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1. Introduction. In quantum field theory and in quantum statistical
mechanics the multiple time Green's function [1, 16, 17, 18, 19, 24] has
been studied from different points of view. In [24] it is shown that the
vacuum expectation values of a neutral scalar field, interacting with it-
self, gives rise to a dynamics of a large algebra generated by an abstract
"time evolution" together with the time zero field algebra. In [19] the
same algebraic considerations are used in describing the dynamics and
the Gibbs states of quantum lattice systems with "bad" potentials, i.e.,
potentials where the time development cannot be described with a one-
parameter group of *-automorphisms of the given C*-algebra of time
zero observables. The two approaches, summarized above, have been
extended in a recent paper [7] by Bratteli and Robinson.

Common to the earlier works is that the attention has been restricted
to Gibbs states and KMS states. In this paper we' adapt the algebraic
tools of the articles cited above to arbitrary time invariant states. As
applications we propose an infinitesimal KMS condition (and ground state
condition) for unbounded derivations. Existence theorems are proved for
inner limit derivations.

The paper [7] also constructs modular states for derivations (in a
special class of nest algebras) which are not generators of one-parameter
groups of automorphisms, but the analysis in [7] is based on the one-
time Green's function. The conclusions in [7] are therefore of a different
kind than the present ones, based on the convergence of the multi-time
Green's functions of locally time-invariant states.

Existence theorems for KMS states and ground states have recently
been proved in [15] and further analyzed in [10]. Those papers treat
the general setting of C*-algebras, but assume that the derivation is a
generator. Our present results are different from [15] in several respects.
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Firstly, they apply to arbitrary inner limit derivations which are not
assumed to generate one-parameter groups of automorphisms. This is
the essential reason why the multi-time Green's functions are needed.
In the case of generators, the states alone suffice.

In the first section we establish a correspondence between dynamics
and extensions of certain states on the algebra of time-dependent observa-
bles associated with the multi-time Green's function. (Our first theorem
is an abstraction of a special case which first appeared in [19].) We have
stated these results in the generality of unbounded representations [13],
although only bounded representations are needed in the main section.
Only little additional work is needed for the extra generality, and appli-
cations are pointed out along the way.

Let δ be an unbounded densely defined *-derivation in a C*-algebra
SI, and let π0 be a representation of Sί on a Hubert space ^l Finally,
let H be an unbounded self-adjoint operator in <β£\ We say that H ex-
tends δ in the representation π0 if πQ(A)feD(H) for all AeD(δ) and
feD(H), and

( * ) ίHπQ(A)f= πo(δ(A))f + πo(A)iHf.

In the main section of the paper we construct for a general class of
derivations δ a variety of physically relevant representations πQ: Sϊ —>B{̂ Γ)
and self-adjoint operators H which extend δ in the respective representa-
tions πQ. The above mentioned extension theorem is used in combination
with the Arzela-Ascoli theorem in constructing the representations π0.

2. Extension of states and dynamics.

DEFINITION 1. If 31 is a *-algebra over the complex numbers with
identity 7, then we denote by 33 = 33(SΪ) the free *-algebra generated by
pairs of elements (A, t) with A e Sϊ and t e R, modulo the relations

(A, t)(A2, t) = (AA2, t), MA, t) + (A, t) = (λAx + A, t),

and (I, t) = (/, 0) for all teR, λ e C and Aif A2eW. More specifically, let
W denote the *-algebra spanned linearly over the complex numbers by
strings of elements

(1) P = (A, WAf <s) - (A, **) with A 6 Sί and tt e R .

Define the *-operation by P* = (A?, «*).-• (A?f tj with P as above. Let
J denote the two sided *-ideal generated by the elements

(2) (Alf t)(A, t) - (ΛΛ, ί), λ(Λ, t) + {A, t) - (\A + A, t),
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and (I, t) - (I, 0). Then 33(31) is the quotient *-algebra W"/J. Note that
33(9Ϊ) has an identity.

Following [19], [16] and [24], we define a one-parameter group of
*-automorphisms {gt: — °o < t < °°} of ^ ~ by

gt((Alf t,) (Λ, ί*)) - (Λ, t, + t)(A2, t2 + t) (Afc, £fc +

Since #f is a *-automorphism of ^ ^ for each t, the set of elements given
by (2) is invariant under gt for all t. It follows that the two-sided ideal
J i s invariant as well. The corresponding one-parameter group of ^auto-
morphisms of the quotient algebra 33(81) = "W/J is also denoted by
{gt .teR}.

THEOREM 1. Let ω be a positive linear functional (ω(P*P) ^ 0 for
all P e 33(81)) on 33(81) satisfying the following conditions

( i ) ω(gt(P)) = ω{P) for all teR and Pe33(31)
(ii) The mapping t —> ω(P*gt(P)) is continuous on R for all P e 33(81).

I. Then there is a *-representation (closable in the sense of [13]) π of
33(91) into possibly unbounded operators with a common dense and in-
variant domain & in a Hilbert space 3ίΓ, a cyclic vector ξ € i^, and a
strongly continuous unitary representation U(t) of R on 3f such that

(a) i ^ = 7r(33)£
(b) ω{P) = (f, π(P)ξ)
( c ) U(t)ξ = ζ
( d ) U(t)π(P)U(-t) = π(gt(P)) for all Pe33(31) and all teR.

II. Let π0 denote the restriction of π to 9ί. Then

( 3 ) ω(Aίf t,)(A2, t2) (Ak, U)

= (f, π o (A)E% - tiK(Λ)t^(t 8 - t.) • ̂ (ί 4 - th^)π0(Ak)ξ) .

The function <o((A19 t^){A2, t2)) is uniformly bounded in (tlf t2) e R2 for
fixed Alf A2 6 9ί.
III. Moreover, the representation π is determined up to unitary equi-
valence by conditions (a) and (b). The four conditions (a) through (d)
determine π and U(t) up to unitary equivalence.

PROOF. We will only outline the proof of this version of the GNS
construction, omitting many details, since the ingredients are essentially
contained in [13], [19] and [21].
I. Let ω be a state on 33 satisfying (i) and (ii). Let & denote the left
ideal of element Pe33 such that ω(P*P) = 0. For arbitrary elements
P, Q e 33 we have by the generalized Schwarz's inequality

ω((PQ)*PQ) -
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We denote by 2$ the quotient space 33/LSf with inner product

( 5) (P + J2J Q + &) = ω(P*Q)

It follows from (4) that the inner product is well defined. Similarly
π(P)(Q + £f) = PQ + c£f is well defined for all points [Q\ = Q + Sf in 3f.
If ξ denotes the vector [I] = [(I, 0)] = [(/, ί)] then 3f = τr(S3)ft We let
3tΓ denote the completion of £2t with respect to the inner product given
by (5) and contend that π is a *-representation which satisfies (b). £&
is clearly a common dense and invariant domain for this representation.
We now define U(t) for t e R by

( 6 ) W)π(P)ξ = π(gt(P))ζ ,

and leave to the reader to check that (6) is a good definition; || U(t)π(P)ζ||2 =
\\π(F)ξ\\* = ω(P*P) for all t; and lim{\\U(t)π(P)ξ - π(P)ξ\\: t-^0} = 0.
Here the property (i) and (ii) of the positive linear functional ω are used.
Finally properties (c) and (d) follow from property (i) and (6) combined.
II. Let π0 denote the restriction of π to §ί w (81, 0). Using (c) and (d),
we then have, starting with the left hand side of (3)

«i) (A, tk)) = (f, τr((Λ, *i) (Λ, tk))ξ)

= (ί, π(βrίl(Λ)) π(gtk(Ak))ξ)

- (ft πάAJUfo - W 4 . ) t/(*fc - t̂ OTΓoίilOδ) ,

and (3) follows. Uniform boundedness of (ύ((A19 ίi)(A2, ί2)) in (tlf ί2) follows
from the estimate

|(ft τr o (Λ)^ 2 - Oπ0(A)f)l ^ ||7ro(Λ*)ίlll!7ro(A)ί|| .

