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0° Introduction. A Banach-Lie group is a combined concept of a
Banach manifold and a topological group. Namely, a topological group
G is called a Banach-Lie group (modeled on a Banach space E), if G is
a Cfe-Banach manifold on E, k ^ 3, and the group operations are of class
Ck. As in the case of finite dimensional Lie groups, G carries a real
analytic structure ([13]), and the tangent space g at the identity being
canonically identified with the model space E has a structure of a Lie
algebra such that the Lie bracket product [u, v] on g is a bounded
bilinear operator, i.e. there is a constant C such that \\[uf v]\\ ̂  C\\u\\ \\v\\,
where by taking a suitable multiple of the norm, C may be taken to
be unity or zero.

A normed linear space with a bounded bilinear Lie bracket product
is called a normed Lie algebra, and if it is complete with respect to the
norm topology, it is called a Banach-Lie algebra. A Banach-Lie algebra
is called enlargable ([20]) if it is a Lie algebra of a Banach-Lie group.
Finite dimensional Lie algebras are always enlargable. However, there
exist non-enlargable Banach-Lie algebras ([20]), while every Banach-Lie
algebra is a Lie algebra of a local Banach-Lie group (cf. [3] and [6]).

The existence of non-enlargable Lie algebra is, however, the only
known fact with no finite dimensional analogue. Moreover, there are
good criteria for enlargability, one of which is stated as follows: Let
g, ί) be Banach-Lie algebras such that there is a continuous Lie algebra
monomorphism ί) into g. If g is enlargable, then so is Ij. (Cf. [20].)
Most of the theorems hold, and indeed are proved by the classical pro-
cedures from the theory of finite dimensional Lie groups. (Cf. [3], [6]
and [13].) The implicit function theorem and Frobenius theorem hold
also in the category of Banach manifolds under the restriction that the
considered linear space has a direct summand (splitting).

There are a lot of examples of Banach-Lie groups in operator cal-
culus ([8] and the bibliography therein). Most of them are generaliza-
tions of classical groups with various topologies for spaces of operators.
In many of those groups, separability does not hold anymore even if
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the group is connected. In addition to the closedness of the linear sub-
spaces which we consider, a second point about which we must worry
to generalize the theory of finite dimensional Lie groups to the infinite
dimensional case is the lack of separability. Anyway, Banach-Lie groups
are properly enlarged mathematical object which covers the classical
theory of Lie groups.

So, the following seems to be a natural question: Is there a finite
dimensional manifold on which an infinite dimensional Banach-Lie group
acts effectively and transitively? The answer is "yes," but there might
be few examples as we can see in this paper.

Throughout this paper, a manifold M means always a connected,
separable, finite dimensional and C°°-manifold without boundary. Let
Γ(TM) be the Lie algebra of all C°°-vector fields on M with the C°°-
topology. By £&{M) we denote the group of all C°°-diffeomorphisms on
M. Separability is not assumed for the Banach-Lie groups in this paper.

First of all, we shall prove the following theorem in 1°, which re-
duces our problem to the corresponding problem on Lie algebras:

THEOREM A. If a connected Banach-Lie group G acts smoothly and
effectively on a manifold M, then there is a continuous imbedding of
the Lie algebra g of G into Γ(TM) satisfying the following:

( * ) Every UQQ is complete, i.e. there is a one parameter trans-
formation group exp tu generated by the vector field u.

(**) Ad(exp£w)g = 8, where for a smooth diffeomorphism φ of M,
Ad (φ)u is defined by (Ad (φ)u)(x) = dφu{φ~ιx).

Conversely, let g be a Banach-Lie algebra such that there is a con-
tinuous inclusion of g into Γ(TM) and that g satisfies (*). Then g is
enlargable. Indeed there is a Banach-Lie group G such that the Lie
algebra of G is g and that G is a subgroup of &f{M). In particular,
g satisfies (**).

The method of the proof of the above theorem yields also that G
acts smoothly and transitively on a manifold, if and only if the action
is ample, i.e. infinitesimal transitive at every point. (Cf. 1°.) Therefore
by the implicit function theorem, the isotropy subgroup H of G is a
closed Banach-Lie subgroup such that the manifold is diffeomorphic to
the factor space G/H. Thus, our problem is reduced to the following:
Find a pair of infinite dimensional Banach-Lie groups (G, H) such that
(i) G is connected, (ii) H is a closed Banach-Lie subgroup of G, (iii)
dim G/H< oo and (iv) ΓUβflrflflΓ1 = {e}.

However, the following theorem shows that such examples are not
so rich (cf. 2°):
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THEOREM B. If a connected Banach-Lie group G acts effectively,
transitively and smoothly on a compact manifold, then G must be a
finite dimensional Lie group.

Moreover, the following has been known in the joint work with P.
de la Harpe [16]:

THEOREM. Let g be the Lie algebra of an infinite dimensional
Banach-Lie group G. Suppose g has no proper closed finite codimen-
sional ideal. Then the only possible smooth action of G on a finite
dimensional manifold is trivial.

The above theorem show that g has by no means a character of
simple Lie algebras. A Banach-Lie algebra g will be called solvable if
the descending series g = g0 o gx z> g2 =) of derived algebras Qn =
[Qn-if βn-i]~ ( — means the closure) finishes at a finite stage gw (i.e. gΛ+1 = 0).
g will be called almost solvable if there is a finite codimensional closed
ideal p of g such that p is solvable. The following will sharpen the
above theorem:

THEOREM C. If a connected infinite dimensional Banach-Lie group
G acts smoothly, effectively and transitively on a non-compact manifold,
then G must be almost solvable.

The above theorem will be proved in 3°.
In 4°, several examples of Banach-Lie groups acting effectively,

smoothly and transitively on a manifold will be given.
The idea of the proof of both Theorems B and C is based on the

following simple fact: Since g is a Banach-Lie algebra, ad (u): g t-> g is a
bounded linear operator for any u eg. However since every ueq can
be canonically identified with a smooth vector field on a manifold M,
ad (u) must have a character of unbounded operators because ad (u) is
a differential operator. Indeed, the character of unboundedness appears
in various way. For instance, if g contains x(d/dx), x\d/dx) and x\d/dx)
then g contains xn(d/dx) for all n ^ 0 and \x(d/dx), xn(d/dx)] = (n- l)xn(d/dx).
Thus, ad (x(d/dx)): g -» g can not be bounded in any norm.

By the above theorems and the above idea of the proof, it seems
to be natural to conjecture that there exist few examples of infinite
dimensional Banach-Lie groups acting smoothly, effectively and transi-
tively on a finite dimensional manifold.

The main idea of making such examples is as follows: Though d/dx
is a differential operator, it is a bounded linear operator of E = {Σ αΛ#w;
supw! |αj < oo} into itself, where the norm on E is defined by | |u | | =
sup w
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1° Some remarks on Banach-Lie groups and Banach-Lie algebras.
In this section, the proof of Theorem A and some other remarks on
Banach-Lie groups will be given.

The first half of Theorem A is easy to prove. Indeed, let G be a
connected Banach-Lie group acting effectively and smoothly on a manifold
M and let p be the action. ρ\Gv-> &{M) is then a monomorphism. For
any u e g, there is a one parameter subgroup {exp' tu; teR} of G gen-
erated by u defined by the unique solution of (d/dt)xt = u xtf x0 = e9

where u g means the derivative of the right translation Rg:G —> G. Set
dp(u) = (d/dt)\t=:Oρ(eχτρ' tu). Then, dp(u) e Γ(TM) such that ex$tdρ(u) =
p(βxp'tu). Thus, we see that g satisfies (*). dp: &v^Γ(TM) is obviously
a Lie monomorphism. For the proof that g satisfies (**), we have only
to note the following identity:

(1) Ad (exp dρ(u))dρ(v) = dρ(Ad (exp' u)v) ,

which is proved by showing that exp' (Ad (exp' u)v) = exp' u exp' v
exp' —u and |0(exp' (Ad (exp' u(v)) = exp dp(u) exp dρ(v) exp — dp(u) =
exp (Ad (exp dp(u))dp(v)).

The second half of Theorem A is proved in the following

PROPOSITION 1.1. Let g be a Lie algebra consisting of C°°-vector
fields on M with the property (*). Suppose that g is a Banach-Lie
algebra under a stronger topology than the C°°-topology on M. Then g
satisfies (**) and enlargable.

