Falty <oy t) = @,((Ay, t,) -+ - (44, t)) We have, for the subsequence {n,} in
question, that each of the sequences {fu,}, {0f,,/08} for 1< i<k are
convergent the convergence being uniform on every compact subset of
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R*, and so in particular pointwise. (We note that the Arzela-Ascoli theorem
has been used in a similar context by Ruskai [19].) There is a function
G4, -+, 4, t, +--, t,) belonging to C*(R*) in the t-variable such that

(24) lim (an((An tl) e (Aln tk)) = G(Av M) Akj’ tu 0Ty tlc)

and
(25)  lim 0@, ((4,, t,) -+ - (Ai t))[0t; = 0G(Ay <+, Ay by -, B[00,
"p

again uniformly for ¢ in compacts.
We now define a linear functional @ on B(2,) by

(26) D((Ay 1) o (A t) = G(Ay, <oy Ags ity -, )

We claim that @ extends to a state on B(A) which satisfies properties
(i) and (ii) of Theorem 1 together with property (8) of Remark 3(b).

We first extend @ to a linear functional on B(A). By linearity it is
then enough to define the extension (also denoted by &) on arbitrary
elements @ = (A4, ¢t) --- (4,, ¢t,) for A, ---, A, in Y. Given such an ele-
ment, we pick sequences {4,,}---{4,,} of elements in A, such that
lim,4;,= A4, for t =1, ---, k. We then verify that the corresponding
sequence of scalars {@((A4,,, t,) -+ (4., )}, is Cauchy. For this purpose
we combine (23) and (24) and get

(@) B(Asy £ -+ Ay 1)) = B(Avy £) =+ (i 8)
< ST IA14ce — Aol I 1142l -

The right hand side tends to zero as ¢, » — « by assumption.

By (24) we have &(Q*Q) = lim,, (T),,p(Q*Q) = 0 for all @ e B(A), where
{n,} is a subsequence of the integers which depend on Q*Q. The estimates
(27) also imply, together with the usual 3¢ argument, that for every
A, -+, A, in A (not only ) there is a subsequence {r,} such that the
convergence (24) holds.

Combination of this with definition (26) now yields the conclusion
(13) of Lemma 2.

Condition (i) of Theorem 1 follows immediately from this:

B(0AQ@) = lim @, (A, 1, + 1) -+ (A b + 1)
= lim @, (@, ()@, (L)(A) -+ &, (A
= 1 @, (e (6)(A) -+ - 2 (6)(AL)
— lim @, (A, 8) -+ (Au ) = G(@)

for all te R. This completes the proof of (i).



292 P. E. T. JORGENSEN

Property (ii) follows from the observation that G(4, ---, 4;, +-+) in
(24) is continuous, as a uniform limit on compacts of continuous functions.

Finally the estimate (8) of Remark 3(b) is satisfied for each of the
states c?),,p, and hence for the limit state @. We claim that @& is an
extension of the state @, which was defined as the weak-* limit on ¥ of
the sequence {w,}, cf. (18). To see this we note that for Aec¥,

(28) @((4, 0)) = lim @,((4, 0)) = lim w,(4) = w(4) .

This completes the proof of Lemma 2.

PrOOF OF LEMMA 3. We now apply the generalized GNS construction
which is established in Theorem 1, to the state @. We get a Hilbert
space .27, a bounded (by Remark 3(b)) representation = of B(A) on 7%,
a continuous unitary representation U(t), and a vector &€ .2 such that
@(Q) = (& w(Q)E) for all Q@ € B(A), and properties (¢) and (d) are satisfied.
We let 7, denote the restriction to U of m. The state w,(A) = (& 7, (4)¢)
then coincides with the limit state w. For by (13) w,(4) = &((4, 0)) =
lim, &,((4, 0)) = w(4).