III. The uniqueness of π and U(t) follows as in [13] and [21].
Our next result concerns extensions of positive linear functionals on

SI. (A positive linear functional will be called a state in the sequel even
if it is not normalized). We know that states on the subalgebra 31 of
S3(8l) always extend to states of 81(83). See for example [20], But the
extension may in general be highly non-unique. However, we have

THEOREM 2. Let Sί fee α *-algebra over the complex numbers, and
let π0 be a *-representation of Sί with a common dense and invariant
domain 3f in a Hilbert space 3ίΓ. Let ξ be a vector in & and let ω0

be the vector state on 91 given by ωo(A) = (ft πo(A)ξ) for A e St.
If U(t) is a strongly continuous unitary one-parameter group on

satisfying
(e) U(t)& = 3f, and
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(f ) U(t)ξ = ξ for all t e R,
then the linear extension ω given by (3) to 33(31) of ω0 is positive, i.e.,
ω(P*P) ^ 0 for all Pe33(9ϊ), and satisfies conditions (i) and (ii) of
Theorem 1.

PROOF. Note that since ζe&r, πo(VL)&c:&r, and (e) hold, we may
define ω((Au έj (Ak, tk)) by the right hand side of (3) for every product
of the form (Alt t j (Ak, tk) in 85(81). Since 85(81) is spanned as a linear
space by such products, the linear extension of o)Q to 33(5ϊ) is uniquely
given this way, and it is clear that ω extends ω0.

Using Definition 1 we see that for every P e S5(8l) there is a positive
integer k such that P = Σ -P»> where the elements Pn are all of the form
(1) and where n runs over a finite index set, also depending on P. (To
see this, we may insert the identity element appropriately and use the
multi linearity built into Definition 1.) We must show that

ω(P*P) - Σ ω(PίPJ ^ 0
n,m

where ω(P*Pm) is defined by (3) for each pair of indices n and m. In
order to avoid too heavy index notation, we restrict ourself to the case
k = 2 leaving the analogues cases k > 2 to the reader. Thus we assume
that for each index n there are pairs An9 BneSΆ and snf tneR such that
Pn = (An, tn)(Bn, sn). Then

.α)(i?PJ - (πo(An)U(sn - tMBn)ξ, πo(AJU(sm - tm)π0(BJξ)

If we define vectors f]n and rj by

Ύ]n = τro(AJU(sn - tn)π0(Bn)ξ and V = Σ*Vn ,

it follows that ω(P*P) - Σ . 0?« V«) = (Σ ^ Σ™ ^ J - (̂ , 7) = IMI2 ^ 0
showing that o) is a positive linear functional.

It is clear from (3) that ω extends a)0. We must finally verify con-
ditions (i) and (ii).

By linearity it is enough to verify these conditions for elements P
of the form (1). For such elements condition (i) is clear because O)(P)
depends only on the differences (ί2 — tlf •••,** — ί/t-i), and the k vectors
(tif •••!**) and (*! + t, •••,** + *) have the same difference-vector. Finally
condition (ii) follows immediately from the strong continuity of U(t).

q.e.d.

REMARK 1. For many interesting states ω on 93(δϊ), the correspond-
ing representation π described in Theorem 1 is bounded, i.e., π(P) is
bounded on ST for all PeS(δϊ). This is the case when U(t) in (3)
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implements an automorphism group of Sί and for weak * limits of such
states ω. These states satisfy the following conditon

for Pe23(δl), AeSt, and teR, which in turn implies boundedness of
π((A, t)), and hence of π(Q) for all Qe83(81).

As a corollary to this remark we have

COROLLARY 2. Suppose the representation π0 of Theorem 2 is a
bounded representation of a C*-algebra 3ί on the Hilbert space 3ίΓ. Then
the representation π induced by the extended state ω is also bounded on
3T, i.e., π(Q) bounded for all Qe33(31).

PROOF. We need only to verify the estimate (8) for the extended
state ω. With P given by (1) we have

ω(P*(A*A, t)P) = ω((A, t)P)*((A, t)P)

- *i) ••• Uitk - tk^)π0(Ak)ζ\\2

• U(tk — *jfe_i)7Γo(-Ajk)f I Is

^ ||A||2ω(P*P) q.e.d.

3. KMS states on 83(81).

DEFINITION 2. Let 8ί be a *-algebra over C, and let π0 be a *-re-
presentation of Sί on a common dense and invariant domain 2f in a
Hilbert space 5ίί. Let U{t) be a strongly continuous representation of
R satisfying conditions (e) and (f) for some vector ζ e&. We then say
that the state ωQ(A) = (ξ, πo(A)ζ) is KMS at inverse temperature β > 0
for U(t) if one of the following two equivalent conditions hold

(fif) Γ φ(t)(ξ, πo(A)U(t)πQ(B)ζ)dt = \~ φ(t + iβ)(ξ, πo(B)U(-t)πo(A)ζ)dt
J—OO J—CO

for every entire analytic function φ such that

φ{x) = \ e-u*φ(t)dt

belongs to the space Z2Γ{R) of compactly supported C°°-functions on the line.
(h) There is a bounded continuous function F(z) on

{z: 0 ^ Im z ^ β)

which is analytic in the interior of this strip and satisfies

F(t) = (ξ, πo(A)U(t)πo(B)ξ) and F(t + iβ) = (f, πo(B)U(-t)πQ(A)ξ)

for t 6 Λ.
Naturally there are similar but quite symmetric conditions for β < 0.
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The equivalence of (g) and (h) is a consequence of the following
lemma which is implicit in [2].

LEMMA 1. Let f0 and fβ be bounded continuous functions on R,
which are both Fourier transforms of finite complex measures on R.
Then the following conditions are equivalent.

S oo Γoo

φ(t)fo(t)dt = I φ(t + iβ)fβ(t)dt for every φ as in (g), and
- o o J-oo

(h') There is a bounded analytic function F as in (h) such that F(t) =
/o(<) and Fit + iβ) = fβ(t) for all t e R.

Note that the lemma does indeed apply. The function /0(f) =
(£, πlA)U(t)πlB)ξ) is bounded (by ||7ro(A*)ί||||7Γo(J5)f||) and continuous on R.
Let U(t) = 1 eitxE(dx) be the spectral decomposition of U(t), and put
μo(dx) = (πo(A*)ξ, E(dx)πQ(B)ζ). Then \\μo\\ < oo and f0 = β0.

The significance of Definition 2 is due to the fact that the states in
question are modular states. Starting with a state ωo(A) = (£, πo(A)ξ)
for some representation π0 of Sί on a Hubert space ^Γ, we define the
cyclic subspace Sίf as the closed linear subspace spanned by πQ(W)ξ and
denote by π, the restriction of π0 to

PROPOSITION 1. Suppose that πγ is a bounded representation on Sίfy

and ω0 is a KMS state for some β > 0. Then ξ is a cyclic and separat-
ing vector for the von Neumann algebra TΓ^SI)", i.e., the bi-commutant
of 7̂ (31) in B(^T).

PROOF. It is clear that ξ is cyclic for 7 (̂81)". Let XeπXSl)" be such
that X*f = 0. By Kaplansky's density theorem there is a bounded
sequence BΛe8l such that πx(Bn)ξ-^Xξ and π^B^ξ-^O. We conclude

from (g) that [ φ(t)(πo(A)ζ, U(t)Xζ)dt = 0 for all φ with ^ 6 S and all

AeSΆ. This in turn implies Xζ = 0. For arbitrary Yeπ^W)" we then
have (XY)*ξ = Γ*X*ί = 0, and by the above XYξ = 0. Hence, X is
identically zero, since this holds for all Y. q.e.d.

The conditions of Definition 2 are formulated in such a way that
they are easy to check in applications. However, the dynamics is
described by a one-parameter group of *-automorphisms gt and a state
ω on 93(9ί). Therefore one is really interested in knowing the KMS
property for the data (33(81), gt, (o).

DEFINITION 3. We say that a state ω on 83(81) is a KMS state for
inverse temperature β > 0 if condition (g') (or equivalently (h')) is
satisfied for the functions
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fit) = ω(Pgt(Q)) and fβ(t) = ω(gt(Q)P)

for every pair of elements P and Q in 93(81).
The following theorem is therefore of principal importance.

