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ON DERIVATIONS OF AW*-ALGEBRAS
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Abstract. Some elementary results on derivations of continuous fields of
C*-algebras are used to prove that every derivation of an A W*-algebra of
type III (or of type I) is inner, and also that if a given quotient of an
AW#*-algebra is known to have only inner derivations, its tensor product
with a separable commutative C*-algebra with unit also has this property.

1. Introduction. It was proved by Sakai and Kadison ([20], [12])
that every derivation of a W*-algebra is inner. Using this, Sakai proved
that every derivation of a simple C*-algebra with unit is inner ([21]).

In the present paper it is shown that the W*-algebra theorem can
be deduced from the simple C*-algebra theorem. More precisely, a proof
is given, using Sakai’s theorem on simple C*-algebras with unit, that
every derivation of an AW*-algebra of type III is inner. For W*-
algebras, the general theorem follows by Sakai’s method of passing to
the tensor product with an algebra of type III ([20]). Possibly this
method could also be applied to AW*-algebras, and this might be of
interest to investigate. Soon after I obtained the theorem for AW *-
algebras of type III (and, independently, Deel obtained the theorem for
AW*-algebras of type II, with centre-valued trace—[3]), the method of
spectral analysis was introduced by Arveson and Borchers ([1], [2]),
yielding the theorem in any AW*-algebra (see [17])—indeed, more gener-
ally—in [18] it was shown how to prove the simple C*-algebra theorem
by this method.

In section 2, some easy lemmas on derivations of continuous fields
of C*-algebras are presented, giving sufficient conditions for every deriva-
tion to be inner. In section 4 it is shown that a derivation of an AW*-
algebra is inner if it is inner on a reduced subalgebra of central support
one. By results of Feldman and Glimm ([8], [9]), an AW*-algebra of
type III has a reduced subalgebra of central support one which is a
continuous field of simple C*-algebras; to this the lemmas of section 2
can be applied.

Another application of section 2 is as follows. Let B be a C*-alge-
bra and C a separable commutative C*-algebra with unit. Suppose that
B has the property that if a sequence of derivations converges simply
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(with respect to the norm of B) then it converges in norm. Then every
derivation of B C is inner, if B has only inner derivations.

In section 3 it is shown that any quotient of an AW *-algebra has
the property required of B above. For automorphisms instead of deriva-
tions, this was proved in [6], but there are two gaps in the proof in
[6], so a complete proof is given here (and the gaps in [6] filled). It
should be remarked that while for W*-algebras this theorem is essen-
tially due to Kallman (see [6] for reference), for quotients of W*-alge-
bras the same methods seem to be needed as for AW *-algebras.

Besides the fact that every derivation of a simple C*-algebra with
unit is inner ([21]), we shall also use the fact that a derivation of any
C*-algebra is continuous ([19]).

2. Derivations of continuous fields of C*-algebras.

NoOTATION 2.1. In this paragraph, T will denote a compact Hausdorft
space, and ((A(t));.r, A) a continuous field of C*-algebras on T (see 10.3
of [5]). Thus, A is a C*-algebra, and for each t € T there is a morphism
at— a(t) of A onto A(t) such that a+ ||a(t)|| is continuous for any a€ A4,
and ||a|| = sup||a@®)]|.

If 0 is a derivation of A, we shall denote by d6(t) the derivation of
A(t) induced by o.

LEMMA 2.2. Let 0 be a derivation of A. Then 6 s in the norm
closure of the space of inmer derivations of A if (and only if) for each
teT and € > 0 there exists a € A such that ||0(s) — ad a(s)|| < & for all
s in a neighbourhood of t.

Proor. By compactness, there exist a covering (G, ---, G,) of T by
open sets and a finite family (a,, :--, a,) of elements of A such that for
each+1=1, ---, n,

[[o(t) —ad a;(t)|| = ¢, teG;.

Choose a partition of unity (f, ---,f,) subordinate to the covering
(G, +--, G,), and set

Zfiai =a.
Then

[|o(t) — ad a(t)|| = ¢, teT.

