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NOTE ON GENERALIZED INFORMATION FUNCTION

PL. KANNAPPAN
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Abstract. Solution of a functional equation, connected with entropy,
directed divergence, inaccuracy and their generalization of type β etc. is
obtained without the assumption of any regularity condition on the functions
involved.

1. Introduction. In [3], the following functional equation

(1.1) fix) + (1 - x)βg(yl(l - x)) = h(y) + (1 - yyk{x/(l - y)) ,

for x, ye[0, 1[ with x + y e[0, 1], β Φ 1, was considered, giving the
details of its association with entropy of type β [2], directed divergence
of type β [9] and inaccuracy of type β [10]. For /3->l, these measures
reduce to Shannon's entropy [11], directed divergence [6] and inaccuracy
[5].

In this paper, the functional equation (1.1) is solved by simple and
direct method, without any further assumption on the functions, by
reducing (1.1) to a similar form involving only one function,

(1.2) u(x) + (1 - x)βu(y/(X - x)) = u(y) + (1 - y)βu(x/(l - y)) .

REMARK 1. If u: [0, 1] -> R (reals) is a solution of (1.2), then v(x) =
u(x) — u(ϊ)xβ is also a solution of (1.2) with v{x) = v(l — x), that is, with
v symmetric. Then the solution of (1.2) can be obtained from [1, 8], for
β Φ 1. So, no generality is lost in considering the symmetric solution
of (1.2). Thus the general solution of (1.2) for βφ\ is given by
u(x) = A[xβ + (1 - xy - 1] + Bxβ.

2. Solution of (1.1). Let /, h: [0, 1[ -> R, g, k: [0, 1] -> R, satisfy the
functional equation (1.1) for x, 2/e[0, 1[ with x + ye[0, 1], where β(Φ2)
is positive.

For x = 0, (1.1) gives

(2.1) h(y) = g(y) + b^l - y)β + b2, for y e [ 0 , l [ ,

where &,, 62 are constants.

With y = 1 — x in (1.1), (1.1) becomes with the help of (2.1),

(2.2) f(x) = g(l - x) + c,xβ + c2(l - x)β + δ2, for x e ]0, 1[ ,
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where ct and c2 are constants.
Now (2.1), (2.2), and (1.1) with y = 0, yield

(2.3) k(x) = g(l - x) + ^ + ^ ( 1 - x)β + d2, for a? 6 ]0, 1[ ,

where dt and d2 are constants.
Thus (1.1) can be rewritten as

(2.4) 0(1 - a?) + (1 - aO>0(y/(l - *0) = θ(v) + (1 - »)^(1 - */tt - 1/))

+ ^ ( 1 - * - » ) > - c2(l - a;)' + (b, + d2)(l - »)' ,

for xe]0, 1[, ye[0, 1[ with x + ye]0, 1[.
Putting 2/ = 0, (2.4) gives

(2.5) 0(0) = d, - cz = -b, - d2 .

Define

(2.6) m(x) = g(x) + d ^ - 0(0), for x e [0, 1] .

From (2.4), (2.5), and (2.6), we get

(2.7) m(l - x) + (1 - xγm(y/(l - α?)) = m(y) + (1 - »)'m(l - a?/(l - y))

for a? 6 ]0,1[, y e [0, 1[, with x + ye]0,1[.
Interchanging cc and /̂ in (2.7) and defining

(2.8) N(x) = m(a) - m(l - a?), for x e ]0, 1[

we have

(2.9) N(x) = -JV(1 - a), for α 6 ]0, 1[ ,

(2.10) NQ./2) = 0

and

(2.11) tf(αθ + N(y) = (1 - x)βN(yl(l - x)) + (1 - yγN(x/(l - y)) ,

for a?, y, a? + y 6 ]0, 1[ .

Now a? = y in (2.11) gives,

(2.12) N{x) = (1 - x)βN(x/(l - a?)), for a? 6 ]0, l/2[ .