THEOREM 3. Let the data (π09 % <5Γ, ξ, U(t)) be as above and as in
Theorem 2. Let ω0 be the vector state given by o)Q(A) = (f, πo(A)ξ), A e §ί,
and let ω be the extension given by (3) to 33(2Ϊ) of ωQ.

Then ω is KMS for inverse temperature β if and only if for
every positive integer k and every set A19 •••, Ak of elements in Sί there
exists a holomorphic F(zl9 - —, zk) in the region 0 < Im zγ < Im zz < <
Im zk < β, continuous up to the boundary, such that the boundary value
of F for Im zx = = Im z$ = 0 and Im z3 +1 = = Im zk — β, i.e.,
F(tly , tjt ίi+1 + iβ, •••,** + ijS), is ίΛe function

(ξ, πo(Aj+1)U(tj+2 - ί i + 1) U(tk - ^-JTΓOCΛ)

PROOF. The proof depends in a crucial way on the main result of
[2], Theorem 3.1, or rather the proof of this result. It is pointed out
in [2, Remark 3.2] that [2, Theorem 3.1] and its proof are stated in a
form which includes the applications to Wightman fields. By the same
reasoning it follows that [2] applies to the present case with unbounded
representations π0.

Suppose first that ω is KMS for some β > 0. By [2, Theorem 3.1]
we see that there is a holomorphic function F in 0 < Im zι < <
Im zk < β, continuous up to the boundary, such that for all j = 1, , k

F(tlf •• ,tj,tj+1 + i β , ••-,«* + iβ)

= ω(gtj+l(Aj+1) Λ4(ii*)firtl(Λ) OtjiAj))
= ω((Aj+1, tj+1) (Ak, tk)(Alf O (Ajf tj))
= (f, πo(Aj+1) U(tj+2 - tj+1) πo(Ak) U(t, - tk)π0(A) U(t£ - t^)πo(As)ξ) .

Conversely, suppose that for every ft-tuple of elements in Sί there exists
a holomorphic function with the stated boundary values. We must show
that for every pair of elements P, Q e 35(91) there exists a bounded holo-
morphic function Φ{z) say in 0 < Im z < β, continuous up to the boundary,
which satisfies

(9) Φ(t) = ω{Pgt{Q)) and Φ{t + iβ) = ω(gt(Q)P) .

By linearity it is enough to consider elements P and Q in 33(Sί) of the
form P = (Aί9 s,) {Am, sm) and Q = (Blf ί j (#*> O Corresponding
to the (fe = m + w) tuple of elements (Alf , -4m, J5X, , Bn) there exists
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a holomorphic function F(zlf , zm+n) in 0 < Im zλ < < Im zm+n < β
with the boundary values stated in the theorem. In particular

(10) F(819 •• ,sm,t1 + t + iβ, - ,tn + t + iβ)

= (ί, πlB,)U(t2 - tx) πlBMs, - tn - t)πo(A,)U(s2 - 8l)

U(sm - 8m_1)ττ0(Am)ί)

- ω((Bu «, + * ) - - • (B», ί. + t)(Λ, βi) ( 4 . , βJ) .

Similarly

(11) F(8ί9 •••,«.,<! + *, ••-,*. + «)

- α)((Alf β l) (Amf O ( A , «! + «)••• (B», t» + ί))

For teR and 0 ^ a ^ /S we now define

Φ(t + iα) = F(8lf , sw, tλ + t + iα, •••,*» + £ + iα) .

Since î 7 is analytic as a function of m + n complex variables 0 <
Im zι < < Im zm+n < β and continuous up to the boundary, we conclude
that Φ(z) is analytic in the complex variable z = t + ia, 0 < a < β, and
continuous up to the boundary. We recall that the numbers slf •••, sm,
t19 - *,tn, depending only on P and Q, are fixed. It follows from (10)
and (11) that Φ(z) satisfies the right boundary conditions (9).

To conclude the proof we only need to show that Φ(t + ia) is uni-
formly bounded in the strip 0 <; a ^ β. By the three-line lemma of
Doetsch, it is enough to show that sup{|Φ(έ)|: t eR} and sup {\Φ(t + iβ)\:
teR} are finite. But it follows from (11) and (10) that the first number
is dominated by

\\πo(A*)U(8m^ - O πo(A*)f|| IWA)U(t2 - ίx) πo(Bn)ξ\\ ,

and the second by

||7ΓO(B*)#(**_! - O πo(B?)ξ\\ \MA)U(8, - 8ί) πo(AJξ\\ .
q.e.d.

4. Existence of KMS states and ground states for C*-systems. We
shall show in this section that if SI is a C*-algebra with unit and with
at least one-trace state, then there is associated to each inner limit
derivation in 21, and each non-zero inverse temperature, a dynamical
system which is in "equilibrium" KMS state. This result is a natural
generalization of the result [15, Theorem 3.2] which states that every
approximately inner one-parameter group of *-automorphisms of a C*-
algebra as above has KMS states at every non-zero inverse temperature.
The formulation of our result at the same time proposes an infinitesimal
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definition of KMS states. We give a similar discussion of ground states
for an inner limit derivation δ in an arbitrary C*-algebra.

The section concludes with a discussion of extensions of δ in the
representations induced by the above mentioned states. In the case of
ground states, we compare our extension with the Friedrichs extension,
and with the extension obtained in classical dilation theory.

DEFINITION 4. Following [5] we say that an unbounded *-derivation
δ in a C*-algebra 9* is an inner limit derivation if there is a core Sί0 for
δ and a sequence δn of inner *-derivations on 9ί such that δ(A) = limw δn(A)
for all Ae% Specifically, the requirement on Sl0 is that for every ele-
ment A in the domain of δ there is a sequence An of elements in % such
that An->A and δ(An) -> δ(A).

Note that normal derivations [14] are a special class of inner limit
derivations. Also note that, since bounded derivations are inner if Sί is
simple [20], it is enough to assume that the approximating derivations
δn are bounded if Sί is simple.

An inner limit derivation is said to be regular if it is possible to
choose the core 3l0 and the approximating sequence {δn} in such a way
that sup ||<?*(A)|| is finite for all Aeδί0. It is known, [14], that every
normal derivation of finite type is a regular inner limit derivation.

NOTATION. Suppose δn(A) = [iHn, A] for a sequence of elements
Hn = H*e Sί, then we put an(t)(A) = e

itH-Ae~itH-.

LEMMA 2. Let δ be an inner limit derivation in a C*-algebra 31
with unit. Let % be a core for δ, and let {Hn} be a sequence of hermitian
elements in 9ί such that δ(A) = limΛ [iHn, A] for all A e δί0. Let {ωn} be
a corresponding sequence of states on 5ί such that

(12) ωJί6itH*A£ΓiiH«) = ωn{A) for all teR and A e S ί .

Then there exists a state ώ on S5(8ί), such that for every k-tuple of
elements Alf , Ak in Sί there is a subsequence {np} of the integers
satisfying

(13) ώ(Alf tθ (A,, tk) = lim ω (αΛQiA) . an(tk){Ak)) ,
n p P P p

the convergence being uniform for (tίf •••,£*) in compact subsets of Rk.
The state ώ satisfies conditions (i) and (ii) of Theorem 1 and (8) of

Remark 3(b).

We conclude from Theorem 1 and Remark 3(b) that there is a bounded
representation π of 58(81) on a Hubert space 3ίΓ, a vector ξ e ^ and a
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continuous unitary representation U(t) on 3ίΓ such that ώ(P) = (f, π(P)ζ),
U(t)ζ = ξ, and U(t)π(P)U(-t) = π(gtP) for all Pe»(8l) and έeΛ.

LEMMA 3. Let δ be an inner limit derivation which is also regular
and let O)n be a sequence of an{t)-invariant states as in Lemma 2. Let
H be the infinitesimal generator of U(t), and let πQ be the restriction
of π to 8Ϊ.

If D(δ) denotes the domain of δ, then πo(D(δ))ζ is contained in the
domain of H and

(14) iH(πo(A)ξ) = πo(δ(A))ζ for all A e D(δ) .