LEMMA 2.83. The space of immer derivations of A 18 morm-closed
1f there exists 0 < K < 2 such that for each teT and ac A,

llad a(t)|| = Kinf, ccensre alla(t) — 2(2) [ -
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PrROOF. Let acA. Then t+ |lada(t)|| is lower semicontinuous.
Hence by compactness, for each >0 there exists a covering (G, ---, G,)

of T by open sets and a family (2, ---, 2,) in centre A such that for
each 1 =1, ---, m,

¢+ llada(®)]l > Klla@®) — 2@, teG..

Choose a partition of unity (f, ---,f,) subordinate to the covering
(G, +-+, G,), and set

Zfizi =Zz.
Then
e + |lad a(t)|| > K||la(t) — z()|l , teT,
whence

e+ |lada}] > K||la — 2] .
Since ¢ > 0 is arbitrary, this shows that
”ada“_ZKinfzecentreAHa'—zH ’ acA.

This implies (and, by the closed graph theorem, is equivalent to) closure
of the range of the canonical map A>a— ada, which factorizes through
A/centre A—in other words, closure of the space of inner derivations
(in the norm topology).

LEMMA 2.4. The function t+— ||0(t)|| is continuous for any deriva-
tion 0 of A if either of the following conditions holds.

(1) ((A®)ser, A) s locally trivial, T is first countable, and for
each te T, each simply convergent sequence of derivations of A(t) con-
verges in morm.

(ii) T is totally disconnected, and for every family (e;,) of mutually
disjoint open and closed subsets of T and every bounded family (a;) in
A, there exists a € A with ale, = a;le;,, all 1.

PROOF. In case (i), we may suppose that ((A(t)).r, 4) is trivial.
Then even ¢ 6(t) is continuous—first in the topology of simple conver-
gence, and then, by the hypothesis, in the norm topology.

In case (ii), to prove that ¢+ ||d(¢)|| is continuous, we must prove
that it is upper semicontinuous (as, being a supremum of continuous
functions, it is automatically lower semicontinuous). Suppose that, on
the contrary, for some te T and some ¢ > 0, every neighbourhood of ¢
contains an s such that

o)l = [[a@| + e .

Then, by lower semicontinuity,



266 G. A. ELLIOTT

@)1 > [16@)|I + /2

for all s in a nonempty open subset of each neighbourhood of ¢.
Choose a maximal familly (e;) of mutually disjoint open and closed
subsets of T such that

()l > [[0@)[| +e/2,  sece;.

Then, by maximality, and the hypothesis that T is totally disconnected,
te(Ue,)". Since each e; is compact, there exists for each 7 an element
a, of A of norm one such that

[[(@a)®| > (6@ + e/2)|lais)]|, see; .
Hence by hypothesis there exists a € A such that
[[(@a)(8)[| > ([l6@) ] + e/2)[la(s)]l, seUe;.

By continuity,
1@a)®) | = (6@l + &/2)]|a@®)]l ,
a contradiction. This shows that ¢+ ||6(t)|| must be upper semicontinuous.
COROLLARY 2.5. Suppose that A satisfies the hypothesis of 2.8 and

one of the conditions 2.4 (i), 2.4 (ii). Let 0 be a derivation of A such
that each 6(t) is inner. Then 6 1is inner.

PROOF. By 2.4 and 2.2, ¢ is in the norm closure of the space of
inner derivations. By 2.3, this is equal to the space of inner derivations.

LEMMA 2.6. Let ac€A. Then the function t+— |ada(t)|| is con-
tinuous vf either of the following conditions holds.

(i) ((A@®)ier, A) s locally trivial.

(ii) For each teT,

lada(®)] =2 _inf [la(®) — 2@ -
PROOF. In case (i), we may suppose that ((A(t)),r, 4) is trivial, and
then even t+ ad a(f) is continuous (as ¢+ a(t) is).