Also y = 1/2 in (2.11) results in

(2.13) N(x) = (1 - a?)W(l/2(l - a?)) + N(2x)/2β, for a; e ]0, l/2[ .

Using (2.12), (2.13), and (2.9), we have

(1 - xy[-N((l - 2a?)/(l - a;)) + N((l - 2a?)/2(l - a?))] = 2V(2a?)/2̂  ,

for 0 < x < 1/2 ,

which by the substitution (1 — 2&)/(l — x) = ί, yields
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N(t/2)]/(2 - tγ = N(2(l - ί)/(2 - ί))/2«, for t e ]0, 1[ ,

which with the use of (2.12) for x = ί/2 and (2.9) leads to

(2.14) N(t) = 2N(t/2), for t e ]0,1[ .

Finally from (2.13), (2.14), (2.12), and (2.9), we obtain

N(x) = (1 - x)βN(l/2(l - »)) + N{x)l2f-\ for x e ]0, l/2[ ,

that is,

(1 - (l/2"-1))Ma;) = (1 - *)W(1/2(1 - x)), for x 6 ]0, l/2[

that is,

(1 - ( W W l - x)W(l - x/(l - x)) = (1 - xYN(l - (1/2(1 - x))) ,

which by putting t = (1 — 2x)/(l — x), yields

(1 - (l/2n)N(t) = N(t/2), for ί e ] 0 , l [ ,

that is,

(1 - (l/2β-2))N(t/2) = 0, for 16 ]0, 1[ ,

so that, since /S Φ 2

JVC*) = 0 for all t e ]0, 1[ .

Thus from (2.8), we get m(x) = m(l — x) and from (2.7) we obtain

m(x) + (1 — x)βm(y/(l — x)) = m(y) + (1 — y)βm(x/(l — y)),

for x, y, x + y e ]0, 1[ ,

which is the same as (1.2), with β Φ 2.

REMARKS 2. Then, it follows from [1, 8], that if β is also not equal
to 1,

m(x) = AS^α) = A[xβ + (1 - x)β - 1] , xe ]0, 1[,

so that from (2.6), (2.2), (2.1), and (2.3), we get

f{x) = ASβ(x) + erf - d.(l - a?)̂  + c3

fir(y) - AS,(y) - dlV

β + d,

h(x) = iiS (̂aj) - d t ^ + 6^1 - a;)" + c3

fe(») - ASβ(y) + ^ - b,,

for a; 6 [0, 1[, y e [0, 1], where A, blf clf c3, dlf d3 are arbitrary constants.
From this it is easy to see that in this case no further assumptions on
the functions are necessary to solve (1.2) and hence (1.1).
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REMARK 3. In case β — 1, then it is necessary to impose some
further conditions on any one and hence on all of the functions involved
in (1.1) to get the solution of (1.2) [refer 12, 4, 6, 7 etc.]. Further the
above procedure gives a simpler method of solving the functional equa-
tion (1.2) when β — 1, dealt in [13], This method greatly simplifies the
proof given in [13] regarding (1.2) for β = 1.

Thus, we have proved the following theorem.

THEOREM. If /, h: [0, 1[ -> R, g, k: [0, 1] -> R satisfy (1.1) for x,ye
[0, 1[ with x + 2/G[0, 1], where β(>0) Φ 2, then /, g, h, k are given by
(2.2), (2.6), (2.1), and (2.3) where m is a solution of (1.2).

REMARK 4. It is now clear to see that no further assumption on F
is necessary [refer 9, 10] to obtain the solution of the functional equation

F(x, y) + (1 - xYiX - y)rF(u/(l - %), v/(l - y))

= F(u, v) + (1 - uy(l - vYF(x/(X - u), y(l - v)) ,

in the form F(x, y) = A[xβyr + (1 - x)β(l - yY - 1] + £ # V , [refer 3].

REMARK 5. An open question. Is it possible to obtain the solution
of (1.1), by reducing (1.1) to that of (1.2), in case β = 2?
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