Before starting the proof, we comment on the conclusion (14) and,
point out two consequences.

As mentioned in the Introduction, we are interested in the cases
where the algebra of time zero observables Sί is not invariant under the
dynamics. We say that §ΐ is invariant under the dynamics if for every
A e 31 the sequence an(t)(A) is convergent in 3ϊ, and if a(t)(A) = limw an(t)(A)
defines a strongly continuous one-parameter group of *-automorphisms
on 31.

Using the considerations above, we may regard ττo(8l) as an algebra
of operators on ^f. We denote by M the bi-commutant of τro(3ί) in
B(<%"), i.e., M= πo(§ϊ)". The invariance conditions

(15) U(t)MU(-t) = M for all t e R ,

(16) Ό^Sίf = %f for all t e R ,

are of interest. It is clear that (15) implies (16), and that both are
satisfied when 31 is invariant.

OBSERVATION 1. Suppose there is a subset S of D^δ) (i.e., elements
in 3ί which belong to the domain of each of the operators δ, δ2, , δk, )
such that πo(S)ξ is dense in βgf, and such that the vectors in πQ(S)ξ are
quasi-analytic [6, 11] for H. Then (16) is satisfied.

PROOF. It is enough to show that if AeS and f
then (/, U(t)πo(A)ζ)jr = 0 for all t. But in view of (14) in Lemma 3 above,
we have

V = 0 .

The conclusion follows from the Denjoy-Carleman theorem, since πo(A)ζ
is quasi-analytic for H.

More generally we have
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PROPOSITION 2. Let Ho denote the symmetric operator in £%f which
is given on πo(D(δ))ξ by

(17) iH0(π0(A)ξ) = πo(δ(A))ξ = M(πo(A)ξ) .

Suppose Ho is essentially self-adjoint. (1) Then (16) is satisfied.
(2) If ώ is also a KMS state, then (15) is satisfied as well, and U{t)
coincides with the modular group Δu of the cyclic and separating vector ζ.

PROOF. Since HQ is essentially self-adjoint, the closure Ho defines a
unitary representation Z70(ί) = eitH° on ^f. Let / be an arbitrary vector
in D(H0) and let {An) be a sequence in D(δ) such that πo(An)ξ —> /, and
H0(π0(An)ζ) -* HJ. From (17) we conclude that HJ = Hf. We therefore
have

iu(t)UQ(-t)f= U(t)(H-HQ)U0(-t)f= 0 ,
dt

Since U0(-t)fe D(H0), and hence U(t) = UQ(t). This concludes the proof
of part (1). Part (2) follows from [7, Theorem 2]. q.e.d.

The assumptions of Proposition 2 have been verified in applications
to Bose gases [8] in a specific model.

We now use the lemmas to construct, for every inner limit deriva-
tion δ and every β > 0, an "equilibrium" (or KMS) dynamical system
(π0, % ^ 7 ξ, U(t)) for inverse temperature β. We say that the system
is in "equilibrium" if the state on S3(8ί) determined by the invariant
vector ξ is a KMS state in the sense of Definition 3. The infinitesimal
generator of U(t) turns out to be an extension of δ in the represen-
tation 7Γ.

THEOREM 4. Let δ be an inner limit ^-derivation in a C*-algebra
9ί with unit. Suppose Sί has at least one trace state. Then for each
β > 0 there exists a dynamical system (ττ0, % 3^, ζ, U(t)) such that ξ
defines a KMS state on S5(Sί) at inverse temperature β.

If δ is also regular, then the corresponding infinitesimal generator
H= —i(d/dt)U(t)\t=Q satisfies

(14) iH(πo(A))ζ - πo(δ(A))ζ

for all A in the domain of δ.
A completely analogous result holds for ground states. Let Sί be a

*-algebra. We say that a state ώ on 33(31) is a ground state if for every
positive integer k and every set of elements Alf , Ak in Sί the multi-
time Green's function

G(Alf ...,Ak;t1,...,tk) = ώ((Λ, ίi) (Λ, k))
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is the boundary value on Rk of a function F(zlf , zk) which is analytic
in Im zx < Im z2 < < Im zk, and continuous and uniformly bounded
on the closure of this domain.

THEOREM 5. Let δ be an inner limit ^-derivation in a C*-algebra
81 with unit. Then there is a dynamical system (τr0, % 3ίΓ, ξ, U(t)) such
that ξ defines a ground state on S5(3ί).

In the event that δ is also regular, identity (14) holds for the genera-
tor H of U(t), and the restriction of H to πo(D(δ))ξ defines a symmetric
operator with non-negative spectrum.

Note that the theorems may be viewed as corollaries to Lemmas 2
and 3. We now pass to the proofs.

PROOFS. Starting with Lemma 2, we recall that δ is an inner limit
derivation with an approximating sequence {Hn} of hermitian elements.
{ωn} denotes a corresponding sequence of states such that ωn is invariant
under an(t) = e

itHn e~itHn for all n, i.e., ωnan{t) = ωn.
By weak-* compactness of the state space of 9ί, we first note that

there exists a subsequence of {ωn} which is weak-* convergent. We shall
denote this subsequence also by {ωn}. We denote the corresponding limit
state by ω, i.e.

(18) ω = lim ωn
n

Using a simple version of Theorem 2 and Corollary 2 (or by direct
verification) we then observe that, for each n, the definition

(19) ώΛ((A19 tθ (Ak, tk)) = ω.Cα.CtJCΛ) •• an(tk)(Ak))

leads to a state ώn on S3(8I).
We shall need the following properties of ώn:

(20) &MP)) = ω.(P) for all PeS(9ί) and teR.

(21) For every positive integer k and every subset Aly , Ak of ele-
ments in 9ί, the function (tlf ••-,£*)-> ώn((il1, ίx) (Ak, tk)) is uniformly
bounded on Rk, in fact by Π* I\At\|.

(22) Similarly, for every k and Aίf , Ak in 8ί0, the partial derivatives

dώn((Alf ίx) . (Λ, ίfc)),/3^ and d2ώn((Alf ί,) (Λ, th))ldUdts

are uniformly bounded on /ϊ\

The contention (20) is clear, because, since an(t) defines a *-automor-
phism group of 3ί, the condition that ωn is invariant under an{t) is
equivalent to ώn on 35(81) being invariant under gt. Indeed ώn(gt((Alf t j
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(Ak, tk))) = ©.(^(tXα.COίΛ) oin(tk){Ak)) = ωn(an(t1)(A1) an(tk)(Ak)), so
(20) follows by linearity.

The boundedness in (21) follows from (19). Indeed

(23) lωMMAJ an(tk)(Ak))\ sS IK&XΛ) an{tk){Ak)\\

S Π ll«.(ί,)(4)ll = Π IIΛII.
i i

As for (22), we start with the case k = 1. We have &n((Alf A)) =
^»(^Λ(^i)(A)) = Λ)»(A) s o the derivatives vanish identically. For k ^ 2
and iί.w •••, Afce9ί0

The right hand side is bounded since δn(At) -> <5(A£). (It is important
at this point that the definition of inner limit "^derivations involves
sequences rather than nets, since convergent nets need not be bounded.
We deviate from the definition in [5] at this point.)

Similarly we have for i Φ j

\aFωn{(Avtι)...(Ak,tk))ldtidtJ\£ Π 11 A.1111̂ (̂ )1111̂ (̂ )11 .

Considering finally d2jdt\ we will assume for the sake of simplicity that
i = 1 and k — 2.

dώn((A,

and
2, t2))jdt\ = -

and hence

Since the right hand side is bounded, the proof is completed.