Moreover, the extension @’ say of @, = w given by (3) in Theorem 2
coincides with @. Indeed,

@' ((Ay ) + -+ (Ap 8) = (& m(A) U, — t) -+ Uty — te-)o(AR)E)
= (& UR)m(A)U(—1) -+ - Ukt)m(A) U(—1)E)
= (§, 7(9,4,) - -+ 7(g,,AL)E)
= (& m((Ay t,) -+ - (A, t))8) = W((A,, 1) - =+ (A 1) -
Given elements A, Be¥, it follows from (25) that the function
t— @(A(B, t)) is of class CYR). This formula also gives a recipe for

(d/dt)@(A(B, t)). Corresponding to A and B there is a subsequence {n,}
such that

@) LEAB, )i = lim L6, (AB, 1)\.cs = lim Lo, (A, (D(B)].-
— lim 0, (40, (B) = 0,43(B)

since ||9,,(B) — é(B)[| — 0 and ®, — ®, in the weak-* topology. Specifi-
cally,
|@,,(A0,,(B)) — @(Ad(B))|
= |@,,(4d,,(B)) — @,,(Ad(B))| + |@,,(Ad(B)) — w(Ad(B))|
= || A[l1[04,(B) — o(B)|| + [(@,, — ®)(Ad(B))| — 0 .
Consequently,
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(30) W(A(B, t)) = w(AB) + tw,(Ad(B)) + o(t) .
As a corollary to (29) we get, using w,,(t) = @, and @, = @,
(31) w(Ad(B)) = lim w, (496, (B)) = —~lim o, (9, (A)B) = —w(3(4)B) .

Now suppose that ¢ is also regular. Then for every k and every
A, ---, A, e we have

sup {IDE(Dn((Au tl) e (Aln tk))|: n = 1’ 27 tt (tn *t %y tk) eRk} < oo,
The symbol D} stands for a differential monomial of degree 8 in the
variables (¢, ---, t,), i.e., 0°/0t, 0t 0t;, L = 1, 15, 1, =< k.

To show boundedness of Di®,, it is necessary to treat the different
cases separately.

Case 1: k=23and 14, <4, <19, =<%k. Then

Di@,( )= @B, ---, B,) where B, = a,(;)0.(4:))

for p=1,2,8 and B; = «,(t;)(4;,) for j different from 4, %, 4,. Clearly
then

\Did,( )l = AL HAGD 0. (AL A)I 8. (AI -

Case 2. k=2 and 124, =%=1=Z1%=<Fk. Then Di@,( )=
®,(B, -+, B,) where B; = a,(t,)(0.(4,), B, = a,(t;)(0.(4;)) and B;=

a,(t;)(4;) for j different from 4 and ¢, Then

|Di@,( ) = (*H A1) [107(A)[110.(ANI
J#1,i3
and the right hand side is bounded since o6 is assumed regular.

Case 38: t,=t,=1,=tand 1 <t=<k. Then Di®,( )= w,(B, -+, By)
where B; = a,(t;)(A;) for j # i and B, = ,(t,)(0%(4,)) = 0.(@,(t,)(0%(4)))).
We now put C, = a,(¢,)(6%(4,)) and have

D?(T)n( ) = wn(Bl e Bi—15n(Ci)Bi+1 e Bk)
= L0,(B, -+ B (OCOBurs -+ B)lie
= Lo, (o ~)B, -+ B)ICle(~t)Buss -+ BDlie
= —a)'n(g'n-(Bl e Bi——l)Ci(Bi+1 e Bk))
= _a’n(B1 et Bi—1Ci5n(Bi+1 e Bk)) .
Using finally 0,(B,--- B,_) = 3;11 B, -+- B; 10,(B;j)Bj;, *++ B;_, and the
similar identity for 0,(B;,, :-- B,) we get
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D1, )| = 3 1B ADICTT 1A, -

Again the right hand side is bounded when & is regular.