In case (ii), the left side of the equation is lower semicontinuous
and the right side upper semicontinuous.

COROLLARY 2.7. Let ac A. Suppose that A has a unit, and that
for each teT,

lad a(t)]| = 2inf J|a(t) — A,

la@®) — 2@ + [2(6) — M = [la@®) — NP,  reC,
where 2(t) € C is such that
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la(t) = @)1l = inf [|a(®) — » -

Then z € centre A.

Proor. By hypothesis, 2.6 (ii) holds. Hence by 2.6, ¢ ||a(t) — 2(¢)]]
is continuous, and, in particular, since T is compact, is bounded, say
by M.

Fix teT, ¢ > 0. Then there exists a neighbourhood V of ¢ such
that

lla(s) — 2@ = lla(s) — 2(s)[| + &, seV,
as both sides are continuous in s. By hypothesis, for any s,
lla(s) — 2(8)[[* + |2(s) — 2(O)[* = [la(s) — 2(O)][* .
Hence, for se V,
lla(s) — 2(8)|[* + [2(s) — 2(O)[* = (lla(s) — 2(s)|| + €)* ;
|2(s) — 2(t)|* < e(2M + ¢) .
This shows that 2z is continuous, that is, that z € centre A.
3. Convergence of derivations in certain C*-algebras.

LEMMA 8.1. Let A be a C*-algebra, and let 6 be a derivation of A.
Denote by M, the C*-algebra of m X m complex matrices, n=1,2, --..
Then for each m the derivation 6 ® 1 of AR M, satisfies

lo @1l =llall .

Proor. This is 4.1 of [7].

COROLLARY 3.2. Let A be a C*-algebra and let a be an (adjoint-
preserving) automorphism of A. Then for each n =1, 2, --- the auto-
morphism a1 of AR M, satisfies

le®@1—1| = |la—1].
Proor. Clearly
la—1lll=(ea—1) ®1L||=|la®l—-1|=2.

Therefore equality holds trivially if ||a — 1|| = 2.

If |l — 1|| < 2, then by Theorem 7 of [13] @« is universally weakly
inner. Representing A as a C*-algebra of operators, then, we have a
unitary operator u € A” such that

a=AdulA.

Since = is unitary, we have ||uau* — a|| = ||ua — au|| for any ac A,
whence
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[l — 1] = [|o]|
where 6 = adu|A4”. By 3.1,
ol =lle ®11,
and since Q1 =ad@w@1)|A" R M,,
[0®1]=[la®l-—1].
The conclusion follows from these three norm equalities.

COROLLARY 3.3. Let A be a C*-algebra, and let B be a sub-C*-
algebra of A which s simple and finite-dimensional. Let e be o mini-
mal projection of B, and denote by p the unit of B. Suppose that
there is a partial isometry ve pA(l — p) such that p + v*v is central
wn A. Let (0, 0, --+) be a sequence of derivations of A such that ||0,a||
converges to zero for each ac A, and [|6,] Al — p — v*v)|| converges to
zero. Then ||0,|| — ||0.|ede|| converges to zero.

Proor. First, by hypothesis,

101l — 110, ] A(p + v*0)[| — 0.

Next, denote the C*-algebra pAp ® M, by C. If (e;) is a system
of matrix units for M, then we may identify A(p + v*v) with fCf
where f=p®e, + vv* X ey, in such a way that p corresponds to p® e,
and v to vv* ®e,. By 3.1,

10,1 pAp]|| = 1|(3.| pAp) ® 1]] .
Denote (9, |pAp) ® 1 by D,. Then
D, |fCf — d,] A(p + v*v)|| — 0.
Hence
0.1 A(® + v*) || — ||0.| pAp[| — 0.
Finally, by 3.1,
10, pAD]| — ||0,]ede]| — 0.
THEOREM 3.4*. Let A be an AW*-algebra, and let (0, 0, +-+) be a

sequence of derivations of A. Suppose that ||d,a|| converges to zero for
each a€ A. Then ||0,|| converges to zero.