We have checked that for fixed Alt , Ak in Slo> the set of functions
K - {(tι> " ,h)-> &n((Aίf t j (Akf tk)): n = 1, 2, •} is bounded in (the
Prechet topology of) C\Rk). By a classical result [23, Theorem 14.4],
based on the Arzela-Ascoli theorem, we conclude that K is relatively
compact in C\Rk). Hence, there is a subsequence (depending on
(Alf * ,Ak)) of K which converges in the C\Rk) topology. Defining
f%(ht '' Ί h) = ^n((Alf tj) (Ak, tk)) we have, for the subsequence {np} in
question, that each of the sequences {fn }, {dfn /3ίJ for 1 ^ i ^ k are
convergent the convergence being uniform on every compact subset of
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Rk, and so in particular point wise. (We note that the Arzela-Ascoli theorem
has been used in a similar context by Ruskai [19].) There is a function
G(Aί9 •••, Ak;tif •••,**) belonging to C\Rk) in the f-variable such that

(24) lim ώnp((Alf ί,) • •. (Ak, tk)) = G(A, , Akjf tlr . , tk)

and

(25) lim 3άL ((A, *,)••• (Ab, O)/d«* = 3G(A2, , Λ ; *„ , th)ldt< ,
**>

again uniformly for t in compacts.
We now define a linear functional ώ on 33(9ϊ0) by

(26) ω ( ( A , « . . . (A f c, t f c )) = G(AU - - ; A k ; t l t - . . , t k ) .

We claim that ώ extends to a state on 33(91) which satisfies properties
(i) and (ii) of Theorem 1 together with property (8) of Remark 3(b).

We first extend ώ to a linear functional on 33(31). By linearity it is
then enough to define the extension (also denoted by ώ) on arbitrary
elements Q = {Alytx) - (Akf tk) for Alf , Ak in 9L Given such an ele-
ment, we pick sequences {Auq} « {Aktq} of elements in Sί0 such that
UmqAuq = At for i = 1, •--, k. We then verify that the corresponding
sequence of scalars {&((Aίtq9 ίt) (Ak>q, tk))}q is Cauchy. For this purpose
we combine (23) and (24) and get

(27) \<o((Auqf t,) (Ak,qf tk)) - ώ((Λ,r, ίi) (A4tr, tk))\
qf t,) (Ak,q

^ Σ 59 H-AyJ 1 1 ^ - ^ 1 1 Π ||Ay,
The right hand side tends to zero as q, r —> oo by assumption.

By (24) we have ώ(Q*Q) - limWp ώΛj>(Q*Q) ^ 0 for all Q e33(Sί), where
{̂ p} is a subsequence of the integers which depend on Q*Q. The estimates
(27) also imply, together with the usual 3ε argument, that for every
Aίf --•, Ak in 9ί (not only 9ί0) there is a subsequence {np} such that the
convergence (24) holds.

Combination of this with definition (26) now yields the conclusion
(13) of Lemma 2.

Condition (i) of Theorem 1 follows immediately from this:

ω ((A19 *! + «)••• ( A * <* + *))

- lim ^ ( ^ ( ί ) ^ ^ ) ^ ) aφk){Ak)})

= lim ωnp(a (MA) «.,(«*)

= lim ώn((A19 ί j (Λ, ί*))

for all ί e J?. This completes the proof of (i).
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Property (ii) follows from the observation that G(A19 •••, Ak9 •••) in
(24) is continuous, as a uniform limit on compacts of continuous functions.

Finally the estimate (8) of Remark 3,(b) is satisfied for each of the
states ωn f and hence for the limit state ω. We claim that ώ is an
extension of the state ω, which was defined as the weak-* limit on Sί of
the sequence {ωn}, cf. (18). To see this we note that for AeSί,

(28) ώ((A, 0)) = lim ώn((A, 0)) = lim ωn(A) = ω(A) .

This completes the proof of Lemma 2.

PROOF OF LEMMA 3. We now apply the generalized GNS construction
which is established in Theorem 1, to the state ώ. We get a Hubert
space SΓ, a bounded (by Remark 3(b)) representation π of 33(9ϊ) on ^Γ,
a continuous unitary representation U(t), and a vector ξ e 3ίΓ such that
ω(Q) = (£, π(Q)f) for all Q 6 58(81), and properties (c) and (d) are satisfied.
We let π0 denote the restriction to Sί of π. The state ωo(A) = (ξ, πo(A)ζ)
then coincides with the limit state ω. For by (13) ωo(A) = ώ((A, 0)) =

Moreover, the extension ωr say of ω0 = ω given by (3) in Theorem 2
coincides with ώ. Indeed,

ω\(Al9 td (Ak, tk)) = (f, nlAx)U{t2 - ί j U(tk - tk^)π0(Ak)ξ)

= (f,

= (ί, τr((Λ, O (Λ, t4))f) = ώ((Λ, ίx) (Ak, tk)) .

Given elements A, B 6 % it follows from (25) that the function
t —> ώ(A(B, t)) is of class Cι(R). This formula also gives a recipe for
(d/dt)ώ(A(B, t)). Corresponding to A and 1? there is a subsequence {ŵ }
such that

(29) £ω(A(B, t)) U = lim j-ωnp{A{B9 ί)) | ί = 0 = lim ^ωnp(Aaφ){B)) | ί = 0αί ^ at p nP at μ μ

since | |δw (B) — δ(B)|| —>0 and α)n —> 6)0 in the weak-* topology. Specifi-
cally,

\ωnp(Adnp(B)) - ωo(Aδ(B))\

^ ωnp(Aδnp(B)) - ωnp(Aδ(B))\ + \ωnp(Aδ(B)) - ωo(Aδ(B))\

^ \\A\\\\δnp(B) - δ(B)\\ + \{ωnp -

Consequently,
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(30) ώ(A(B, t)) = ωo(AB) + tωo(Aδ(B)) + o(t) .

As a corollary to (29) we get, using (onan(t) = ωn and ω0 — ω,

(31) ω(Ad(B)) = lim ω.f(Aδ.p(B)) = - l i m ω%β%p(A)B) = -ω(δ(A)B) .

Now suppose that δ is also regular. Then for every k and every
A19 , Ak e 9ί0 we have

sup {\Diωn((A19 ί j (Afc, ίfc))|: n = 1, 2, , fo, , ί4) 6 Rk} < oo .

The symbol Dl stands for a differential monomial of degree 3 in the
variables (tlf , tk), i.e., d'/dt^dUβt^ 1 ^ ix, ia, i3 ^ k.

To show boundedness of Dlώny it is necessary to treat the different
cases separately.

Case 1: & ̂ > 3 and 1 ^ ix ^ i2 ^ i8 ^ fc. Then

W Λ ) = ωΛ(B l f ••-,£*) where β ^ - αM(ί ip)(^(A ίp))

for p = 1, 2, 3 and B3 = an(tj)(Aj) for i different from i l f i2> i3. Clearly
then

IDΪώ.ί ) | ^ ( Π IIAyll) 113.(^)11113.(^)11 Hδ^Λ,)!!.

2: Λ ̂  2 and 1 <; \ = i2 = i ^ i8 ^ &. Then D\ώn{ ) =
B4) where B, = «.(«,)(«!(A*)), B<8 = αw(ί<8)(δΛ(il<8)) and By =

i) f ° r 3 different from i and i3. Then

and the right hand side is bounded since 3 is assumed regular.

Case 3: ix = i2 = i8 = i and 1 ̂  i ^ /b. Then Z>?<3»( ) = ̂ ( A , , Bk)
where Bά = aJt^Aj) for i * i and B, = ^(ίJCδ^A,)) = S.
We now put Ct = aJfiiWKAt)) and have

Dlώn( ) - 0 ) ^ Bt-MCJBw Bk)

α ) ^ ^ B^atfXCJB^ Bk)\t=0
at

^M[aJ,t){Bx B^CMWB^ • • Bk)])\t=o
at

= -ω.Cδ.O, Bt^)Ct(Bt+ι ft))
= - α>.(ft B{^Ctdn(Bi+1 • • - Bk)) .

Using finally δ,(ft ft_t) = Σ5=ΐ A ft-t^ftίft+x ft_t and the
similar identity for δn(Bi+1 ft) we get
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\Dlώn( )| £ Σ \\Sn(AM( Π 114
3Ψi VΦj.i

Again the right hand side is bounded when δ is regular.
A new application of [23, Theorem 14.4], now using that bounded-

ness in C\Rk) implies relative compactness in G\Rh), shows that for each
Alt " ,Ak€%<, we may choose a subsequence {np} of the integers such
that (24) and (25) hold in addition to

lim Ώ\ώ ((A l f t θ (Ak, O ) = DXKA, •• ,Ak;tι, ' , tk)

for every second degree differential monomial D]. Consequently, the
Green's function G(Alt •••, Akj •••) belongs to C\Rk).