A new application of [23, Theorem 14.4], now using that bounded-
ness in C*(R*) implies relative compactness in C*(R*), shows that for each
A, ---, A, e we may choose a subsequence {n,} of the integers such
that (24) and (25) hold in addition to

lim Dfd)np((Aly tl) e ‘(Ak: tk)) = D?G(Au Tt Ak; ty o *y tk)
"p

for every second degree differential monomial D;. Consequently, the
Green’s function G(4,, ---, 4;; ---) belongs to C*(R").
A computation similar to the one leading from (25) to (30) gives
@(A(B, t)) = w(AB) + tw(Ad(B)) + t*/2w(Ad*(B)) + o(t?)

for the case where 6 is regular. (Recall that the Green’s function
G(A, B, ---) is of class C* when ¢ is regular.)
Therefore
D((A*, H)A) + B(A*(A, t)) = 20(A*A) — tw(6(A*)6(A)) + o(t?)
and
W((A*, t)o(4)) + w(6(A*) (A, t)) = 2tw(6(A*)6(A)) + o(t) .
We now substitute this into the following expression and get for
Ae¥,;:
U@z (A)E — mo(A)s — try(6(A)EII%
= (((4, 1) — A — t6(A)*(A, t) — A — t3(A)))
= a(((4% 1) — A* — to(A")(4, t) — A — ti(A)))
= O((A*, t)(4, t)) + w(A*A) + ttw(6(A*)6(A))
— [6((A*, )A) + G(A*(4, t))]
— t[A((A%, ©)6(A)) + @(6(A*)(4, 1))]
+ t[w(A*3(4)) + w(6(A*)A)]
= W((A*A, t)) + w(A*A) + tw(6(A*)6(A))
— 20(A*A) + tw(6(A*)0(A)) + o(t?)
— t[2t@(3(A*)3(A)) + o(t)] = o(t*) ,
since @((A*A4, t)) = w(A*A) and to(t) = o(t*). Consequently,
lHm |E™ (U)o A) — To(A)E) — mo(d(A)EII%
= lim ¢ [[U)w(A)e — 7o(A)e — try(5(A))E]L%
=limt () =0.

t—0%
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Consequently, the vector 7,(A): belongs to the domain of H and
(32) 1H(my(A)E) = m(6(A))¢ .

If A is now an arbitrary element in the domain of 6, then there is a
sequence {4,} of elements in U, such that A4, — A and d(4,) — d(4).
Since (32) holds for each A, and 7, is continuous, we get 7w,(A4,) — w,(A)&
and tH(m(A,)E) — m(6(A))é. Since H is self-adjoint, and in particular
closed, we conclude that 7, (4)¢ is in the domain of H and that (32) holds
for A. q.e.d.

PrROOF OF THEOREM 4. Let 0 be an inner limit derivation in ¥, and
let {H,} be an approximating sequence of hermitian elements in A. Let
7 denote a trace state on U (i.e., 7(AB) = 7(BA), t(A*A) =0, z(I) = 1)
and define a sequence {w,} of states on A by

0, (A) = T(e*Tr A)[z(¢P"") for Ae¥ .

It is immediate that w, is a B-KMS state with respect to a,(t) = e¥#».
e~ for each n; so that (12) in particular is satisfied.

We let @ denote the state on B(A) which is given by Lemma 2. The
dynamical system induced by this state is denoted by (w, ¥, 57; & U(t)).
The Hamiltonian H given by U(t) = ¢*¥ satisfies (14) of Lemma 3.

It remains to show that @& is a B-KMS state on B(A). This is quite
simple in the present context. We will verify condition (g’) of Definition
3 for every pair P, @ of elements in B(A) and every entire function ¢
on R such that € &. We first claim that the states w, are constructed
in such a way that the identity

(33) | p0@.(Po@dt = | ot + i8)@.(9.Q Pt

holds for all P, Q and ¢ as above.