PROOF. Let G be the group generated by {exp u ue g}. G is a sub-
group of 2ί{M). On the other hand, since g is a Banach-Lie algebra,
there is a local Banach-Lie group V with g as the Lie algebra. For any
u e g, a local one parameter group exp' tu is uniquely defined in V as
the solution of (d/dt)xt = u xtf x0 = β. By the inverse mapping theorem,
the exponential mapping exp' is a real analytic diffeomorphism of a
neighborhood U' of 0 in g onto a neighborhood V of the identity e in V.

Define a mapping p: V H> G by |θ(exp' w) = exp %. Then, ^(exp' sw
exp' tu) = exp su exp £π. For exp' u e F', define Ad (exp' u)v by
(c£/c£s)|8=oexp'w -exp'sv exp' — u. Since g is the tangent space at the
identity e of the Banach manifold V, we get Ad (exp' u)v e g, and hence
Ad (exp' U)Q = g. Now, note that Ad (exp' tu)v is a unique solution of
the equation

( 2) (djdt)wt = [u, wt] , w0 = v .

On the other hand, (2) can be regarded as an equation with respect to
vector fields on M. The unique solution of (2) is given by Ad(exj)tu)v.
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Thus, we get

( 3) Ad (exp' tu)v = Ad (exp tu)v , v e g, u e U' .

Since G is generated by {expu ue [/'}, g satisfies (**).
Next, we prove that p is a local homomorphism. At the first, we

have

( 4) ((cϊ/cϊt)(exp' tu exp' v))(exp' tu exp' v)~x = u .

Set exp' i;e = exp' tu exp' v and vt = (d/dt)vt. Since exp' is differentiate,
we get

((d/dί) exp' ^)(exp' ^ Γ 1 = ((3/3s)|s=0exp' (vt + s'?)ί))(exp' vj"1

= (d/ds)\sΛ\d/dθ)[exv' (θ(vt + 8tJt))(exp' ^ ί ) ~ 1 ] ^
Jo

( 5 ) • = \ (d/d8)\8=odLexpf0{Vt+8yt)8vt e x p ' ~θvtdθ
JO

d (exp' θvt)vtdθ ,

where dL9 is the derivative of the left translation Lg. By (3)~(5), we
have

( 6 ) u=[1Aά (exp' θvt)vtdθ = ^Ad (exp θvt)vtdθ .
Jo Jo

On the other hand, the same computation as in (5) holds for vector
fields and hence

( 7 ) ((d/dt) e x p v t ) ( e x p v ^ x ) - Γ ( A d ( e x p θvt)vt)(x)dθ , x e M .
Jo

Hence ^(exp' vt) = exp vt satisfies the equation

( 8) (d/dt)p(exj/ vt) = u <o(exp' vt) , p(exp' v(0)) = exp i; .

Thus, |θ(exp' vt) = exp £% exp v, hence p(exp' i6 exp' v) = exp u exp v.
Now, assume for a while that there is a sequence {vn} in E77 such

that lim vΛ — 0 and <o(exp' vn) — e for every n. Then, {exp tvn; teR} is
a circle group contained in the group of diffeomorphisms on M. Since
{vn} converges to 0 in the C°°-topology and exp vn = e, any neighborhood
of e of Sf{M) contains a compact subgroup. However, this contradicts
Theorem 2, [13] p. 208, namely there is no small compact subgroup in
&f{M). Thus, we see that there is a neighborhood V" of e in V such
that p: V" h-> G is a monomorphism.

To prove g is enlargable is to make G a Banach-Lie group. How-
ever, p(V") has a structure of local Banach-Lie group by identifying
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with V" through p, and G is generated by p(V"). Thus, by a standard
method similar to finite dimensional Lie groups, one can give uniquely
a structure of Banach-Lie group on G which is compatible with that on

The above proposition completes the proof of Theorem A.

The following is known by Lemma 2.2 [12]:

LEMMA 1.2. Let g be a Lie algebra contained in Γ(TM) and satis-
fying (*) and (**) of Theorem A. Let G be the group generated by
{expu; ueg}. Then, the orbit N = G(x) of a point xeM is a C°°-
immersed submanifold of M such that TyN = Q(y), where TyN is the
tangent space at y and g(y) = {u(y); ueg}. (For the countability axiom,
see [4] p. 96.)

COROLLARY 1.3. Let G be a connected Banach-Lie group acting
smoothly on a manifold M. Then, the action is transitive, if and only
if it is ample.

PROOF. Let p be the action of G. Set dρ(u) = (d/dt)\t=oρ(exv' tu).
Then, dp is a continuous Lie homomorphism of the Lie algebra g of G
into Γ(TM) such that |fl(exp' tu) — exptdp(u). Let g be the image of
dp. Then, g is a Banach-Lie algebra contained in Γ{TM) and by Theo-
rem A, g satisfies (*) and (**).

Since a connected Banach-Lie group G is generated by {exp u; u e g},
p(G) is generated by {exp dp{u)\ u eg}. By the hypothesis, M is an orbit
of p(G). Thus, by Lemma 1.2, we get TyM = g(y) = dρ(Q)(y). The con-
verse can be easily obtained by using Hahn-Banach's theorem and the
implicit function theorem.

LEMMA 1.4. Let g be the Lie algebra of a connected Banach-Lie
group G and ί) a finite codimensional closed Lie subalgebra of g. Then,
there is a unique Banach-Lie subgroup H of G with the Lie algebra f).
The closure H of H is also a Banach-Lie subgroup of G. If § is an
ideal, then H and H are normal subgroups of G. In particular, G/H
is a connected (finite dimensional) Lie group and hence a separable
space.

PROOF. By Hahn-Banach's theorem, there is a finite dimensional
subspace m of g such that g = § 0 m (direct sum). Let ϊ) = {§ g; g e G}
be the right invariant distribution on G. Since ί) is a subalgebra, § is
involutive. By Frobenius' theorem, there exist a neighborhood U (resp.
V) of the origin of ί) (resp. m) and a smooth diffeomorphism Φ of Ϊ7φ V
onto a neighborhood W of the identity e of G such that
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( i ) the derivative (dΦ\ of Φ at the origin is the identity,
(ii) for each veV, Φ(U@{v}) is an integral submanifold of | .
Note that we do not assume the second countability axiom on G.

Let H be the maximal integral submanifold of ί) through the identity.
H is a C°°-Banach manifold and a group because H h = H for any heH.
For any uefy, exp' u is contained in H, and in Φ(U + {0}) for sufficiently
small u, because (d/dt) exp' tu — u exp' tu e | . Thus, the exponential
mapping exp' is a C°°-mapping and hence a C°°-diίfeomorphism of a con-
nected open neighborhood U' of 0 of ^ onto an open neighborhood fj'
of e of H.

Now, by Lemma 2.1 [12], we have Ad (exp'u)§ = ί) for any ueί).
Let Ux be a star-shaped neighborhood of 0 of ξ such that Ux c U' and
(exp' ITΊXexp' U^a W. Let i*7: exp' Uι x exp' Ui i->TF be the mapping de-
fined by F(g, h) = gh~\ Since (dF){g>h)(u g,vh) = (u-Aά(g) Ad(hytygh,-1 e §
for any u, v e§, g, he exp' Γ7i, we see that the image of F is contained
in Φ(£/©{0}), and hence F is a C°°-mapping of exp' Uι x exp' Uι into
Φ(?7φ.{0}). Therefore, the neighborhood U' in fZ" has a structure of a
local Banach-Lie group.

Let Hf be the group generated by Όr. Hr is then an open subset
of H and a Banach-Lie group with the Lie algebra ^. Indeed, it is
proved by the standard method similar to that in finite dimensional Lie
groups. Note the right translation Rg:Hv->H is smooth. Therefore Hf

is also a closed subset of H. Since H is connected, we get H = H',
hence H is a Banach-Lie group. Remark that if G satisfies the second
countability axiom, then the above argument can be replaced by a
simpler one parallel to that of [4] p. 95.