A computation similar to the one leading from (25) to (30) gives

ώ(A(B, t)) = ω(AB) + tω(Aδ(B)) + f/2ω(Aδ\B)) + o(?)

for the case where δ is regular. (Recall that the Green's function
G(A, B, •••) is of class C2 when δ is regular.)

Therefore

ώ((A*, t)A) + ώ(A*(A, t)) = 2ω{A*A) - fω{δ{A*)δ{A)) + o(ί2)

and

ώ((A*, t)δ(A)) + ω(δ(A*)(A, t)) = 2tω(δ(A*)δ(A)) + o(ί) .

We now substitute this into the following expression and get for

\\U(t)πo(A)ζ - πo(A)ζ - tπo(δ(A))ζ\\%.

= ώ(((A, t)-A- tδ(A))*((A, t)-A- tδ(A)))

= ώ(((A*, t)-A* - tδ(A*MA, t)-A- tδ(A)))

= ώ((A*, t)(A, <)) + ω{A*A) + f ω(δ(A*)δ(A))

- [ώ((A*, t)A) + ώ(A*(A, t))]

- t[ώ((A*, t)δ(A)) + ω(δ(A*)(A, t))]

+ t[ω(A*δ(A)) + ω(δ(A*)A)]

= ώ((A*A, t)) + ω(A*A) + fω(δ(A*)δ(A))

- 2ω(A*A) + ?ω(δ(A*)δ(A)) + o(f)

- t[2tω(δ(A*)δ(A)) + o(t)] = o(f) ,

since ώ((A*A, t)) = ω(A*A) and to(t) = o(ί2). Consequently,

lim \\t-\U(t)πo(A)ξ - πQ(A)ξ) - πo(δ(A))ζ\\%-

= lim Γ2\\U(t)π0(A)ζ - πo(A)ξ - tπo(δ(A))ζ\\%-
t0±

= lim t~2o(f) = 0 .
t-*0±
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Consequently, the vector πo(A)ξ belongs to the domain of H and

(32) iH(πo(A)ξ) = πo(δ(A))ζ .

If A is now an arbitrary element in the domain of δ, then there is a
sequence {An} of elements in Sl0 such that An —> A and δ(An) —> δ(A).
Since (32) holds for each An and πQ is continuous, we get πo(An)ξ -* πo(A)ξ
and iH(πQ(An)ξ)-+πo(δ(A))ξ. Since H is self-adjoint, and in particular
closed, we conclude that πo(A)ζ is in the domain of H and that (32) holds
for A. q.e.d.

PROOF OF THEOREM 4. Let δ be an inner limit derivation in Sί, and
let {Hn} be an approximating sequence of hermitian elements in St. Let
τ denote a trace state on 91 (i.e., τ(AB) = τ(BA), τ(A*A) ^ 0, τ(I) = 1)
and define a sequence {ωn} of states on 9Ϊ by

ωn(A) = τ(e-fiH«A)/τ(β-βΠ*) for A e Si .

It is immediate that ω% is a /3-KMS state with respect to ajf) = eitH*>-

e-ϋHn for e a c j 1 w . s o ^ ^ (-JL2) j n particular is satisfied.
We let ώ denote the state on 35(91) which is given by Lemma 2. The

dynamical system induced by this state is denoted by (πQ, % J%Γ, ξ, U(t)).
The Hamiltonian H given by U(t) = eitH satisfies (14) of Lemma 3.

It remains to show that ώ is a /3-KMS state on 33(91). This is quite
simple in the present context. We will verify condition (g') of Definition
3 for every pair P, Q of elements in 93(81) and every entire function φ
on R such that φ e ^ . We first claim that the states ωn are constructed
in such a way that the identity

(33) J φ(t)ώn(Pgt(Q))dt = \φ(t + iβ)ώn{gt{Q)P)dt

holds for all P, Q and φ as above.
Again, by linearity, it is enough to verify the identities for elements

P = (Alf Sl) (Ak, sk) Q = (Bί9 tj (Bf, tf). Using that an( ) is a
^-automorphism of 9ί, we note that the elements

A = α.^XA) an(8h)(Ak) and J5 = αΛ(ί1)(β1) . . . an(tf)(Bf)

both belong to 9ί, so that Lemma 1 applies, and

φ(t)ωn(Pgt(Q))dt = J φ(t)ωn(Aan(t)(B))dt

iβ)ωn{an{t){B)A)dt =\φ(t + iβ)ωn((gt(Q))P)dt .

This concludes the proof of (33).
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Now let φ, Pand Q be arbitrary, and assume first that P, Qe33(Sl0).
Then by (24) and (26) there is a subsequence {np} such that ώnp(Pgt(Q)) ->
(θ(Pgt(Q)) and ώnp(gt(Q)P) —> ω(gt(Q)P) uniformly to ί in compact subsets
of R. We conclude that (33) holds, now with ώn replaced by ώ.

Finally, we let P and Q be arbitrary elements in 95(81). By (27) we
conclude that there are sequences {PJ and {Qq} in 33(9ϊ0) such that
<*>(PqgλQq)) -* &(Pgt(Q)) and ώ(gt(Qq)Pq) -> ώ(gt{Q)P) as ?->oo, in fact
uniformly in £. The desired identity

φ(t)ώ(Pgt(Q))dt = \φ(t + iβ)ώ(gt(Q)P)dt
q.e.d.

COROLLARY 3. Application of Theorem 3 to the states ώβ constructed
in Theorem 4 shows that the multiple time Green's function G(Alf , Ak;
ti> •> tk)^=ωβ((Aίf ί j '(Ak, tk)) has an analytic continuation G(Aίf , Ak;
%i> * *> Zk) to the tube domain 0 < Im zt < < Im 2fc < β. (Such analy-
tic continuation has been considered in special cases by various authors
[1], [8], [19] and [24].)

REMARK 5. It follows from [3, Theorem 3.1] that for given A19 , Ak

in Sί the analytic function G(A19 , Ak\ z19 , zk) has a uniformly bound-
ed and continuous extension to the closed tube-domain 0 <; Im z1 ^ ^
Im zfc ^ /3/2. Moreover the estimate

\Γί( A . . . A -y . . . τ M < ^ l l v 4 l l . . . l l > d l l ! ! f l l 2

holds in this domain.

PROOF OF THEOREM 5. Let 8 be an inner limit derivative in Sί, and
let {Hn} be an approximating sequence of hermitian elements in 8ί. The
corresponding sequence of automorphism groups is denoted by {ccn(t)} as
above. It is pointed out in [15] that an(t) has a ground state ωn for
each n. (We may assume that the spectrums σ(Hn) c [0, ©o] and 0eσ(Hn)
for all n. If this is not satisfied we may replace Hn by Hn — XnI where
Xn = inf σ(Hn). The C*-algebra C*(Hn) generated by Hn and / is isomor-
phic to C(σ(Hn)). On C*(Hn) we let ωn be the state corresponding to
point evaluation at zero, /—»/(0), and then extend (on to a state on 5ί.)

It follows from [15] that ωnan(t) = <#„ for all ^. This can also be
seen directly as follows: For every A e Sί, lω^AffJI2 <̂  ωw(AA*)ω(ίiΓ )̂ = 0
since ω(Hl) = iϊΛ(0)2 = 0. Quite similarly, ωn(HnA) = 0 for all A. Con-
sequently, ωΛ((ad HJfc(A)) = 0 for all k = 1, 2, . Hence

oo

ωn(αn(ί)(A)) = Σ (it)k/k\ ωn((a,dHn)\A)) = ωn(A) .
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Whence Lemma 2 ensures the existence of the limit state ώ on S3(Sl)
satisfying (13). By Lemma 3, the corresponding Hamiltonian H satisfies
(14). It remains to show that ώ is a ground state on 33(3ί); i.e., that
for every k and every set A19 •••, Ak of elements in Sϊ there exists an
analytic function F(zlf , zk) in the region Im z1 < < Im zk with
boundary values

F(tlf •-.,«*) = ώ((Alt ^ . - - ( A , , tk))

for all teRK
But the existence of F is quite clear from (3) applied to ώ once we

have shown that the spectrum of H is non-negative, i.e., H^Q. We
show first that

(34) (π(Q)f, Hπ(Q)ξ) ^ 0 for all Q e33(SI0) .