ProOF. By Theorem 2 of [12], all §, are zero on the centre of A.

Suppose first that A has no finite type I direct summand. Then
there exist mutually orthogonal projections e, e, --- such that for each
1=1,2 ---, ¢, is equivalent to 27%; i.e., there exists a subfactor A, of

* See Appendix.
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A of type I: containing e, as a minimal projection. (Then 4 = 4, R A4;
where A; is the relative commutant of 4,, ¢ =1,2, ---.) Suppose that
for some € > 0, ||d,|| > ¢ for infinitely many n. Fix+=1,2, ---. Since
A, is finite-dimensional, ||d,|A4;|| — 0. Hence by 3.1,

10all — 110, €;Ae;[| — 0 .

Then for each ¢ there exist n, = 7 and a, € ¢;4¢, of norm one such that
||6,,0:1l > /2. Thus, passing to a subsequence of (9, &, --+), We have a
sequence (a,, @, ---) of elements of norm one of mutually orthogonal
reduced subalgebras e, Ae,, e,A¢,, --- of A, such that

[|0,aa]| > €/2, all n.

This is in contradiction with Phillips’ Lemma (use 2 of [6] with
0,Dkex €r) = 0,(Xkex ))-

Consider now the case that A is finite and of type I. If A has only
finitely many homogeneous direct summands then A is a finitely generated
module over its centre, whence ||0,|| — 0. If the number of (maximal)
homogeneous direct summands of A is infinite, then a modified form of
the argument above is applicable. It is enough to find a sequence
(e, €, +++) of mutually orthogonal projections in A such that for each
i=1,2 +--,

[[0al] — [10.]€:Ae; || — 0.

Choose (e, e, --+) as follows. First, for each k =1, 2, .-- define »k) =
1’ 2, o by

2r(k) _—é_ IG < 2r(k)+1 .

Choose ¢, so that the component of ¢, in the homogeneous direct summand
of A of type I, is zero if 7(k) <1 and is equivalent to k™27~ if
r(k) = 1. Choose e, orthogonal to ¢, and such that the component of e,
in the homogeneous direct summand of A of type I, is zero if »(k) <2 and
is equivalent to k2"*~2 if »(k) = 2. Continue in this way. It is easily
verified that for each ¢ the hypotheses of 3.3 are verified with e = ¢,
and B a suitable algebra of order 2:. This shows that each e, has the
desired property.

THEOREM 3.5. Let A be an AW*-algebra, let J be a closed two-sided
ideal of A, and let (8, 0,, --+) be a sequence of derivations of AlJ. If
[|0.a|] converges to zero for each ac AlJ, then ||0,|| converges to zero.

PROOF. Let 7 denote the canonical surjection from A to 4/J. Itis
enough to show that ||, 7| converges to zero. The proof of this is
identical to that of 3.4 with 6, replaced by 0, - x.
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REMARK 8.6. The analogues of 3.4 and 3.5 for (adjoint-preserving)
automorphisms are 4 and 5 of [6]. I should like to take this opportunity
to give an explanation of the second-last sentence in the proof of 4 of
[6], and also to give an alternative proof of 4 of [6] in the finite type
I case, which must be used in order for the proof of 5 of [6] to be valid
in this case. Both these aims can be achieved by remarking that the
proof of 3.3 above, with 9, replaced by @, — 1 and 3.1 replaced by 3.2,
and with the first sentence omitted, gives a proof of 4 of [6] starting
from the point where all ¢, — 1 are assumed to be zero on the centre.

4, Some C*-algebras with only inner derivations.

LeMMA 4.1. Let B be an AW*-algebra, let be B, and let I be a
closed two-sided ideal of B. Then there exists z € centre B such that

llad(® + D)|| = [|b — 2 + I .
ProOr. By the Dixmier approximation theorem (the proof of which—
see Chapitre III, §5 of [4]—is valid in an AW™*-algebra), there exists

z € centre B such that z is in the norm closure of the convex hull of the
set {ubu'|u unitary in B}. Then

|b — 2z + I|| < sup||b — ubu™" + I||
= sup ||bu — ub + I||

= llad (® + Dl .