Now, suppose H is not closed in G. Then, there exists a sequence
{Mn}neN in *π such that un Φ 0, XvcΆn^wn — 0 and Φ(un)eH. Taking a
subsequence if necessary, we assume that the sequence {tt»/||wft||} con-
verges to an element uem. By a little careful argument, we can choose
a C^-curve c(t) in m such that (d/dt)\t=Qc(t) = u and that the image of
the curve contains infinitely many point of {un}. Taking again a sub-
sequence, we may assume that for each n there is a value tn of the
parameter with c(ίΛ) = un and Φ(c(ίn))

 e H. Obviously, lim^oo tn = 0,
Since Φ(c(ίJ)e •#> w e h a v e Ad (Φ(c(ίn)))§ = ^ for all w 6 N, so that
(d/dί) | t = 0 Ad (Φ(c(ί)))§ c ή, because ή is closed. Since (d/dt)\t=0 Ad (Φ(c(t)))v =
ad ((dΦ)ou)v and (c?Φ)ou = u, we have [u, ̂ ] c ^. Thus, & = Λ w © 1} is
a Banach-Lie subalgebra of g containing ή as an ideal. Moreover, since
ΦWn)Y ^ H for any k, exp' £w is contained in H. It is because of the
fact that for any C'-curve F(t) in G with F(0) = β, {F(t/k)k} converges
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to exp' tF(0).
Let Hx be the Banach-Lie subgroup with the Lie algebra &. Then

it is not hard to see that H1 = H. Note that codim \ < codim £). If
jffx is not closed in G, then one can make JSΓ2 such that H2 = J^ and
codim §2 < codim \ by the same procedure as above. Since, codim ί) is
finite, the above procedure must stop at some stage Hx. Namely, we
have Hi = Hι = J?z_! = = H. Hi is obviously a Banach-Lie group.

If § is an ideal, then by Lemma 2.1 [12] we see Ad (exp' u)t) = $ for
any u e g. Since exp' Ad (exp' w)v = exp' u exp' v exp' — w, the desired
results can be easily obtained.

REMARK 1. Let G be a connected Banach-Lie group and H a closed
Banach-Lie subgroup of finite codimension. Then it is trivial that G/H
is a manifold with or without the separability axiom. However, the
separability of G/H will be shown in the next section. So, G/H is in
fact a finite dimensional manifold.

COROLLARY 1.5. By the same notations as above, ^ is an ideal of
%. If ί) is a proper maximal finite codimensional subalgebra which is
not an ideal of g, then H is closed in G.

LEMMA 1.6. Let G be a connected Banach-Lie group with the Lie
algebra g. For any closed subalgebra ί) of g, there is an immersed
Banach-Lie subgroup H of G having § as the Lie algebra. Moreover,
if § is an ideal of g, then H is a normal subgroup of G.

PROOF. By a criterion of enlargability (cf. 0°), there is a simply
connected Banach-Lie group H with the Lie algebra ί). Since there is
a continuous inclusion § c g, there is a smooth homomorphism p of H
into G such that the kernel of p is a discrete normal subgroup of H.
Thus, H = H/Ker p is the desired group. The induced monomorphism
p:Hv-*G is obviously an immersion.

Identifying H with p(H), we see that for every u e §, exp' tu is con-
tained in H. Suppose now that § is an ideal of g. Then, Ad (exp' tu)§ = §
for any u e g because Ad (exp' tu)v is the unique solution of the equation
(2) and [u, §] c ίj. Thus, by the same reasoning as in Lemma 1.4, H is
a normal subgroup of G.

REMARK 2. Let G be a connected Banach-Lie group with the Lie
algebra g acting smoothly on a manifold M. Let p be the action. Then,
N = Ker p is a normal and closed subgroup of G and dp is a Lie homo-
morphism of g into Γ(TM). The kernel n of dp is a closed ideal of g.
By Theorem A, the Banach-Lie algebra g/π is enlargable, and indeed
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G/N = p(G) is a Banach-Lie group with the Lie algebra g/n. On the
other hand, by 1.6, tt generates an immersed, normal Banach-Lie sub-
group N' of G. Since the Lie algebra of N' is rt and p(exp' tu) = e,
we see that N' c N. However, it is not clear whether N' = the identity
component of N or not. The reason of this difficulty is that one can
not use the implicit function theorem. So, if tt has a direct summand
in β (for instance the case of codimtx < oo) or if g is a Hubert space,
then one can conclude N' = N.

2° Proof of Theorem B and the separability of a factor space.
Let M be a compact manifold. Suppose G is a connected Banach-Lie
group acting smoothly, transitively and effectively on M. By 1.3 and
the implicit function theorem, the isotropy subgroup GQ at x0 e M is a
closed Banach-Lie subgroup of G, and M = G/GQ. Thus, for the proof
of Theorem B, it is enough to show the following:

PROPOSITION 2.1. Suppose G is a connected Banach-Lie group and
H a closed finite condimensional Banach-Lie subgroup of G. If the
factor space G/H is compact, then N — {\g&GgΉ.g~γ is a finite codimen-
sional closed normal Banach-Lie subgroup of G.

The above proposition will be proved in several steps below.
Let M = G/H. By the hypothesis, M is a compact C°°-manifold on

which G acts smoothly and transitively. Let p be the action. We use
the same notations as in Remark 2 in the previous section. Since H~DN,
we have only to show that dim g/π < oo for the proof of 2.1.

The Banach-Lie algebra g = g/n is naturally identified with a sub-
algebra of Γ(TM) and the inclusion mapping is continuous. Since M is
compact, there are ulf , uk e g (ft < oo) such that {u^x), , uk(x)} spans
the tangent space TXM of M at every x. We set D = Σf=1 ad (Uif.

LEMMA 2.2. D is a strongly elliptic differential operator of order
2 of Γ(TM) into Γ(TM). Moreover, DQCIQ and the mapping D:gι->g
is a bounded operator.

PROOF. Obviously, DQ C g, and the mapping D: g h-> g is bounded.
Let (x19 •••,»») be a C°°-local coordinate system of M at x e M. By this
coordinate system, every ud is written in the form uά — Σ?=i -XJί^/S^),
j = 1 — ft, where X) are smooth functions in xl9 •••, xn. Thus, for any
veΓ(TM) we have

( 9 ) (Dv)(x) = Σ I Σ Σ XjX'id'/dxβx^v, + (lower order terms)}
ϊ = l Kj=l a,b=l )

Thus, the symbol of D is given by
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(10) σ(D)ξ = ( g <f, nάy)l, ξ e T*M - {0} ,

where Γ*Λf is the cotangent bundle, I: TM\-* TM is the identity mapping
and <£, i^ ) means the natural pairing. Hence it is clear that σ(B) =
σ(jD*), where D* is the formal adjoint operator of D with respect to
an arbitrarily fixed C°°-riemannian metric on M. Let \ξ\ be the length
of ξ. Since {u^x), " ,uk(x)} spans the tangent space TXM for every
xeM, there is a positive constant c such that ΣjU <?> % ) 2 ̂  c lίΓ
Hence, ((σ(D)ζ - c\ξ\2)X, X) ^ 0 for any l e Γ J I ί , i.e. D is strongly
elliptic.

Let TM° be the complexification of TM, and Γ(TMC) the space of
all C°°-sections of TikP with the C°°-topology. Then, Γ(TMC) is the com-
plexification of Γ(TM), that is Γ(TMC) = Γ(TM)(g)C. The complexifica-
tion gc of Q is naturally imbedded in Γ(TMC), and the operator D can
be regarded as a differential operator of Γ(TMC) into itself such that
DQC C gc and that D: gc H-> gc is bounded. The following proposition is
known in functional analysis: (For the proof, see the appendix of this
paper.)

PROPOSITION 2.3. Let E be a C°°-complex, finite dimensional vector
bundle over a compact riemannian manifold M and Γ{E) the space of
the C°°sections of E with the C°°-topology. Let D: Γ{E) t-> Γ(E) be a
strongly elliptic differential operator of order 2 such that σ(D) = σ(D*).
Then, there are countably many eigenvalues {λΛ}fts=lf2,... such that the
following are satisfied:

(1) άimEXn< oo, where EXn are generalized eigenspaces, i.e. the
linear space of the elements v e Γ(E) such that (D — Xn)

mv = 0 for some
integer m.

(2) limReλΛ = oo.
(3) The generalized eigenspaces are complete in Γ(E), i.e. Σ θ f i ,

is dense in Γ(E).
(4) Setting %n - (Σ** θ EhY, we have f| & = {0}.

Now, let {λn}Λ=1,2f... be the eigenvalues of D. Let §„ = gc ΓΊ S*. Since
the inclusion QeczΓ(TMc) is continuous, the gΛ are closed finite codimen-
sional subspaces of the Banach space gc such that gc = gx i) g2 3 Qn ZD
and Π βn = {0}. It is clear that DQn c gΛ for every n.

Set Fk = Qk/Qk+ί and F = Σ θ ί * (arbitrarily finite sum). We define
a norm || || on F by the following manner: For any # = Σ #*> define
II#11 = Σ ll̂ fcll and \\uk\\ = mί{\\uk\\',ukBuk}. F is a normed linear space,
and D induces a linear operator D of F into itself.
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LEMMA 2.4. D: F \-^ F is a bounded linear operator.

