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NUMERICAL RANGES OF PRODUCTS
AND TENSOR PRODUCTS
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In this paper we study the relationship between the numerical ranges
of Hubert space operators and those of their products and tensor
products.

Let &{3lf) denote the set of bounded linear operators on a complex
Hubert space Sίf. For T e ^ ( ^ ) , W(T) denotes its numerical range,
W(T) = {(Tx,x):\\x\\ = l}. For Γ, e ^ C ^ ) , 3 = 1, 2, it is clear that
W(T, (x) T2) contains the set WTO WTO = {zfr: z, e W(T5\ j = 1, 2}; by
the convexity of the numerical range, WiT^ ® T2) also contains its convex
hull, co (WiT^-WiT,)) [11, Lemma 6.2]. We are interested in the condi-
tions that guarantee WIT, (g) T2) = co (WiTJ W(T2)). We shall show that
if either 2\ or T2 is normal, then

g) T2) = cδ( WTO W(T2)) ,

where the bars denote the closure of the sets. This result follows from:
Let A,Be^?(βέ?) be two commuting operators; if A or B is normal,
then W(AB)^Έδ(W(A) W(B)).

Consider the operator S = (jj J) on C\ For T e &{βί?\ T (x) S has

the representation (Q TΛ on <%* (& £ίf. Since T7(S) = {zeC: \z\ ^ 1/2} and

W(T(g)S) = {zeC: \z\ ^ ||Γ||/2}, (1) holds if and only if T is a normaloid,
i.e., its norm equals its numerical radius [6, p. 114]. In fact, if T is a
normaloid, then W(T (g) S) = 1F(Γ) TF(S), for W Ŝ) is a disc centered at
the origin. This discussion shows that (1) does not hold in general.

The following results are proved in Section 3: (i) Let A, Be&(3ίf)
such that A commutes with B and 2?*. If the set W(A)-W(B) lies on
one side of a line through the origin, then W(AB) lies on the same side.
(ii) Let Tjβ^i^), j = l,2. Then WiTJ-WίTJ lies on one side of
a line through the origin if and only if WiT^^ 0 T2) lies on the same
side.

With these results we derive a theorem of E. Asplund [1]: For
T e &(<%?) and an integer n ^ 2, |Arg (Tx, x)\ ̂  π/n, Vxe^iί and only
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if for each sequence x0, xl9 , xn_l9 xn = x0 of n elements in Sίf9

ΣiUteiTxjiXj-Xi+J^O.

1. Preliminaries. For Ω, Ω1 £ C, let co (42) and dΩ denote the convex
hull and the boundary of 42, respectively, and ΩΏ1 = {zz^.zeΩ, zιeΩ1}.
A proof of the following fact is given in [5, p. 683]: co (42 42t) =
co (co (42)-co (42J). The next result is obvious for compact Ω.

LEMMA [9, p. 295]. Let Ω £ C be bounded. Then

co (42) = J Σ OW <*y ̂  0, Σ #i =
{j=l 3 = 1

COROLLARY 1 (cf. [3, Lemma 1]). Let Z ^ e ^ C ^ ) such that
sup, IITilK oo. Tfcen φ , T, 6 ̂ {®3 ^ ) α^cί co (Ui W(TS)) = TΓ(Φi Γy).

For T e ^ ( ^ T ) , we say Γ has a dilation S if S e ^ X ) , 3ίΓ a
Hubert space containing Sίf as a subspace, and TP = PSP, P being the
orthogonal projection from SΓ o n t o ^ ([6, Chapter 18], [11, §2]). Under
these conditions T is called the compression of S to Sίf. Clearly, W(T) £
W(S).

Let 42 be a closed subset of C containing the spectrum of Γ, σ(T).
Ω is said to be spectral for T (in the sense of von Neumann) if for each
rational function q with poles outside Ωf ||g(Γ)|| ^ supzeβ |?(s)| ([6, p. 123],
[11, p. 538])

An operator T is called a diagonal operator if there is an orthonor-
mal basis of £ίf consisting of eigenvectors of JΓ([10, p. 23], [6, p. 29]).
If W(T) Q [0, oo), we say T is nonnegative and write T ̂  0; a nonnega-
tive operator has a unique nonnegative square root by the spectral
theorem [10, Theorem 1.12].