THEOREM 4.2. Let B be an AW*-algebra, let I be a closed two-sided
ideal of B, and let C be a separable commutative C*-algebra with unit.
Denote the C*-algebra temsor product of B/I and C by A. Assume that
every derivation of B/I is inmer (this holds, in particular, tf I =0 or
if I is maximal). Then every derivation of A is inner.

PROOF. Consider the continuous field of C*-algebras ((A(t));er, A)
where T = Prim C and A — A(t) is the quotient map of A corresponding
to the closed two-sided ideal (B/I) X t.

By 4.1 the hypothesis of 2.8 is verified with K = 1. By 8.5, condi-
tion 2.4 (i) is satisfied. Hence the conclusion follows by 2.5.

REMARK 4.3. In the case that B is a factor of type I and I =0,
4.2 is due to Lance (it is Theorem 2.3 of [14]).

LEMMA 4.4. Let A be an AW*-algebra, and let 6 be a derivation of
A. Suppose that there exists a projection ec A of central support 1
such that o(eAe) CeAe and the derivation o|eAe is immer. Then 0 is
mner.
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Proor. Replacing ¢ by 0 — ad x,, where x,€ede satisfies 0|ede =
ad x,|]ede, we may suppose that d|ede = 0.

Since 6 = 6, + 0, for unique derivations 6, §, preserving adjoints,
we may suppose that ¢ itself preserves adjoints. Then expd is an auto-
morphism of A.

By 4.1, if 6 = ady for some y€ A then ¥y may be chosen such that
llyll £ |l6]]. This shows that it is enough to prove the conclusion of the
lemma with A replaced by a nonzero direct summand. Passing, then,
to a suitable direct summand, and replacing ¢ by a subprojection if
necessary, we may suppose that there is a family (e;;) of matrix units
in A (possibly infinite) such that e, = e.

By Theorem 64 of [16], there exists a unique unitary « € A such that

Uy = (eXp 5)(3i1)61i .

By simple calculations we deduce that uaxu™ = (exp d)(x) whenever either
xcede or x = ¢;;. If x is arbitrary in A then, for all ¢ and j,
ue;; xe;; Ut = (ue,u ) (ue xe;u ) (ue ;ur)
= (exp 0)(e; €. xe;.8,;5)
= (exp 9)(e.xe;;) ;
hence, with f, denoting we, u™,
Sfauzw™f; = fiexp o)(@)f;, all 4, 7;
uxu~t = (exp o)(x) .

Replacing 6 by td, with ¢ real, let us denote the unitary obtained
as above by u#,. We shall now show that ¢~ u, is a norm-continuous
one-parameter group.

First, let us note that u;'e = u,e = ¢, and that therefore, for any
xe A, uxe = (exp td)(xe).

To demonstrate the group property, we have for s and ¢ real and x
arbitrary in A4,

u,u 6 = (exp 86)(u,xe) = (exp so)(exp to)(xe)
= (exp (8 + t)0)(xe) = u, e .

In order to show continuity, it is enough to show continuity at 0.

We have
llu, — 1|| = sup ||(u, — L)zel|
lzll=1

= 3 exp 0z — el

< |lexptd — 1]| .



272 G. A. ELLIOTT

Using Stone’s theorem we deduce that there exists # = h* e A such
that for all real ¢,

U, = exp ith .
Then, for all xe€ A,
(exp td)(x) = (exp ith)x(exp — ith) = (exp t(ad th))(x) .
Differentiation yields
0=adth.

LemMMA 4.5. (Feldman, [8]). Let A be an AW*-algebra of type III
(or of type I). Then there exists a projection ec A of central support
1 such that in the subalgebra eAe each projection s equivalent to its
central support.

Proor. This is Theorem 1 of [8], if A is of type III. If A is of
type I, ¢ may be chosen such that ede is commutative.