P R O O F . There is a positive constant c such t h a t \\Du\\ ^ c) |w | | .

Thus, if u = Σ f̂c> f̂c e -̂ Λ* then

On the other hand, since dim Fk < oo, there is an integer vk such
that φ — XkI)VkFk = {0}, so that there is a non-trivial element wk e Fk

such that Dwk — Xkwk. Since limλ% = oo, Lemma 2.4 shows that Fk = {0}
for sufficiently large k. Hence, §„ = {0} for some n. Therefore,
dimg < oo, and n is a closed finite codimensional ideal of g. Hence by
Remark 2 in 1°, N is a normal Banach-Lie subgroup with the Lie alge-
bra tt. This complete the proof of Proposition 2.1, and hence Theorem B.

By Theorem B, an infinite dimensional Banach-Lie group can act
only on a non-compact manifold. However, such a Banach-Lie group
seems to be severely restricted. The following was a main theorem of
[16].

PROPOSITION 2.5. Let G be a connected Banach-Lie group with the Lie
algebra g. Suppose § is a proper finite codimensional closed maximal
subalgebra of g, Then, § contains a finite codimensional ideal of g.

The above result was proved in several steps in [16] by using the
classification of infinite primitive Lie algebras. The theorem stated in
the introduction is an immediate conclusion from the above result.

Now, if an infinite dimensional Banach-Lie group G acts smoothly,
effectively and transitively on M, then the isotropy subgroup of G can
not be a maximal subgroup. Moreover, we have the following:

LEMMA 2.6. Let G be a connected Banach-Lie group and H a finite
codimensional closed and connected Banach-Lie subgroup of G. Sup-
pose the Lie algebra ί) of H is not maximal in the Lie algebra Q of G.
Then, there is a closed and connected Banach-Lie subgroup Hr such
that Hr Ξg H and H contains a finite codimensional closed normal
Banach-Lie subgroup N of H'. In particular, f\heH' hΈΠc1 is a finite
codimensional Banach-Lie subgroup of Hf'.

PROOF. Let ψ be a subalgebra of g such that g ^ ψ 3 Ij and there
is no non-trivial subalgebra between ί)" and §. Since codimϊ)< oo, ψ
is a closed subspace of g. Let if" be the Banach-Lie subgroup of G
generated by §". Since the inclusion H" c G is continuous, H can be
regarded as a closed subgroup of H". By Proposition 2.5, there is a closed
normal Banach-Lie subgroup N" of H" contained in H and such that
dimH"/N" < oo. Let H' and N be the closures of H" and N" in G
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respectively. By Lemma 1.4, these are Banach-Lie subgroups of G.
Obviously, Hr Ξg H, H~D N and N is a normal subgroup of JET.

Now, N = Γ\heH hHh~ι contains N. Then, N/N is a closed normal
subgroup of the finite dimensional Lie group H'/N. Thus, N/N is a Lie
group. Since the canonical projection π: Hf ι-> iϊ'/^V is smooth, we see
by the implicit function theorem that N = π~\N/N) is a Banach-Lie
subgroup of G.

COROLLARY 2.7. Notations and assumptions being as in the above
lemma, there is an increasing series H = Go §Ξ Gx £Ξ G2 £Ξ £= G? = G
o/ closed and connected Banach-Lie subgroups satisfying the following:

(1) There is no non-trivial closed and connected Banach-Lie sub-
group between Gt_x and Gt for each i = 1, 2, , J.

(2) iVi = Γ\geGi+1 gGig~γ is a finite codίmensional Banach-Lie sub-
group of G and a normal subgroup of Gi+1.

Proof is easy by using the above lemma.

COROLLARY 2.8. Let G be a connected Banach-Lie group and H a
finite codimensional closed Banach-Lie subgroup. Then, G/H is a
(separable) smooth manifold.

PROOF. GJG^ is a separable manifold, because GJNt acts transi-
tively on Gi/Gi-t and Gi/Ni is a finite dimensional Lie group and hence
a separable manifold. Hence the total space G/H is separable.

3° Almost solvable Banach-Lie groups. In this section, the proof
of Theorem C will be given.

A triple {G, H, K) of connected Banach-Lie groups with the Lie
algebras {g, ,̂ ϊ} is provisionally said to be an AS-triple system if the
following are fulfilled:

( i ) if ^ K and they are finite codimensional closed Banach-Lie sub-
groups of G.

(ii) Set π = n*eGAd(βr)§. Then, g/n is almost solvable. (Cf. 0°)
(iii) Set tt' = Γiheπ Ad (h)l. Then dim §/n' < oo.
By Corollary 2.7 combined with an induction, the proof of Theorem

C is reduced immediately to the following:

PROPOSITION 3.1. Let {G, H, K) be an AS-triple system and let n" =
Πί/eί? Ad (g)ϊ. Then g/n" is almost solvable.

The above proposition will be proved in several lemmas below. If
g is almost solvable, then we consider the class of all finite codimen-
sional closed solvable ideals of g, and take a maximal element *. Then,
* is a closed ideal of g and contains all solvable ideals of g. Indeed, let
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J? be a solvable ideal of g. Then, * + J?\* = ^\* n ^ is solvable and
* + ^ is a closed ideal of g, because » + ^7*. is closed in the finite
dimensional space g/*. Hence ^ + J ^ is a finite codimensional closed
solvable ideal of g, so that * + ^ = #. The maximal element * is called
the radical of g. It is clear that g/* is a finite dimensional semi-simple
Lie algebra.

Now, to prove Proposition 3.1, we start with the following:

LEMMA 3.2. Let g be a Banach-Lie algebra and ^ a closed ideal
of g. Then g is almost solvable, if and only if ^ and Q/^ are almost
solvable.

PROOF. Let *0 be the radical of Jf. For any u e g/»0, ad (u) induces
a derivation A(u) of ^ 7 * 0 Since ^"/ 0 is semi-simple, there is v e ^/»0

such that Λ(ίϊ) = ad (v). v is uniquely determined by u. Thus, there
is a Lie homomorphism |θ: g/̂ 0 H> ^/* O > |θ(ίί) = v, such that |θ(v) = v for
any v e «_>̂"/̂o Hence the exact sequence

0 h-> ̂ I H h - g/.o h-> g / ^ h-> 0

splits. Thus, g/̂ o is almost solvable. Consider the exact sequence

0 -> ̂ o -^ S -^ fl/*o -> 0 .

The full inverse of the radical of g/*0 is also a finite codimensional solvable
ideal of g, hence g is almost solvable. The converse is easy to prove.

Now, let {G, H, K) be an AS-triple system with the Lie algebras
{Q? & ϊ} Consider the disjoint union \JgH.*G/H n/Ad(gr)(n n tt'). By Lemma
1.6 Ad (g)n = n for any g e G. Hence Ad (g)(xt n n') depends only on
gHeG/H. Thus V = \JgHeG/Hxι/Aά(g)(xiΓiXir) makes sence and 7 is a
smooth finite dimensional vector bundle over G/H with the fibre n/ttfltt'
and the group of the automorphisms of rt/π ΓΊ tt' as the transition func-
tions. The fibre of V is a finite dimensional Lie algebra and hence the
space of the smooth sections Γ(V) becomes a Lie algebra by the point-
wise Lie bracket product. Define a Lie homomorphism σ\n\-^Γ(V) by
σ(w)(xH) = w + Ad {x)(n Π n') 6 n/Ad (a?)(n Π tι').

Let VQ be the subbundle given by the radicals of the fibers. Vo is
then a smooth subbundle of V and there is a projection TΓ: Γ(V)\-^Γ(V/VO).

We set σff(w) = πσ(w), w ett. Let n" be the kernel of σ. Then, obviously
n" = ΓUs Ad (x)(n n tt') = ΓUs Ad (x)t.

Now, assume for a while that dim σπ(n) < oo. Let i^ be the kernel
of σπ. Since (7(1̂ ) c Γ( yo) and the fibre of VQ is solvable, we get that
σfa) = tti/π" is solvable. Thus, n/n" is almost solvable. Since g/rt is
assumed to be almost solvable, Lemma 3.2 shows that g/n" is almost



236 H. OMORI

solvable. Thus, for the proof of 3.1, we have only to show dim σπ(n) < »,
Let p0 be the radical of n/n f) nf and p'o the full inverse of p0 by the

natural projection of n onto tt/n Π n'. The factor bundle V/Fo is then
given by the disjoint union \JxHeG/H^/^(x)po. Let ^ be an open
neighborhood of xH in G/H such that there exists a local smooth section
*\%v+G of the fibre bundle {G; H, G/H}. (The existence of a smooth
section is ensured by the implicit function theorem.) Now, for any
yH e ^ , Ad (*(yH)) is an isomorphism of n onto itself, hence induces an
isomorphism AyII: xt/pΌ h-+ n/Ad (#)$. Thus, we get a local, smooth trivial-
ization τ: ^ x n/$ \-+ V/Vo defined by τ(yH, w) — {yH, AyHw). Since the
AyII are Lie algebra isomorphisms, a local section of V/Vo on ^ can be
naturally identified with a smooth mapping of ^ into n/$. The Lie
bracket product of Γ(V/V0) is translated into the pointwise Lie bracket
product.