2. Main results.

THEOREM 1 [2, Theorem 2]. Let A, Be^(βέf) be two commuting
operators. If A ̂  0, then W(AB) Q W(A) W(B).

PROOF. AB = A1/2BA1/2.

THEOREM 2. Let A, δ e . ^ ( X ) be two commuting operators. If A
is diagonal, then W(AB) Q co (W(A) W(β)).

PROOF. Let A = Σ/ λyPy, where {Pά} is a family of mutually
orthogonal projections, i.e., Pf = P3 and P3Pk = δjkPdf and Σy Pj = I
Assume that the λ̂  's are distinct complex numbers, then B — Σy J
(cf. [10, Corollary 0.14]). If B3 denotes the compression of B to P,-<
then AB has the representation φ y λyBy on φ3 P33ίf. Thus
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W(AB) = co (Ui ^iW(Bi)) Corollary 1
£ co (Ui ^jW(B)) = co (W(A). W(B)) .

The next result generalizes [7, Theorem 2.2] and the initial steps of
their proofs are identical.

THEOREM 3. Let A, δ e ^ ( ^ ) be two commuting operators. If A
is normal, then W(AB) £ co (W(A) W(B)).

PROOF. By the spectral theorem [10, Theorem 1.12] and the Fuglede's
theorem [10, Theorem 1.16], A can be approximated uniformly by diagonal
operators which commute with B. Since W( ) and the multiplication of
operators are both continuous with respect to the uniform operator
topology [6, Problem 175 & Problem 91], the result follows from
Theorem 2.

The finite-dimensional versions of the following three theorems are
given in [8, Theorem 1 & Theorem 2].

THEOREM Γ. Let Tse^(J^), i = 1, 2. If ϊ\ ^ 0 or T2 ^ 0, then

PROOF. W{TX <g> /) = W(Tt)f W ( g ) Tt) = W(T2).

THEOREM 2'. Let Tje.^i^), j = l,2. If T1 or T2 is diagonal,
then W(T, (x) T2) = co (WTO- W(T2)).

THEOREM 3'. Let Tό e . i ^ ( ^ ), j = 1, 2. // Tx or T2 is normal, then
(1) holds.

REMARK. Theorem 2 can be derived from Theorem 2', because A®B
is a dilation of AB: Let {μk} be an enumeration of {λ,-} with each λ̂
repeated according to its multiplicity, i.e., the rank of P3. Then

B(x) A = ® μkB =

If Ti e .^(β^) has a dilation Sif ί = 1, 2, then St ® S2 is a dilation
of ϊ\ (x) Γ2. Applying Theorem 3', we have

THEOREM 4. Le£ 2\ e .^(,%1), i = 1, 2. // Tx feαs α normal dilation
N, then W(Tt (x) Γ2) £ cό (TF(JO T^(T2)).

COROLLARY 2. Leέ T̂  6 &{J%fύ* i = 1, 2. // i2 iβ spectral for Tlf

then WiT^TjQ cδ (Ω-WίTJ).

PROOF. Assume Ω is compact. By the Berger-Foias-Lebow Theorem
[11, Corollary 2.3], there is a (strong) normal dilation N of 2\ with
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Let <Λ^ denote the set of operators {Γ: T has a normal dilation N
such that W(T) = W(N)}. By Theorem 4, (1) holds if 2\ or T2 belongs
to ^K We note that the subnormal operators [6, p. 322] and the Toeplitz
operators [6, p. 349] belong to ^K Moreover, if W(T) is spectral for
T, then T e ^y by Corollary 2; in fact, it is shown by M. Schreiber that
W{T) is spectral for T if and only if there exists a strong normal dila-
tion N of T such that W{T) = W(N) [11, Theorem 2.4],

Let Tά 6 ^ C ^ J ) , j = 1, 2. It follows from a result of A. Brown
and C. Pearcy [11, Theorem 6.1] that σ{Tι (x) Γa) = σ{T^ σ{T%). Thus (1)
holds whenever T1 ® Γ2 is convexoid [11, Theorem 6.2], If Γx and T2

are hyponormal, a simple computation shows that 2\ (g) Γ2 is also hypo-
normal and hence (1) holds [11, Corollary 6.2].