Again, by linearity, it is enough to verify the identities for elements
pP= (Av 8) .- (4, 8 Q= (By t,) -+ (By, t)- Using that a,(+) is a
*-automorphism of A, we note that the elements

A= a,(s)(4) - a,(s)(A) and B = a,(t,)(B,) - a,(t;)(By)
both belong to ¥, so that Lemma 1 applies, and

| p@.(Pa.@)it = | pt)0.( A, B)d

= | ot + im0 @B AL = | ot + BB (0@)Pt
This concludes the proof of (33).
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Now let ¢, Pand @ be arbitrary, and assume first that P, @ € B(,).
Then by (24) and (26) there is a subsequence {%,} such that (T)%(Pg,(Q)) —
@(Pg,(Q)) and @, (9.(Q)P)— @(g,(Q)P) uniformly to ¢ in compact subsets
of R. We conclude that (83) holds, now with @, replaced by @.

Finally, we let P and @ be arbitrary elements in B(2). By (27) we
conclude that there are sequences {P,} and {Q,} in B(%,) such that
@(P,9,(Q,)) — &(Pg/(Q)) and @(g.(Q)P,) — &(9(Q)P) as ¢— o, in fact
uniformly in £. The desired identity

| p@(Pg.@)at = | ot + iB(0.Q Pt
q.e.d.

COROLLARY 3. Application of Theorem 3 to the states @, constructed
wn Theorem 4 shows that the multiple time Green’s function G(4,, +--, Ay
by o0, L) =0s((A4,, t,)- - - (4, t) has an analytic continuation G(A,, ---, Ay
2y, **°, %) to the tube domain 0 <Imz, < --- <Imz, < B. (Such analy-
tic continuation has been comsidered im special cases by various authors
[1], 8], [19] and [24].)

REMARK 5. It follows from [3, Theorem 3.1] that for given 4,, ---, 4,
in U the analytic function G(4,, ---, A;; 2, - -+, 2;,) has a uniformly bound-
ed and continuous extension to the closed tube-domain 0 < Imz < --- <
Im z, < B/2. Moreover the estimate

IG(Ay -~y Ay 20y w0y 20| S JJAL] - [JAIEIP
holds in this domain.

PROOF OF THEOREM 5. Let 6 be an inner limit derivative in 2, and
let {H,} be an approximating sequence of hermitian elements in %. The
corresponding sequence of automorphism groups is denoted by {«.(t)} as
above. It is pointed out in [15] that «,(f) has a ground state w, for
each n. (We may assume that the spectrums o(H,) C [0, ] and 0€od(H,)
for all n. If this is not satisfied we may replace H, by H, — \,I where
N, = inf o(H,). The C*-algebra C*(H,) generated by H, and I is isomor-
phic to C(o(H,)). On C*(H,) we let w, be the state corresponding to
point evaluation at zero, f— f(0), and then extend w, to a state on ¥.)

It follows from [15] that w,a,(t) = @, for all n. This can also be
seen directly as follows: For every Ae¥, |0,(AH,)? < w,(AA*w(H?) =0
since w(H2) = H,(0)* = 0. Quite similarly, o,(H,A) = 0 for all A. Con-
sequently, w,((ad H,)¥(4A)) =0 for all k=1,2, ---. Hence

o, (@, (t)(A)) = gﬁs (i)k!  @,((ad H,)(A)) = w,(4) .
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Whence Lemma 2 ensures the existence of the limit state @ on B(A)
satisfying (13). By Lemma 3, the corresponding Hamiltonian H satisfies
(14). It remains to show that & is a ground state on B(A); i.e., that
for every k and every set A4,, ---, A, of elements in A there exists an
analytic function F(z, ---, 2, in the region Imz, < -.- <Imz, with
boundary values

K, ---, ty) = G)((Av t,) .- (Aln 179))

for all ¢t e R".

But the existence of F' is quite clear from (3) applied to @ once we
have shown that the spectrum of H is non-negative, i.e., H = 0. We
show first that

(34) (@), Hr(Q)§) = 0 for all Qe B(Y,) .