COROLLARY 4.6. Let A be an AW*-factor. Then every derivation
of A 1s inmer.

PrRoOOF. There exists a nonzero projection ec A such that ede is
simple. (If A is of type I, a minimal projection will do for e; if of
type II, a finite projection will do; if of type III, a projection with the
property of 4.5 will do.) Let 6 be a derivation of A. Replacing ¢ by
0 — ad [d(e), ], we may suppose that d(¢) = 0. Then d(eAe)CeAe, whence
by the theorem of Sakai d|ede is inner. Hence by 4.4, ¢ is inner.

LEMMA 4.7. (Glimm, [9]). Let A be an AW*-algebra. Then for each
maximal tdeal t of centre A, tA is a closed two-sided ideal of A.
Denote by T the set of all such t, i.e., the spectrum of centre A, with
the Jacobson topology. Then for each ac A the map Tot— ||z + tAl|
18 CONLINUOUS.

Proor. Although by tA we mean {za|zet, ac A}, in fact, by the
Cohen factorization theorem (page 268 of [11]), tA is equal to its linear
span, and is closed, and is therefore a closed two-sided ideal (the smal-
lest containing t).

Upper semicontinuity of ¢+ ||a + t4|| is a special case of Lemma 9
of [9]. (It can be seen somewhat more directly in the present case.)

Lower semicontinuity in the case that A is a W*-algebra is Lemma
10 of [9]. In the AW*-algebra case, suppose that ||a + tA|| > 1 and
[la + sA]] <1 for some s in every neighbourhood of ¢. Then by upper
semicontinuity there exists a family (e;) of closed open subsets of T
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such that ||a + sA|| <1 for all seUe,;, and t€(Je;)". Then ||ae;|| <1;
hence [[a(Ue) || £1, ||a + tA]| £ 1, a contradiction.

COROLLARY 4.8. (Halpern, [10]). Let A be an AW*-algebra and let
a€A. Then there exists z € centre A such that

lad al| = 2|la — 2| .

PrROOF. In the case that A is a factor of type I, or indeed any
primitive C*-algebra, this result is due to Stampfli ([22]). Stampfli
showed, moreover, that the inequality in 2.7 holds, with A in place of
A(b).

Let ¢ be a maximal ideal of centre A. Then Halpern showed in [10]
that Stampfli’s results also hold for A/tA, even though this quotient is
not known to be primitive (in case A is of type II). (Halpern first noted
that local comparability of projections in A implies comparability in
AjtA, so that the closed two-sided ideals of A/tA form a chain, and
then applied Stampfli’s result to each primitive quotient of A/tA, de-
ducing it for A/tA by passing to the limit.)

By 4.7, A defines a continuous field of C*-algebras on T, the spec-
trum of centre A, which we may write as ((A/tA),.r, 4). Since the con-
tinuous fields a—a + t4, ac A, are closed under multiplication by
scalar-valued fields and are norm-complete, by 11.5.3 of [5] A is the C*-
algebra defined by the continuous field of C*-algebras ((A/tA),cr, 4A).

Thus it is seen that 2.7 may be applied to the field ((A/tA);r, A)
this yields the desired conclusion.

QUESTION 4.9. Does 4.8 hold for a quotient of an AW*-algebra?
(Cf. 4.1.)

THEOREM 4.10. Let A be an AW*-algebra of type III (or of type I).
Then every derivation of A is inmner.

ProOF. The case that A is of type I is of course due to Kaplansky
([15]); an alternate proof is given by the following argument intended
primarily for the case that A is of type III.

By 4.4 and 4.5 we may suppose that every projection in A is equiva-
lent to its central support. Then A/tA is simple for every maximal
ideal ¢ of centre A. (Every closed two-sided ideal of A is generated by
its projections, and any projection not in ¢tA is equivalent to 1 modulo
tA.) Hence by the theorem of Sakai every derivation of each AtA is
inner.