CONJECTURE. Let T3 e &(££*), j = 1, 2. If 2\ or T2 is hyponormal,
then (1) holds.

3. Sectorial operators. In this section we are concerned with the
operators whose numerical ranges are contained in half-planes supported
at the origin.

For Γ e ^ ( J g ^ ) , let Θ(T) denote the closure of the set {(Tx, x)}.
Since the numerical range of an operator is convex, either Θ(T) is the
entire complex plane or it is a closed sector with vertex at the origin
and with angular opening at most equal to π. We note that Θ(T) =
Θ(S*TS) whenever S is invertible. If Sίf is finite dimensional and
Oe W(T), then Θ(T) coincides with the angular field introduced in [13].
For αe[0, ττ/2], let Φ(a) denote the symmetric sector {ρeiθ: p^O, —a ^
θ ^ a}.

THEOREM 5. Let A, 5 G ^ ( ^ ) and suppose A commutes with B and
#*. If co (Θ(A).Θ(B)) Φ C, then Θ(AB) Q Θ(A)-Θ(B).

PROOF. Without loss of generality, assume Θ(A) = Φ(a), ae[0, π/2].
Thus Re A ~ (A + A*)/2 ^ 0. By the spectral theorem, Re A has a non-
negative square root Q. If Re A is invertible, then A = Re A + i Im A =
QNQ, where N is the normal operator J + iQ~ι (Im A)Q~\ Since B com-
mutes with Q, Θ(AB) = Θ(QNBQ) = β(iVB). By Theorem 3 and the
hypothesis that <9(A) Θ(i?) = θ(N) θ(B) lies on one side of a line through
the origin, we have Θ(NB) Q Θ(N) Θ(B) = Θ(A) Θ(J5). Thus the theorem
is proved if Re A is invertible. In general, consider A + εl, e > 0,
instead of A. Now the result follows from [6, Problem 175 & Problem
91].

REMARK. If A and B commute and if A commutes with J5J5* or
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B*B9 then we have the following inequality for numerical radii: w(AB) <̂
\\B\\w{A) [3, p. 217].

THEOREM 5' [12, Theorem 2]. Let Γ. e ^ C ^ ), j = 1,2. 1/
(8) Γ8) =£ C or if co (Θ(2\) Θ(Γ2)) Φ C, then ©(ΓJ θίΓ,) = Θ(TX (x) T2).

PROOF. Since TFdΊ). W(T2) £ TF(2\ (x) T2), we have ©(ΓJ βίΓ,) £

4. Application. Let S, Γ e ^ ( ^ T ) and A, ΰ e ^ f t ) , A
(bjk). Let JC = (%) e φ ^ ^ ^ ^ ί , Then

Σ (Σ &Λ, Σ *iu
j k k

= ((T(g)B)x,

The following is a result of E. Asplund [1, Theorem 3] (also see [12,
Theorem 1] and [4, p. 118]).

THEOREM 6. Let Γ e ^ ( ^ ) , and n is an integer, n^2. Then
Θ(T) £ Φ(π/n) if and only if for each sequence xQ, xί9 , χn_19 xn = χ0 of
n^elements in Sίf, Σ*=ί ^ e (Txίf x3- — xί+1) ^ 0.

PROOF. Let A denote the n x n matrix (aSk),

where a3Ί = 1 , j = 1, 2, , n ,

^ii+i = Λni = - 1 , i = 1, 2, , n - 1 ,

and ajk = 0 elsewhere.

A is normal and its eigenvalues are 1 — exp (2πim/n)9 m = 1, 2, •••, n.
Thus θ(A*) = Φ(π/2 - π/w). Consequently, Re (T(x) A*) ^ 0 if and only if
Θ(T) Q Φ(π/n), by Theorem 2' or Theorem 5'.
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