Using (25) we observe that for every Q e B(Y, there exists a sequence
{n,} of integers such that

(@)%, 1Hr(Q)%) = (d/dt)D(Q*9.Q)) le=o = lim (d/dt) @, (Q9.Q)) le=o -

Therefore it is enough to show that —i(d/dt)®,(Q*g¢.(Q))|,—, = 0 for all n.
Let Q €B(Y,) be given. Suppose Q = >, Q, (finite sum) with Q, =
(Al.q? tl,q) e (Ak,q’ Zt/lc,q)- Now put

Ay = Ua(t,0)(Arg) « o+ (te,)(Ar,) and A,y = 3 Ay, -
Then
@,(Q*9,(Q)) = qZ @, (A @ () (A,) = ©,(Afa,()(A)) .

Hence

—(d/dt)@,(Q*9.(Q)) =0 = O(ALH,y Aim])
= wn(Azkn)HnA(n)) - a)n(Az':rz)A(n)Hn)
= w,(ALWH,AL) =0,

since X — w,(A%,XA,,) is a positive linear functional and H, = 0 [20].
We claim that 92, = 7(B(,))¢ is a core for H, in fact for H" for
all n =12, ---. To see this, we must verify
(i) that = is dense in 9%,
(ii) that & is contained in the domain of H, and
(iii) that &, is invariant under U(t) = e,
The claim then follows from the Singer-Poulsen-Segal core theorem [12,
22].
Assertion (i) has been verified in the proof of Lemmas 2 and 3,
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specifically the estimates (26). Assertion (ii) is implied in the above
computations, but the explicit argument has been omitted so we give
some details below. Since A, < D(d), the vectors in w(,)& are contained
in D(H) by (14) of Lemma 3. We show now that every element 7(Q)s
with Q@ = (A, t,) -+ (4, t,) isin D(H) if A,,---, A, €¥,. This is true since

TC(Q)E = U(t1)7to(A1) U(tz - tl) e U(tk - tk—l)ﬂ'.()(Ak)g

and both of the transformations U(t) and 7,(4) map D(H) into itself for
all teR and Ae¥, as is shown in the Appendix. (More generally, if
feD(H) and A e D(5), then n,(A)fe D(H) and

Hr(A)f = —im(0(ANSf + n(A)HS ,
see the Appendix for details.)
Assertion (iii) is immediate from the formula
UBT(Ay t) ++ (A 1) = T((Ay £, + 1) =+ (A b + 1) .

(Since (i) through (iii) hold in the general setting of Lemma 3, it is
true in fact that 7(B(Y,))¢ is a core for H when H is given by Lemma

3.)
Since 7w(B(Y,))¢ is a core for H, the conclusion H = 0 follows from

(34).

If A, ---, A, are arbitrary elements is %, then we have
(85)  @((A,t) - (An ) = (& n(ADU(t, — t,) -+ - Uty — i) (An))
for all (¢, ---, t,) € R*. Let E(dx) denote the spectral decomposition cor-
responding to U(t) (Stone’s theorem). Then U(%) = S e*E(dx) and

(A 1) -+ (A 1)) = | et ms iy da, - -« do, )

where p(dx, --- dx,_,) = (&, w,(A)E(dwx)) - - - E(dx,_,)7,(4,)E), and where the
integration is over I} {x;:x; = 0}. If we now define

F(zl’ cee, zk) — S ei((tz‘ﬂ)xﬁ'“+(¢k—zk—1)xk—l’#(dx1 S dxk—x) ,

then it can be seen by induction that F is analytic in Imz, < Imz, <
«++ < Imz, and has the desired boundary values.

In other words the condition is that there is an analytic function
R, --+,{-,) in k — 1 variables on the product domain {Im {; > 0} such
that R(tz — by oy b — tk—l) = &((Aly t1) cee (Aky tk))v

The following lemma yields this conclusion.