For any w en, we denote by μ(w) the smooth mapping of ^/ into
n/pΌ defined by μ(w)(yH) = A~ι

H(w + Aά(y)pΌ). For any UGQ, we denote
by Xu the smooth vector field on GjH defined by u, i.e. Xu(yH) =
(d/dt)\t=oexj)tu-yH. For any ve^, ad(v) leaves π and tt' invariant,
hence induces a derivation of tt/n π tt' Since /θj/π Π tι' is the radical of
tt/n Π π', ad (v) induces also a derivation <5(i>) of xι/p'o. Since tt/joj is a
semi-simple Lie algebra, there is vf en/p'o such that δ(v) = ad(ι;'). Thus,
we get a Lie homomorphism ΰ of § into n/̂ J such that #(v) = v'. t?:
ί) —• n/|θό is of course a bounded linear mapping.

LEMMA 3.3. μ(w)(yH) = A~k(w + Ad (y)p'Q) = Ad {*{yH)Yιw + ρ'oe τt/ρ'Qf

wen, yHe^. Moreover, there is a smooth mapping λ g x ^ π ^
depending on the local section * such that for every fixed yH e ^ ,
λ(*, yH): Q h-> § is a bounded linear operator and such that μ([u, w])(yH) —
( — Xuμ(w))(yH) + ad («?(λ(w, yH))μ{w){yH), ue&, wen. (Note that the
second term does not involve differentiation.)

PROOF. The first one is easy to obtain by definitions. The second
one is obtained by the following computation:

μ([u, w])(yH) = μ(±
\dt

d_
dt t=o

μ(w)(exj) —tu yH)

Aά(exptu)w)(yH) = — ^(Ad (exp tu)w)(yH)

at

Ad (^(yHY1 exp tu *(exp —tu yH) ^(exp —tu-yH)~ι)w + pΌ

{Ad {a(yH)-γ exp to *(exp - tu
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= (-Xuμ(w))(yH)

{Ad (<*(yH)~ι exp to ^(exp —to yH)) Ad (*(yH)~ι)w + pΌ} .
dt ί = 0

Since exp — to <*(yH)Hs <*(exp — to yH), we have that (d/dt) \t=^(yH)~* x
exp to <*(exp — to yH) is contained in ί). We denote it by \(u, yH).
λ(*, yH): Q ~> ί) is then a bounded linear operator, because ^{yH)"1 x
exp % <*(exp — u 2/iί) is smooth with respect to u and yH. Therefore,

μ([u, w])(yH) = (-Xuμ(w))(yH) + d(X(u, yH))μ(w)(yH)

= {-Xuμ(w) + ad (#(λ(*f *))μ(w)}(yH) .

Now, let /*(^<, xt/̂ ί) be the Lie algebra of the smooth mappings of
^/ into n/pΌ with the pointwise Lie bracket product, μ: n ι-> -Γ(^, tt//oj)
is then a Lie homomorphism. Taking the complexification nc = t ι ® l / - I n ,
(π/^)c = tt/̂ J 0 α / ^ ϊ xt/pΌ, μ can be regarded as a complex Lie homomor-
phism of nc into Γ(^<, (xt/pΌY). Let (^, , xn) be a smooth local coordinate
system on ^ , and define a following filtration on μ(nc): Let rί0 = μ(xtc),
ftfc = {w e fί0; JIH1W = 0}, where ?^ means the s-th jet at xHe^f. Obvi-
ously, [itfc, ft,]cftfc+ι. Set .Pfc = ftfc/πfc+1 and F = Σ^o θ ^ For every ^ 6 g,
Xw — ad (#(λ(w, *))) can be regarded as a mapping of μ(xtc) into itself,
and induces a linear mapping X% of F into itself such that if Xu(xH) Φ 0,
then XuFkdFk_γ. Indeed, if w = Σiβi=* ^α^α, wa€(κlpΌ)% is an element
of Ffc, then X ^ = ΣLiΣι«ι=fc»i^α(3/3^)^ where Xu(xH) = Σ at(dldxt),
ateR and ίcα = x?1^"2 a?ϊ and | α | = «! + a2 + + an.

LEMMA 3.4. There is a norm \\ \\ on F such that (1) F is a normed
Lie algebra and (2) XU:F\^F is a bounded linear operator for any

PROOF. Let πί=nc and n'k = μ-χnk), k=l, 2, 3, . Then
is a filtration such that [n'k, n[] c nk+ι. Set Fk = n'k/rik+ι and F' = Σ θ ^ .
Since Ffc = jPfc by the natural way, F is a normed Lie algebra by the
same norm as in the phrase just above Lemma 2.4. Note that ad (u):
nc H Π C is a bounded operator. Then, by the same reasoning as in the
proof of Lemma 2.4, we get that the operator Xu: Fι-> F is bounded.

LEMMA 3.5. Notations and assumptions being as above, we get i*\ =
F2 = = Fk = - {0}, i.e. FQ = μ(πc).

PROOF. Let β^bes. Cartan subalgebra of (n/p'Q)c and
the root decomposition, where Δ is the root system and er is an element
such that [h, er] = r(h)er for any h e Sίf and that hr = [er, e_r] is an
element of 3ίf with r(hr) = ± 1 .
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Now, assume that Fk Φ {0} for some k ^ 1. Then, there is a non-
trivial ueFk such that u = Σ ί?iW^ + ΣrejQVGΦr* where h19 •••, ̂  is
a basis of Sίf and p*, #r are homogeneous polynomials of degree k.

Assume at first that the qr = 0 for any reΔ. Then, there exists
rf eΔ such that ad (er,)u Φ 0, because otherwise ad (u) = 0. ad (er/)w is
written in the form p(x)er,. In what follows, we show that Fk contains
a non-trivial element written in the form p(x)er. Assume secondly that
in the expression of the above u there is r such that qr Φ 0. In this
case we may assume px = = pt = 0 by applying ad (hr). On the other
hand, ad (er,)u — Σ r e Δ qr(x)£r,r>er+r', where εrtT, Φ 0 if and only if r + r ' 6 Δ

or = 0. (We use the convension e0 = ±hr.) Since 2r 'gJ, the number of
non-zero terms of ad (er,)u can be reduced by one by a suitable choice
of r'. Now, applying ad (hr) for some r, we may assume that the e0-
components are zero. We repeat the above procedure for an appropriately
chosen series of ad (βri), ad (hr2), ad (er8), . Then, consequently, we have
that there exists a non-trivial element ueFk written in the form p(x)er.

Since {Xu(xH), uβQ} spans the tangent space of G/H at xH, we get
a non-trivial element x3 er for some j by applying XUl, XU2, (W; e g)
repeatedly.

Since xάer e Fγ and [Fo, FJ = Fι because of semi-simplicity, we get
x3hr, xάe_r e F1 and hence x)er, x)hr9 x)e__r 6 Fk for every fc ^ 1.

Let VSQ be an element such that Xυ(xH) = (d/dxj). Then
ad (x^ r)X(cφ r) = ±& aj*er. On the other hand, ad (xjhr)Xv: F^> F is a
bounded operator, and hence we get a contradiction.

Since xHeG/H is arbitrary, the above lemma shows that σπ(w),
w en, must be a locally constant section of V/Vo. Hence we have
dim<jπ(tt)< oo. This complete the proof of Proposition 3.1 and hence
Theorem C in the introduction. Moreover, the above argument shows
also that the transition function of V/Vo must be reduced to a discrete
group.