Using (25) we observe that for every Q e 33(SΪ0) there exists a sequence
{np} of integers such that

(ττ(Q)f, iHπ(Q)ξ) = (d/dt)ω(Q*gt(Q))\t=0 = lim(d/di)ωnp(Q*gt(Q))\t=o .

Therefore it is enough to show that —i(d/dt)ωn(Q*gt(Q))\t=sQ ^ 0 for all n.
Let ζ> e S3(Sί0) be given. Suppose Q = Σ<* Qg (finite sum) with Qg =

(A l f ί, ίltff) (Aktq, tk,q). Now put

Aq{n) •= a.n(tuq)(Auq) an(tk>q)(Ak>q) and A (w) = Σ Λ»(ff) .

Then

ώ.(Q*fft(Q)) = Σ ©.(ilJ.^ίtXA,,.,)) = α),(Λ*-)α.(t)(A(.,))

Hence

-i(d/dt)ώn(Q*gt(Q))\t=o = ωn(A*n)[Hn, Ain)])

= ω.(A(* ,ff»;l(1l)) ^ 0 ,

since X^ ωn(A?n)XA{n)) is a positive linear functional and Hn ^ 0 [20].
We claim that ^ = π(35(Sίo))ί is a core for ίZ", in fact for Hn for

all n = 1, 2, To see this, we must verify

( i ) that ^ o is dense in 3ίΓ,
(i i) that ϋ% is contained in the domain of H, and
(iii) that ^ is invariant under U(t) = eitH.

The claim then follows from the Singer-Poulsen-Segal core theorem [12,
22].

Assertion (i) has been verified in the proof of Lemmas 2 and 3,
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specifically the estimates (26). Assertion (ii) is implied in the above
computations, but the explicit argument has been omitted so we give
some details below. Since % c D(d), the vectors in π(%)ζ are contained
in D(H) by (14) of Lemma 3. We show now that every element π(Q)ζ
with Q = (A191,) (Ak, tk) is in D{H) if A19 , Ak e Sί0. This is true since

π(Q)ξ = WtMAύTHh - tt) •-. U(tk - **_>„(Aύf

and both of the transformations U(t) and πo(A) map D(H) into itself for
all teR and A e 9ΪO as is shown in the Appendix. (More generally, if
feD(H) and AeD(δ), then πo(A)feD(H) and

ffπo(A)/ - - iπo(d(A))f + πo(A)Hf,

see the Appendix for details.)
Assertion (iii) is immediate from the formula

U(t)π((Alf tj . (Ak, tk))ξ = τr((Λ, *!•+*)••• (A*, tk + t))f .

(Since (i) through (iii) hold in the general setting of Lemma 3, it is
true in fact that π(35(9ίo))f is a core for H when H is given by Lemma
3.)

Since 7r(33(δϊo))£ is a core for H, the conclusion H ^ 0 follows from
(34).

If A19 •••, Afc are arbitrary elements is Sί, then we have

(35) ώ((Ax, ί j (Ak, tk)) - (ξ, πo(Λ)C/(ί2 - tθ ^(** - tk^)πQ(Ak)ζ)

for all (t19 - , tk)eRk. Let ^(da;) denote the spectral decomposition cor-

S oo

eitxE(dx) and
0

ώ((Λ, O (Afcf tfc)) =

where μ(dxι dxk^) = (ί, π^A^Eidx^) J&(da?fc_1)πo(ilfc)f), and where the
integration is over ΠίCί {%• % ^ 0 } . If we now define

F(z19 , zk) = [ em*-zi)χi+'' +{β*-**-ι)*'<-ί)μ(dxί dxk_,) ,

then it can be seen by induction that F is analytic in Im zι < Im z2 <
• <Imzk and has the desired boundary values.

In other words the condition is that there is an analytic function
R(ζ19 , ζfc.J in k — 1 variables on the product domain {Im ζ, > 0} such
t h a t R(t2 -tί9 - , t k - tk-x) = ω((Aί9 tj (Ak9 tk)).

The following lemma yields this conclusion.

LEMMA 4. Let H be a non-negative (generally unbounded) operator
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in a Hubert space Sί^. Let Al9 , Ak+ι be a set of bounded operators
on 3ίΓ. Then the operator valued function

A(z19 ••-,**) = A ^ A . e^A^
is

1) analytic on V+ = Π {Im %$ > 0},
2) strongly continuous from V+ to B(J%Γ),

and
3) uniformly bounded in operator norm,

\\A(zlt - - , zk)\\ ̂  Π HA3 || for all (zu , zk) e V+ .

PROOF. If E denotes the resolution of the identity for H, then by
the spectral theorem,

\\eizHf\\2 = \°°\eizx\2\\E(dx)f\\2 = Γ^" 2 ( I m 2 ) 1l^(^)/l l 2

Jo Jo

^ \°° \\E(dx)f\\* ^ H/l l 2 f o r a l l z i n { I m 2 ^ 0 ) .
JO

Hence, eizH is a holomorphic family of contractions in Im z > 0, which
is strongly continuous up to the boundary Im z = 0.

It is known [9] that an operator valued function, A(z) say, is analytic
if and only if the scalar functions z -> (/, A(z)g) are analytic for all
f,g£ Stl The conclusions of the lemma follow from this for the case
k = 1, since then (/, A(z)g) = (A?f, eizHA2g).

Suppose that the conclusions 1 through 3 are satisfied for k — 1.

We show that they are also satisfied for k. Let Aίt , Ak+1 be bounded

operators on ^Γ, and let /, g be vectors in J%r~. We show that (/, A(zlf

• mfZk)9) is analytic on V+(k). But

(36) (/, A(zlf , zk)g) = (e^HA*f, A'(z2, , zh)g) ,

where A'(z2, , zk) = A2e
iZ2H eiZkHAk+1 satisfies conclusions 1 through 3

for (z2, , zk) in V+(k — 1), and where zt= — Re zί + i Im s lβ If ^ is fixed,
then the right hand side of (36) is analytic in the variables z2,. ,zk

by the induction hypothesis. If z2, "*,zk are kept fixed, then it is
analytic in the variable zx by the preceeding remark. Since Im zx = Im z19

it follows by Hartogs' theorem [4] that (/, A(zίf , zk)g) is analytic in
{Im zx > 0} x V+(k - 1) = V+(k).

Quite similarly, we get conclusions 2 and 3 by induction. Estima-
tion of the right hand side of (36) gives

|(/, A(zl9 " , zk)g)\ £ \\e^HAΐf\\\\A\z29 . - , zk)g\\

<k \\Aff\\ Π IIAyllHffll ^ ( Π 1̂ 11)11/1111̂ 11 . q.e.d.
2 \ 1 /
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There is an important corollary to the proof:

COROLLARY 3. Let d be an inner limit derivation, and let
(π0, % SΓj ξ, U{t)) be a dynamical system such that ξ defines a ground
state on 33(31). Then the Hamiltonian H= —i(d/dt)U(t)\t=0 is non-
negative, and π(33(8to))£ is a core for H.

The conclusion H ^ 0 is very important for several reasons. First
of all, it shows that the Hamiltonian H is physical (the energy is bounded
below). The Friedrichs extension HF of Ho shares this property with
H. But the automorphism group implemented by HF cannot be used to
describe the dynamics, because it does not leave the total algebra of
observables invariant (cf. below). Of course, extensions of HQ are not
unique. Therefore the weak*-limit state ω alone does not determine a
dynamics. The preceeding discussion shows that instead the state ώ on
33(9Ϊ) leads to a useful dynamics. The constructions of both H and HF

are canonical (in terms of the given data.) The long established useful-
ness of HF undoubtedly derives from this fact (the canonical construc-
tion).