LEMMA 4. Let H be a mon-negative (generally unbounded) operator
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i a Hilbert space 2. Let A, +--, A, be a set of bounded operators
on . Then the operator valued function

A(z” ceey, zk) — A.lei’l"’(‘cl2 ce ei‘kHAk_H
18
1) analytic on V. = I {Imz; > 0},
2) strongly continuous from V., to B(.%"),
and
3) wumniformly bounded in operator norm,

”A(zv R zk)” = H HAJH fO’I’ all (zu *t zk)e V+ .

Proor. If E denotes the resolution of the identity for H, then by
the spectral theorem,

lespil = { e 1B dz)f)f = | eromoe | B

<\ IB@SIF < IF] for all z in {ImzZ0}.

Hence, ¢ is a holomorphic family of contractions in Im z > 0, which
is strongly continuous up to the boundary Im z = 0.

It is known [9] that an operator valued function, A(z) say, is analytic
if and only if the scalar functions z — (f, A(2)g) are analytic for all
f, 9€.2#. The conclusions of the lemma follow from this for the case
k = 1, since then (f, A(2)g) = (A} f, e A,9).

Suppose that the conclusions 1 through 3 are satisfied for &k — 1.
We show that they are also satisfied for k. Let A, ---, 4,,, be bounded
operators on %, and let f, g be vectors in 227 We show that (f, A(z,
<+, 2,)9) is analytic on V_.(k). But

(36) (f, Azyy =+, 2)9) = (€FHTALf, Az, +++, 2)9)
where A'(z, ++-, 2,) = A7 ... ¢"sH A, satisfies conclusions 1 through 8
for (2, ++-, 2,) in V,(k —1), and where Z,= —Rez, +iImz,. If 2, is fixed,

then the right hand side of (36) is analytic in the variables z,, ---, 2,
by the induction hypothesis. If 2z, ---, 2, are kept fixed, then it is
analytic in the variable 2z, by the preceeding remark. Since Imz, = Im %,
it follows by Hartogs’ theorem [4] that (f, A(z, ---, 2,)g) is analytic in
{Imz, > 0} x V.(k — 1) = V_ (k).

Quite similarly, we get conclusions 2 and 8 by induction. Estima-
tion of the right hand side of (36) gives

(F, Az -+, 2)9)| < [le"AXFI|[| A"y =<+, 22)g|
< 4 AITT Al = (TEIA)IAINGl - aed.
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There is an important corollary to the proof:

COROLLARY 3. Let 0 be an inner limit derivation, and let
(7o, A, 545 &, U®)) be o dynamical system such that & defines a ground
state on B(A). Then the Hamiltonian H = —i(d/dt)U(t)|;=, s mon-
negative, and w(B(A,))E is a core for H.

The conclusion H = 0 is very important for several reasons. First
of all, it shows that the Hamiltonian H is physical (the energy is bounded
below). The Friedrichs extension H, of H, shares this property with
H. But the automorphism group implemented by H, cannot be used to
describe the dynamics, because it does not leave the total algebra of
observables invariant (cf. below). Of course, extensions of H, are not
unique. Therefore the weak*-limit state @ alone does not determine a
dynamics. The preceeding discussion shows that instead the state @ on
B(A) leads to a useful dynamiecs. The constructions of both H and H,
are canonical (in terms of the given data.) The long established useful-
ness of H, undoubtedly derives from this fact (the canonical construec-
tion).

The conclusion that #(B(Y,))é is a core for H is important, because
it enables us to show that H has non-negative spectrum. The conclusion
H = 0 in turn is in itself surprising in view of the fact that dilations
of non-negative symmetric operators are not generally semibounded (let
alone have non-negative spectrum), [Ng] and [Ex].

The following much weaker corollary is in fact contained in the
statement of Theorem 5.

COROLLARY 4. Let 0 be an inmer limit derivation in o C*-algebra
with unit. Then there exists a state w, on A such that

(87) — 1w (A*0(A) =0 for all AeD(@).