As in 4.7, A is the C*-algebra defined by the continuous field of
C*-algebras ((A/tA),.,, A).
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By 4.1 the hypothesis in 2.3 is fulfilled with K = 1. Hence by 2.5
every derivation of A is inner.

ADDED APRIL 1, 1977. The method of this paper can be used to
show that certain quotients of AW#*-algebras have the property that
every derivation is inner. The quotients to which the method is ap-
plicable are precisely those which Ringrose in “Derivations of quotients
of von Neumann algebras” (preprint) has shown to have this property
by a different method: the quotients by intersections of maximal two-
sided ideals, such that orthogonal families of central projections can be
lifted. Such a C*-algebra is a continuous field of simple C*-algebras,
and satisfies the hypotheses of 2.5, and hence has only inner derivations.
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Appendix (ADDED APRIL 14, 1978)

Convergence of derivations in separable C*-algebras

A.l. THEOREM. Let A be a separable C*-algebra. Then the follow-
ing conditions are equivalent.

(i) Each simply convergent sequence of derivations of A is con-
vergent in norm.

(ii) A s the direct sum of a commutative C*-algebra and a unital
C*-algebra with continuous trace.

ProOF. By [A4], every derivation of A is the simple limit of a
sequence of inner derivations. Therefore, condition (i) implies that the
set of derivations of A is separable in norm. Hence by 3 of [A3], 4 is
the direct sum of a commutative C*-algebra, finitely many simple unital
C*-algebras, and a unital C*-algebra with only trivial central sequences.
In a simple unital C*-algebra, condition (i) implies immediately that every
central sequence is trivial. It follows that A has continuous trace. (By
18 of [A83], A has Hausdorff primitive spectrum, and every derivation .
of A is inner. By 2.4 of [Al] A is postliminary, and therefore liminary.
Hence by 3 of [A2], A has continuous trace.)

Conversely, condition (ii) implies by 3 of [A2] that every derivation
of A is inner, and hence by 3 of [A3] that every central sequence of
A is trivial (see 2.4 of [A1l] for a more direct proof of this last property).
Combining the last two properties (assuming that A has a unit) yields
(i) immediately.

A.2. COROLLARY. Let n=1,2--- and ¢ > 0. Then there exists
d=dm,e)=1,2, --- such that: 1f H is a separable Hilbert space with
dimension at least d and if x, +--, x, belong to the unit ball of B(H),
then there exists ye B(H) with ||y —C|| =inficclly — M| =1 and
lyz, — 2yl <&, 1=1, -+-, m.

PROOF. Assume that the conclusion is false (that is, d does not exist).
We shall deduce an absurdity, by constructing a separable C*-algebra A
which satisfies A.1(i) but not A.1(ii).

There exists in NU{c} a sequence (k,) converging to co such that
for each p=1, 2, --- there exist ,,, ---, ®,,, € B(H,), where dim H, = k,,
such that for y € B(H,),

”yxt,p_xi,pyll<ey i:l,---,’n———>[ly——C||<1.

Denote by A the sub-C*-algebra of B(@®H,) generated by the compact
operators on all the H, together with the operators , = @, ,, 1 =1,---, n.
Then for yc A,
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[yx, — 2yl <e, =1, n=|y—-B,LCl<1.
Equivalently,

lly — D,Cll = e sup;y,..... |lyw, —xyll, yeAd.

This implies that A satisfies A.1(i), since by [A4] every derivation of a
separable C*-algebra is the simple limit of a sequence of inner deriva-
tions (see the bottom of page 122 of [A3] for an elementary proof of
this). However, A clearly does not satisfy A.1(ii).

A.3. PROBLEM. A.2 also holds with H a nonseparable Hilbert space,
for the trivial reason that in this case for any «, ---, x, € B(H) there
exists a projection e¢== 0,1 such that ex; —2,=0, 1 =1, ---,n. It is
easy to see that in A.2 y can always be chosen to be selfadjoint. Is it

always possible to choose y of the form 2¢ — 1 where ¢ is a projection
(0, 1)?
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