The conclusion that π(33(3ϊo))f is a core for H is important, because
it enables us to show that H has non-negative spectrum. The conclusion
H ^ 0 in turn is in itself surprising in view of the fact that dilations
of non-negative symmetric operators are not generally semibounded (let
alone have non-negative spectrum), [Ng] and [Ex],

The following much weaker corollary is in fact contained in the
statement of Theorem 5.

COROLLARY 4. Let d be an inner limit derivation in a C*-algebra
with unit. Then there exists a state ω0 on Sί such that

(37) -iωo(A*δ(A)) ^ 0 for all AeD(d) .

It is important to note that the conclusion (37) is properly weaker
than the conclusion H ^ 0 of the previous corollary. To see this, we
note that (37) can be established from the convergence of the one-time
Green's functions alone, cf. (29).

The conclusion (37) implies that the form — iωo(A*δ(B)) determines
a symmetric operator, Ho say, in the Hubert space έ%f of the GNS
representation corresponding to a given state o)Q satisfying (37). So in
particular Ho ^ 0. There is then an alternative way (the Friedrichs
extension) of obtaing a self-adjoint and non-negative extension of HQ,
even without extending the underlying Hubert space Sίf.

Let HF denote the Friedrichs extension of Ho and let UF{t) — eitHp
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be the corresponding unitary group. Then, by Theorem 2, the state ω0

extends to a state ωF on 33(81), which is given by the formula (3) with
U(t) replaced by UF(t)9 and which is in fact a ground state.

An application of Theorem 1 to the state ωF on 83(81) leads to a
unitary representation UF(t) on the Hubert space ^2F. But there is
no reason to expect that the corresponding infinitesimal generator
— i(d/dt)UF(t)\t=Q has a non-negative spectrum.

Moreover, the extensions H constructed in Theorem 5 have several
properties (in addition to H ^ 0) that do not in general hold for the
Friedrichs extensions HF.

l)

We list two:

PROPOSITION 3. Let δ be an inner limit derivation in a C*-algebra
9ί as above. Let (ττ0, % 3$f, ξ, U(t)) be a dynamical system such that ξ
defines a ground state on 33(81); and finally let H denote the correspond-
ing infinitesimal generator.

Then
( i ) The automorphism group at(X) = U(t)XU{-ί), (X e B(3ίΓ\ teR)

leaves the von Neumann algebra M = π(33(8ϊ))" invariant, i.e., cίt(M) = M
for all teR.

(ii) There are two commuting non-negative self-adjoint operators
H" and Hf such that H" is affiliated with M and Hr with M', and
H= H" + JET.

PROOF. The identity U(t)π(Q)U(-t) = π(gtQ) for Q e 35(91) and teR
show that π(S3(8ϊ)) is invariant under at. Since at is continuous on M
with respect to the weak topology, the invariance of M follows from
the von Neumann-double commutant theorem [20]. So we have an auto-
morphism group of M which is implemented by a non-negative self-
adjoint operator H. The conclusion (ii) follows from this and an applica-
tion of Borcher's theorem [20].

5. Appendix {Extensions of derivations in representations.) The
core property of Corollary 4 is satisfied for general Hamiltonians H of
dynamical systems which are generated by regular inner limit deriva-
tions in C*-algebras. Explicitly:

THEOREM A. Let d be a regular inner limit derivation in a C*-
algebra Sί. Let δn = ad iHn be a sequence of inner derivations which
approximate δ on core 8ί0. Let {a)n} be a corresponding sequence of

1} Problem: It is not known whether HF extends δ in the representation π0. We do not
know if the domain of HF is invariant under πo{A) for all AeD(δ), or not. Cf. Appendix A.
A special case of this problem is considered in [Ph, p. 382].



302 P. E. T. J0RGENSEN

{eitHn e~itHn)-invariant states on 81. Let ώ be a weak-*cluster state on
83(81) of the sequence {ωn} as in Lemma 2 and let (π, % ^ 7 ί , eitH) be the
corresponding dynamical system.

Then τr(33(3lo))f is a core for H; and

(38) for all AeD(d) and feD(H) we have π(A)feD(H) and

%Hπ{A)f = π(d(A))f + π(A)iHf.

PROOF. Put ^ 0 = 7r($8(SΪ0))f and U(t) = eίtH. We have already noted
that ^ ό is dense in 3ίΓ and invariant under U(t). By the core theorem
[12] it is then enough to show that ^ 0 is contained in D(H).

Elements in £^0 are linear combinations of elements of the form
π((I?i, *i) (B» <i))£ where Bt e Sί0. We show below that these elements
are in the domain of H and that

(39) i H π ( ( B l f tj (Blf ί , )) f - Σ π((Bίf tj--- ( δ ( ^ ) , t<) ( B l 9 tt))ζ ,

or in a more compact notation

(40) iHπ{Q)ζ = π(δ(Q))ζ ,

where Q = (Bw t j (B,, t,), 3(Q) = Σ U Q o and Q, = (ft, t j ( δ φ ) ,
ί j (JBZ, ίO It is easy to verify that δ extends linearly to S3(D(δ)) as
a derivation in 83(81) this way. We denote the extension by δ.

Suppose for the moment that the inclusion £&0(zD(H) has been
established. Then we show that (38) holds. Let Ae% and feD(H) be
given. Since 2$^ is then a core by [12], there is a sequence of elements
Qwe33(8ί0) such that π(Qn)ξ->f and iHπ(Qn)ξ = π(δ(Qn))ξ -> iHf, cf. (39)
and (40). Consequently,

π(A)π(Qn)ξ^π(A)f,

and

iίί7r(A)7r(QJί = iHπ(AQn)ξ - τr(δ(AQJ)f

= π(δ(A)QJί + π(Aδ(Qn))ξ

= π(δ(A))π(Qn)ξ + π(A)π(δ(QJ)ξ

-+π(δ(A))f + π(A)iHf.

Since H is closed, the vector π(A)f is in the domain of H and the identity
in (38) holds.

If A e D(δ) is given, then there is a sequence of elements An e 9ί0

such that An-^A and <5(AJ -> δ(A). But then

π(An)f->π(A)f,

and
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iHπ(An)f=π(δ(An))f + π{An)iHf

->π(δ(A))f+π(A)iHf,

so indeed π(A)feD(H), and (38) holds also for AeD(δ).
We now turn to the proof of the inclusion &Q(zD(H). Let P and

Q be elements in S8(at0). We contend that equations (29), (30) and (31)
hold with A, B and d replaced by P, Q and δ, respectively. To see this
it is enough to verify (29), for then (30) and (31) follow as in the proof
of Lemma 3. By linearity we may assume that P = (Alf sj (Ak, sk)
and Q = ((2?lf t j (2?,, tt)). By (25) and (24) there is a subsequence {np}
of the integers such that

(d/dt)ώ(Pgt(Q)) U = Σ {3ldQG{Aly - ;Ak,Blf-- •Bι; slf , sΛ, ̂  ί,)
i = l

= Σ lim (d/dQώ ((Au β l) (B l f ί j (B,, t,))(

I

Si) \JL>i) tij * \ΰ\j5t)9 %i)

*), tt) • - (Blf tt))

We used that

|ά».F(P(Blf ί j (^(B,), **)••• (B,, ί,)) - ώ ^

= l ω . ^ ^ , βx) (B,, ί j (ί ./B 4 ) - δ(B«), ί€) (5i, *ι))l

^ (Π IIΛIlVπ HBf||)||δ.,(B€) - 3(̂ )11 -+ 0 ,
\p=l /\q*i / P

cf. (27).
Quite similarly, it follows from the regularity of δ that the Green's

function G(AU •-•, Ak, Bu •• , B{, sιt ••, sft, •) is of class C2 (cf. the
proof of Lemma 3), and that

(£fώ(Pgt(Q))\t=o = -ύ(δ(P)~δ(Q)) ,

so that we get

| | U(t)π(Q)ξ - ττ(Q)f -
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~ t[ώ(gt(Q*)δ(Q)) + ωφ(Q*)gt(Q))]

ώ(?(Q*)Q)]

as in the proof of Lemma 3, now with A replaced by Q. The desired
conclusion π(Q)ξeD(H) follows. q.e.d.
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