It is important to note that the conclusion (37) is properly weaker
than the conclusion H = 0 of the previous corollary. To see this, we
note that (87) can be established from the convergence of the one-time
Green’s functions alone, cf. (29).

The conclusion (37) implies that the form —iw,(A*6(B)) determines
a symmetric operator, H, say, in the Hilbert space 57 of the GNS
representation corresponding to a given state w, satisfying (37). So in
particular H, = 0. There is then an alternative way (the Friedrichs
extension) of obtaing a self-adjoint and non-negative extension of H,,
even without extending the underlying Hilbert space 54

Let H, denote the Friedrichs extension of H, and let U.(t) = e'*#r
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be the corresponding unitary group. Then, by Theorem 2, the state w,
extends to a state w, on B(A), which is given by the formula (3) with
U(t) replaced by Uy(t), and which is in fact a ground state.

An application of Theorem 1 to the state w, on B(Y) leads to a
unitary representation U,(t) on the Hilbert space T op But there is
no reason to expect that the corresponding infinitesimal generator
—i(d)dt)U4(t)|,—, has a non-negative spectrum.

Moreover, the extensions H constructed in Theorem 5 have several
properties (in addition to H = 0) that do %ot in general hold for the
Friedrichs extensions H."

We list two:

PROPOSITION 3. Let 6 be an inner limit derivation in o C*-algebra
A as above. Let (w, U, 5%, & U(t)) be a dynamical system such that &
defines a ground state on B(A); and finally let H denote the correspond-
ing infinitestmal gemerator.

Then

(1) The automorphism group a@,(X)=Ut)XU(—t), (Xe€ B(2¢),te R)
leaves the von Neumann algebra M = n(B(N))" invariant, i.e., a,(M) = M
for all teR.

(ii) There are two commuting non-negative self-adjoint operators
H" and H' such that H" 1is affiliated with M and H' with M’', and
H=H"+ H.

ProOF. The identity Ut)n(Q)U(—t) = 7(9,Q) for Qe B(A) and te R
show that 7(B(W)) is invariant under &,. Since @, is continuous on M
with respect to the weak topology, the invariance of M follows from
the von Neumann-double commutant theorem [20]. So we have an auto-
morphism group of M which is implemented by a non-negative self-
adjoint operator H. The conclusion (ii) follows from this and an applica-
tion of Borcher’s theorem [20].

5. Appendix (Extensions of derivations in representations.) The
core property of Corollary 4 is satisfied for general Hamiltonians H of
dynamical systems which are generated by regular inner limit deriva-
tions in C*-algebras. Explicitly:

THEOREM A. Let 6 be a regular inner limit derivation in a C*-
algebra A. Let 0, = adiH, be a sequence of inner derivations which
approximate 6 on core W, Let {w,} be a corresponding sequence of

D Problem: It is not known whether Hy extends & in the representation 7. We do not
know if the domain of Hy is invariant under 7o(4) for all A€ D(3), or not. Cf. Appendix A.
A special case of this problem is considered in [Ph, p. 382].
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(e*Hn.g M n)gnpvariant states on U. Let & be a weak-+cluster state on
B(A) of the sequence {®,} as in Lemma 2 and let (7, A, 5%, & e*") be the
corresponding dynamical system.

Then w(B(N,))E ts a core for H; and

(38)  for all Ae D(d) and fe D(H) we have n(A)f e D(H) and
1Hr(A)f = n(6(A))f + n(A)iHf .
PRrROOF. Put 9, = z(B(Y,))é and U(t) = ¢*”. We have already noted
that & is dense in %  and invariant under U(f). By the core theorem
[12] it is then enough to show that <7, is contained in D(H).
Elements in &, are linear combinations of elements of the form

(B, t) +++ (B, t,))¢ where B;e%,. We show below that these elements
are in the domain of H and that

(39)  “Hr((B,t) - (B, t))§ = gﬂ:((Bu t) -+ (0(By), t;) -~ (By, t))¢
or in a more compact notation
(40) tHr(Q) = m(0(Q))¢ ,

where Q = (B, t,) - (B, t), 6@ =X\, Qi and Q = (B, 1) -+ ((B),
t) -+ (B, t). It is easy to verify that ¢ extends linearly to B(D(3)) as
a derivation in B(Y) this way. We denote the extension by 4.