4° B-triple systems and examples. In this section, we shall give
several examples of Banach-Lie groups acting effectively, smoothly and
transitively on finite dimensional manifolds. Taking Corollary 2.7 into
account, we call {G, H, K) a B-triple system, if G is a connected Banach-
Lie group and H, K are finite codimensional closed and connected Banach-
Lie subgroup such that H^K and N — OgeβgHg"1, N' = ^^nhKh'1

are finite codimensional Banach-Lie subgroups of G. A B-triple system
is an AS-triple system in the previous section. A .B-triple system
{G, H, K} will be called to be finite type, if N" = ΠgeβgKg"1 is a finite co-
dimensional Banach-Lie subgroup of G. Obviously, N" = Γ\geGg(NΠ N')g~\
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If J\Γ" = {β}, then {G, H, K} will be called effective.
Let {G, H, K) be a 2?-triple system. Then, G acts smoothly and

transitively on G/K. By Corollary 2.8, G/K is a connected manifold.
Moreover G acts as fibre preserving diffeomorphisms of a smooth fibre
bundle {G/K; H/K, G/H} with the fibre H/K and the base space G/H.
The normal subgroup N acts as diffeomorphisms leaving each fibre in-
variant, and g(N (Ί N^g'1 is a finite codimensional normal Banach-Lie
subgroup of N acting trivially on the fibre gH/K of the bundle.

The kernel of the action of G on G/K is given by N". Hence, GjN"
is a Banach-Lie group with the Lie algebra g/n", where n" = p | Ad (g)l
and ϊ is the Lie algebra of K (cf. Proposition 1.1 and Remark 2). There-
fore {G/N", H/N", KjN"} is an effective ^-triple system.

Let {G,H,K} be a JS-triple system. Note that g(NnNf)g~1 =
gh(N Π Nr)h~ιg~ι for any ft e H, hence the group N/g(N Π JV')̂ ""1 depends
only on the point gHeG/H. Let ^ be the disjoint union
ΌgHeσ/iiNlgiNpiN^g-1. Then, ^ is a smooth fibre bundle over G/H
with the fibre N/N Π N' and the automorphism group of N/N Π AT7 as
the transition functions. Each fibre of J^~ is a finite dimensional Lie
group.

LEMMA 4.1. Let ά^ x G/K be the fibrewise product of &~ and the
bundle {G/K; H/K, G/H}. Then there is a smooth fibre preserving map-
ping p of J^ x G/K onto G/K such that p gives the canonical group
action on each fibre.

PROOF. Let ngίNnN^g'1 be a point of the fibre of ^ at gHe
G/H, and let ghK be a point of the fibre of G/K at gHeG/H. We define
p(ng(Nf\ N')g~\ ghK) = ng{Nΐ\N')g-γghK = nghK = gnfhK, nf = g~}nge
NdH. It is easy to see that p is a smooth action of N/g(Nf] N^g"1

on gH/K and hence p is smooth.

LEMMA 4.2. Let Γ{^) be the space of all smooth sections of
Then, by the fibrewise product Γ(^~) is an infinite dimensional group.
There is a homomorphism σ of N into Γ(J^~) such that the kernel N"
of σ is given by Γ\geG g(N Γ) N')g~\

PROOF. The first statement is easy to prove. For an element neN,
ng(N Π N^g'1 can be regarded as an element of N/g(N Π Nf)g~\ Hence
n defines a smooth section σ(n) of ^ such that σ(n)(gH) = ng(Nf) N')g~\
Obviously σ(n) = e if and only if neN".

LEMMA 4.3. There is a homomorphism Λ of G into the group of
automorphism of Γ{^) such that Λ(g)σ(ri) = σ{gng~r) for any neN.
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PROOF. Let / be a section of ^ 7 For every point xHeG/H, f(xH)
is an element of N/x(Nf] N')x~\ So, we write f(xH) = f(xH)x(NΓ\ N')x~\
f(xH)eN. Define Λ(g)f by (A(g)f)(yH) = gf(g'1yH)g"1y(N (\ N')y~\ In
particular, (Λ(g)σ(n))(yH) = gng~xy(N Γ\ N')y~ι = σ(gng~1)(yH). It is easy
to see that Λ(##') = Λ(#) Λ(#') and Λ(g) is an automorphism.

Let π, tt' be the Lie algebras of N, N' respectively. Let V be the vector
bundle over G/H defined by the disjoint union \JgHeG/H^/Aά(g)(nf]xtf)
and Γ(V) the space of all smooth sections of V (cf. the previous section).
Each fibre of V is the Lie algebra of the fibre of ^ at the same base
point, and Γ(V) is a Lie algebra by the fibrewise Lie bracket product.
We define the exponential mapping exp: Γ(V)v-+Γ(^r) by (ex$f)(xH) =
ex$f(xH), feΓ(V). The mapping σ defined in the previous section is
related to a as follows:

(11) σ(w)(xH) = (d/dt) |ί=0^(exp tw){xH) ,

where exp in the right hand member is the exponential mapping of tt
into N. σ: tt f—> Γ( V) is a Lie homomorphism and the kernel tt" of σ is
given by Γ\geG Ad(gr)(π Π tt'). Moreover, we have exp σ(w) = (j(exp w),
w en.

For every geG, define a mapping λ(#): Γ(F) H + Γ ( F ) by

(12) (X(g)w)(xH) = (d/dt)\tUΛ(g) exp tw)(xH) , iϋeΓ(V) , xHeG/H .

Then, λ(gr) is an isomorphism of the Lie algebra Γ(V) onto itself. For
every ueg (the Lie algebra of G), define a mapping a(u): Γ(V)\-+Γ(V) by

(13) (a(u)w)(xH) = (d/dt) |ί=o(λ(exp tu)w)(xH) .

a(u) is then a derivation of Γ(V).

LEMMA 4.4. Notations being as above, we have the following iden-
tities'.

(a) X(g)σ(v) = <j(Ad (g)v), ven, geG.
(b) a(u)σ(v) = σ(ad(w)t;), ^6tt, i^eg, t̂ fcere ad(^)v = [u, v].

PROOF. Since Ad (g)n = π, the right hand member of (a) is will-
defined. By Lemma 4.3 and (11), we have

X(g)σ(v) = (d/dt) \t=0Λ(g)σ(exp tv) = (d/dt) \t=oσ(g exp tv g~ι)

= (d/dt) |f=otf(exp t Ad (fir)v) - σ(Ad (g)v) .

Taking the derivative of (a), we have a(u)σ(v) = (d/dt)\t=oσ(Ad(exptu)v).
Since w~*σ(w)(xH) is a continuous linear mapping of tt into tt/Ad (x)(n Π tt'))>
we have (d/dt) | ίβOί(Ad (exp ίM)ι;)(α?jgr) = σ((d/dt)|t=s0 Ad (ex? tu)v)(xH) =
σ(ad (w)v)(a?JT). Thus, we get the identity (b).
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LEMMA 4.5. For any UGQ, a(u): Γ(V) ι-> Γ{V) is a differential
operator of order at most one. If a(u): Γ{V) H+ Γ(V) is of order 0,
then uexx.

PROOF. This is done by an essentially same computation as in the
proof of Lemma 3.3. Here we shall do it by using an arbitrarily fixed
C°°-connection on V. Let xH be an arbitrary point of G/H. The fibre
of V at xH is given by n/Ad (x)(n Π «')• By Hahn-Banach theorem, there
is a finite dimensional linear subspace m of π such that rt = tn 0
Ad(x)(tt Π Tt'). m can be identified (as a linear space) with the fibre of
V at xH.

For any weg, (exp — su)xH (se[0, oo)) is a smooth curve in G/H.
Let τt be the parallel displacement along the above curve from the point
(exp — tu)xH to xH. For any vem, π8{v) is an element of the fiber of
V at (exp — su)xH defined by v + Ad ((exp — su)x)(n Π π') We set
A(s)v = τ8π8v. Then, A(s): m π m is a linear mapping such that A(0) = I,
and hence a linear isomorphism for sufficiently small s.

Let iJ e Γ ( F ) . We set w(s) = Aisy'τ.wdex^ - su)xH). Note that
7rsw(s) = ^((exp — su)xH). Now, we have

(a(u)w)(xH) = (d/cίs)|s=o(λ(expst6)^)(^ίiΓ)

= (9/9«) |.=o(9/3t) l*=o(̂ (exp βw) exp tw)(xH)

= (9/3s) |,=0(9/9ί) l*=o exp su exp tίe;((exp — su)xH) exp — su

= (3/9«) |,=o(9/9ί) | ί = 0 exp s^ exp £w(s) exp — su x(N Π N^x'1

= (d/ds) |8==0ί7(Ad (exp su)w(s))(xiϊ)

= σ(|>, w(0)]) + (d/dβJl^oilίβJ-V.wKexp - sn)xH)

= σ([u, w(xH)]) - ((d/ds)UA(s))w(xH)

+ (F/ds)|g=oίί;((exp — su)xH) ,

where F/ds means the covariant derivative.
The last term contains a differentiation. If a(u) is of order 0, then

the last term must be zero for all weΓ(V). Thus, (exp — su)xH = xH
and hence exp su e Γ\xeG xHx~\ Therefore, u e ΠxeG Ad (a?)Jj = tt. The
converse is of course true.

PROPOSITION 4.6. Suppose {G, H, K) is a B-triple system such that
G/H is compact. Then, {(?, H, K) is of finite type.

PROOF. Let {ulf , ffi,} be a basis of β/n. Every S, can be regarded
as a smooth vector field on G/H. Since G/N acts transitively on G/H,
{u^yH), •••, Uι(yH)} spans the tangent space of G/H at every yHeG/H.
Let it* be an element of g such that ut + π = ut. Consider the differential
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operator D = ΣLi «(^)2: Γ(V) H-> Γ(7) .
We fix an arbitrary riemannian structure on M = G/iϊ and on the

bundle F. First of all, we shall prove that σ(D) — σ(D*) and Z> is a
strongly elliptic differential operator of order 2.

Let (ylf , yn) be a local coordinate system on G/H. Taking a local
trivialization, w can be written as an m-tuple of smooth functions

(®ι(tfi, , Vn)f ' , $„(#!, , 2/J, , wm(yl9 , yn))

m = dim n/n Π tt'.
Let Σ?=i -Xyίδ/δtft) t>e the local expression of the vector field %.

Then, by Lemma 4.5, Dw = ((Dw\, •••, (Dϊΰ)a, •••, (Dw)m) is written in
the form

(14) (Z)w)β = Σ Σ X>X)(d2ldyadyh)wa + lower order terms.

Thus, the symbol σ(D) is given by σ(D)ξ = Σί=i if{v>5{yH))}2I, where f
is a cotagent vector at 2/iϊ 6 G/H and /: F f-> V is the identity mapping.
Therefore we see σ(D) = σ(D*). Since G/iϊ is assumed to be compact,
there is a positive constant c such that Σ;=i {ζ(uά(yH))}2 ^ c | ί |2 for any
yHeG/H hence Z) is strongly elliptic.

Thus, by Proposition 2.3 and by the same reasoning as in 2°, we get
that dimσ(tι) < oo. The kernel n" of σ is given by Π*eί? Ad(aj)(n Π n')

COROLLARY 4.7. The conclusion (1) of Corollary 2.7 can be replaced
that Gt+JGi are non-compact manifold for i ^ 1.

In what follows we shall give several examples of effective J5-triple
systems.

Let G be a Banach-Lie group, possibly finite dimensional, and Go a
finite codimensional closed Banach-Lie subgroup of G. Let E be an
infinite dimensional Banach space and / a smooth representation of G on
E, where "smooth" means that the mapping /: G x E-+E, (g, u) —> f(g)u,
is smooth. By Lemma 1.3.4 [17], / is a smooth mapping of G into
GL(E). We assume the following property:

(P) ΓϊgεGgGoQ"1 = {«} and there exists a finite codimensional f(G0)-
invariant closed subspaces Eo of E such that C\geGf(Q)EQ ~ {0}.

Define the semi-direct product G°E as follows: For (#, w), (h,v)e
G x E, define a multiplication by (#, %) o (h, v) = (flrfc, u + f(g)v). This
makes G°E & Banach-Lie group. Similarly, G Q 0 ^ and G0°E0 are closed
finite codimensional Banach-Lie subgroups of G°E. It is easy to see
that ( f t 0) o (fc, V) o (0-1, 0) = toftr1, f(g)v). Hence {G o ^, Go o £;, Go o Eo} is
an effective B-triple system. Therefore, G<>E acts effectively, smoothly
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on G/Go x E/Eo.
Let g, g0 be the Lie algebras of G, Go respectively. Let / ' be the

Lie homomorphism of g into QΪ(E) induced from /. Then, the Lie algebra
of GoE is Q@E with the bracket product [(ί, u), (ί', v)] = ([ί, f], f'(t)v -
f{t')u). By the assumption (P), we have f\QQ)EoczEo and EQ contains
no non-trivial /'(g)-invariant subspace. It is clear that the condition
(ΛgsofiώEo = {0} is equivalent with that Eo contains no non-trivial /'(g)-
invariant subspace.

EXAMPLE 1. G = the additive group of the complex 2-plane C\
GQ = {e} and E is the Hubert space given by the double infinite series
u = Σ£=_oo anen such that Σ*=-oo I an |

2 < oo, an e C. Let Eo = {ue E; aQ = 0}.
Consider the bilateral shift σ:E->E, σ(en) = en+ι. Define a representation
/: C2 H> GL(£7) by /(ί, ί') - exp (ίσ + t'σ'1). It is easy to see that there
is no {σ, σ^J-invariant subspace in Eo, and hence Γ\te
Thus, {C^ol?, E, Eo} is an effective 5-triple system.

EXAMPLE 2. G = C (additive), GQ = {e}, £/ = {M(S) = ΣΓ=o α»«"; αn ̂  C>
Σ«=o |α% |2(^!)2 < co}. The representation / of C on J5 is given by
(f(t)u)(z) = u(z + t). Since /'(I) = (d/dz)u, it is clear that \\f'(l)u\\ ^
INI, where | N | 2 - Σ ^ U K I W ) 2 and /(t) = expί/'(l). Let EQ = { ί teί ;
α0 — 0}. Then there is no non-trivial /'(l)-invariant subspace in Eo, and
hence {CoE, E, Eo} is an effective 5-triple system.

EXAMPLE 3. g = {Σ?=i ^(d/dx,) + Σ;<* bjx^d/dx,); ai9 b) e C}, g0 =
{Σ,j<i^(d/dxi);bi

jeC}2inάE={u^Σ,\ai^Aax
a;AaeC

oo}, where a = (αx at αΛ), ίcα = α??1 ?̂2 xln. Then, E is a Banach
space on which the nilpotent Lie algebra g acts by the usual way.
Obviously, g is a subalgebra of the Lie algebra gϊ(JS?) of the bounded
linear operators. Let EQ = {u e E; Ao = 0}. Eo is a go-invariant subspace
of E and Eo contains no non-trivial g-invariant subspace. Let G and Go

be the Lie group generated by g, g0 respectively. Then, {G°E, G0°E, G0°E0)
is an effective B-triple system.

EXAMPLE 4. g = {a(d/dx) + b(x(d/dx) - (d/dy)); a, beC}, g0 = {0}, E =
{/(», V) = JM-OUVW/M = Σ ^ o α i r , α eC, Σ t o Σ - o |αl|2(τι!)2 < oo} and
•Bo — {fsEy ô = 0}. Then, gcgϊ(£/) and J50 contains no non-trivial g-
invariant subspace. g is a two dimensional solvable Lie algebra. Let
G be the group generated by g. Then, {G © E, E, Eo} is an effective B-
triple system.

REMARK. By the remark of p. 336 of [9], djdx E^E must be
nilpotent. Therefore the finiteness of JV is necessary in this case.
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5° Appendix. Let £ be a C^-complex, finite dimensional vector
bundle over a closed C°°-(real) riemannian manifold M and Γ(E) the space
of the C°°-sections of E with the C^-topology. For u, veΓ(E), the nota-
tion (u, v)0 means the hermitian inner product given by

(1) (n, v)0 = I (u(x), v(x))dμ(x) ,
JM

where dμ{x) is a C°°-volume element on M and (u(x), v(x)) means the
hermitian inner product of tίie fiber of E.

Suppose we have a differential operator D of Γ(E) into itself. Let
D* be the formal adjoint operator of D, namely the differential operator
satisfying (Du, v)0 = {u, D*v)Q for any u, veΓ(E). A complex number
λ is called an eigenvalue of D, if there is ueΓ(E), u Φ 0, such that
Du = \u. The generalized eigenspace Eλ of the eigenvalue λ is the
linear space of the elements veΓ(E) such that (D — X)mv = 0 for some
positive integer m. Obviously, DEλaEλ.

The goal of this section is the following:

PROPOSITION 5.1. Let D: Γ(E) (-> Γ(E) be a differential operator of
order 2. Suppose the symbol σ(D) satisfies σ(D) = σ(JD*) and that there
is a positive constant c such that ((σ(D)ξ — c\ξ\2)X, X) 2> 0 for any
element XeE and any cotangent vector ζeT*M} ξφO with the same
base point of X, i.e. 0(D)ζ — c\ξ\2 is positive semi-definite. Then, there
are countably many eigenvalues {λJΛ=1)2,... such that lim^ooReλ^^ oo,
dim Eχn < co and the generalized eigenspaces are complete in Γ(E), i.e.
ΣSUΘ-E^ is dense in Γ(E). Moreover, setting JK = (Σten® Eh)~,
we have f\ ^l = {0}.