Suppose for the moment that the inclusion <, D(H) has been
established. Then we show that (38) holds. Let A€, and fe D(H) be
given. Since &7, is then a core by [12], there is a sequence of elements
Q. € B, such that 7n(Q,)&— f and ‘Hx(Q.,)s = n(6(Q.,))& — 1Hf, cf. (39)
and (40). Consequently,

n(A)(Q.)E — n(A)f,
and
tHr(A)n(Q,)¢ = i1Hr(AQ,): = m(0(AQ,))E

= 1(6(A)Q.)E + w(Ad(Q.))E

= 7(6(A)7(Q,)E + T(A)T(B(Q.))E

— w(0(A)f + m(A)Hf .
Since H is closed, the vector w(A)f is in the domain of H and the identity
in (38) holds.

If Ae D(6) is given, then there is a sequence of elements A, €,
such that 4, — A and d(4,) — d0(4). But then

w(A4,)f — n(A)f,
and
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iHr(A,)f = 7(8(A))f + n(A,)iHf
— (0(A)S + =n(AyHS,

so indeed n(A)fe D(H), and (38) holds also for A € D(9).

We now turn to the proof of the inclusion &, D(H). Let P and
Q be elements in B(Y,). We contend that equations (29), (30) and (31)
hold with A, B and ¢ replaced by P, @ and 4, respectively. To see this
it is enough to verify (29), for then (30) and (31) follow as in the proof
of Lemma 8. By linearity we may assume that P = (4, s,) --- (4 8:)
and @ = (B, t,) -+ (B, t))). By (25) and (24) there is a subsequence {n,}
of the integers such that

(d/dt)a;(Pgt(Q)) |t=o = gl‘f (a/atz)G(Av % Ak; Bu °° 'Bl; Sy ***y Sky tyo-- tl)

=> lim (91063, (4, 8) -+ (By &) -+~ (By )

= Z lm (l) ((Au sl) (Bu IARER (3,,p(B¢), ti) cce (Bl’ tl))

i=1

= ﬁ: lim @, (A, 8) +++ (By £) -+~ (3(B, t) -+ (By 1)

i=1 7y

L O(PQ.) = @(P3(Q))
= (d/dt)w(g_l(P)Q)lt=o = —@0(P)Q) .

Il

Il
i M~

We used that

(@, (P(By £) -+ (3a,(B), 1) -+ (Byy 1)) — @, (PQY)]
= |, (Ay 8) ==+ (By £) =+ (3, (B) — (B, t) +++ (By 1)

< (L 14,01)(IL 1B )l9.,(B) = (Bl -0,

cf. (27).

Quite similarly, it follows from the regularity of ¢ that the Green’s
function G(A,, ---, Ay, B, +++, B;; 8, *++, 8, ---) is of class C* (cf. the
proof of Lemma 3), and that

d\? ~ e ~
<“&Z> 3(Pg(Q) e = —BEPYQ)) ,

so that we get
1U@®)7(R)s — m(Q) — tm(6(Q))E|1%
= 2@(Q*Q) + #@B(3(Q*)H(Q))
— [@(g,(Q")Q) + &(Q*9.(Q))]
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— t[@(g.Q*)3(Q)) + B(3(Q*)g.(Q)]
+ @BQ*3(Q)) + GOBQ"Q)]

= o(t?)
as in the proof of Lemma 3, now with A replaced by @. The desired
conclusion 7(Q)¢ € D(H) follows. q.e.d.
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