The above proposition is well-known if D = D* or ikf is a bounded
domain of a euclidean space Rn (cf. [1] and [5, p. 1746]). Moreover,
since M has no boundary, the proof is much easier and straightforward
application of standard results of functional analysis. Indeed, the above
fact is well-known for the people who are familiar to both functional
analysis and differential grometry. Thus, in this section we will give
only a rough sketch of the proof.

We denote by V the riemannian connection on E. For any u, ve
Γ(E), define a hermitian inner product (u, v}k by

( 2 ) (u, v)k = Σ ( <(V8u)(x), (V°v)(x))dμ(x) ,
β=0 JΛf

where (Vsu)(x) means the s-times covariant differentiation of u at x e M.
Denote by Γ\E) the completion of Γ(E) by the norm \\u\\k = (u, u))!2.
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Thus, we get a series of separable Hubert spaces

( 3 ) Γ°(E)r)Γ1(E)-=> -=>Γk(E)z)Γk

Obviously, Γk+\E) is dense in Γk(E), and by Rellich's theorem combined
with partition of unity, the inclusions Γk+\E) c Γ\E) are compact op-
erators. The well-known Sobolev's lemma is stated as follows in our
situation:

LEMMA 5.2 (Sobolev). Let n = dim M. If k = [w/2] + 1 + r, then
Γk(E) can be regarded as a subspace of Γr{E)f the space of all ^-sec-
tions of E with the Cr-topology. Moreover the inclusion is bounded.

COROLLARY 5.3. If I ^ [n/2] + 1, then the inclusions Γk+ι c Γk are
of Hilbert-Schmidt class for every k.

PROOF. For every v e Γk+ι(E), we have v e Γ\E) by Sobolev's lemma.
Thus, for an element XseE®T*M® -- _(g) Γ*M with a base point

s
x 6 M, the mapping v —• <(Vs?;)(α0, Xs> is a bounded linear mapping of
Γk+ι(E) into C for every s <̂  &. By Riesz's theorem, there is an element
<ps(x, X8)eΓk+\E) such that <(Vsv)(x), Xs) = <v, 9?.(a?, Xs)>fc+Z. Since (Vt;)(aO
is continuous in x, \ ((ysv)(x), Xs) \ is bounded if Xs is restricted in the
unit sphere bundle of JS7(g) Γ*ikf (g) (x)T*Λf. Therefore, by the re-
sonance theorem ([21, p. 69]) there exists a finite constant Ks such that
\\φa(x, -SL,)||*+Ϊ ^ ^ s for each xeM and X s in the unit sphere bundle.

Let /„ , fm be an orthonormal basis of Ex (g) TX*M (g) (x) T/ikf.
Then I (Vv)(a?) |2 = ΣΓ=i <(Vsi;)(x), / ^ ^ Σ t i <v, 9.(aJ, f,))Uι. Now, if {eΛ}Λ==1,a...
is a complete orthonormal basis of Γk+ι(E), then

(4) ΣlkJll =

= Σ Σ Σ \ <en, φ.(x, ft)>l+ιdμ(x)

>*(x, mUidμix)
s = 0 i = l JM

k m
<^ V V IT

β=o <

This implies that the inclusion Γk+ι(E) d Γ\E) is of Hilbert-Schmidt class.
Now, let L: Γ{E) ι-> Γ(E) be a differential operator of order 2 such

that the symbol σ(L) satisfies \σ(L)ξ\ ^ c\ξ|2 (elliptic) for any feΓ*ikί
(c > 0). By Garding's inequality, we have

( 5 ) \\Lu\\k ^ (c/2)|N| f c + 2 - Dk\\u\\k+1 , ueΓ(E), k ^ 0 ,
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where c is the some constant as above and Dk is a positive constant de-
pending on k.

Let Γ"\E) be the dual space of Γ\E). Then, it is easy to see that
Γ\E)aΓ\E)ciΓ-\E) and Γ(E) is dense in Γ~\E). The differential
operator L can be extended to an operator L_x defined on some domain
^(L_ t ) into Γ'\E)9 where in fact ^(L^) DΓ\E). The following regu-
larlity lemma shows that the spactum of L does not depend on k.

LEMMA 5.4. If there is a complex number z0 such that the resolvent
R(z0, L_0 induces an isomorphism of Γ~\E) onto Γ\E), then any re-
solvent R(z, L_J induces an isomorphism of Γk~\E) onto Γk+1(E) for
every k Ξ> 0. The spectral set of L^ consists of point spectra and the
generalized eigenspaces Eλ of L-λ are contained in Γ(E). There are
countably many point spectra (eigenvalues) {Xn} of L^ such that
limn->oo IλwI = oo, and if Σ φ ί / ^ is dense in Γ~\E), then so also is in
Γ(E).

PROOF. By the assumption, L — zol: Γ(E) ι-» Γ(E) can be extended
to an isomorphism of Γ\E) onto Γ~\E). Since the inclusion Γ\E)c
Γ\E) is compact, the resolvent R(zQ, L^): Γ~\E) h-> Γ~\E) is a compact
operator. Hence the spectral set consists of countably many point
spectra {λj such that lim,^ | Xn \ = °o and dim Eλn < °o.

Let p(L^) be the resolvent set of L_lβ Since a resolvent R(z, A) of
A = R(zQ, L-i) is an isomorphism of Γ~\E) onto itself, AR(z, A): Γ~1\->Γ1

is an isomorphism. On the other hand, using the identity

zl - A = (zA"1 - I)A - z{(z0 - (l/z))I - L_JA ,

we have AR(z, A) = (l/z)R(z0 - 1/z, L_x). Thus, z0 - l/zep(L^) if and
only if zep(A), and R(zQ — 1/z, L_x): Γ\E)\-+ Γ\E) is an isomorphism.
By the inequality (5), if {(L — zl)un) and {un} ane Cauchy sequences in
Γ\E) and Γk+\E) respectively, then {un} is a Cauchy sequence in Γk+2(E).
Therefore by induction we get R(z, L_x) induces an isomorphism of
Γk~\E) onto Γk+\E) for every k ^ 0, zep(L^).

Since dim£ r ^<oo, we have R(z9 L^)kEXn = Eλn for any zeρ(L^)
and & ̂  0. Since 22(s, L-i)^, c Γ2*"1, we get jE7;π c Γ{E). All others are
easy to prove.

By the above lemma, we have only to consider the operator L_x for
the proof of Proposition 5.1. The following reduces the problem to
Hilbert-Schmidt class.

LEMMA 5.5. Notations and assumptions being as above, if the
generalised eigenspaces of Lm are complete in Γ(E) for some positive
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integer m, then the generalized eigenspaces of L are complete in Γ(E).

PROOF. By the spectral mapping theorem ([5] p. 604), we have
σ(L-±) = α^L-i)1, where σ(L) means the spectral set of L. For any
λ e C — {0}, we denote by Eλ, Fλ the generalized eigenspaces of L-lf L_x

respectively. As a matter of course Eλ = {0} if λ g σ(L_i). Now for the
proof, it is enough to show that Fλm = Eωiλ © Eω%λ © 0 EWmX, where
β>i> •••, ̂>m are the m-th roots of unity. Let v0 = dim FXm. vn is finite
because Lm is elliptic.

Note that L™ - XmI = ΠϊLi (£-i - ω Λ J ) Let p^β) = ΐ[iΦj (z - ω^f0.
Since there is no common zero of pλ{z), •••, pm{z), there are polynomials
qό(z) such that l = Σ* Qt(z)Pt(z) Therefore u = Σ q^L-^p^L^u for any
ueΓ(E). Set M< = g<(L_ι)p<(L_1)tt. It is easy to check that ueFλm if
and only if wt e # ω .λ. This implies F ί m = £7^ 0 £7ω2ί © φ EΦmλ.

PROOF OF THE FIRST HALF OF PROPOSITION 5.1. Set H = (D + D*)/2.
Then, i ϊ is an elliptic hermitian operator. By the assumption, we get
the following using Garding's inequality:

( 6 ) c ' Ί N I ϊ - D"\\u\\l ^ (Hu, u\ ^ c'\\u\\l + D'\\u\\l, ueΓ(E) .

Thus, by Friedricks extension theorem, there is a positive constant a
such that H + α/: .Γ(ii7) H^ /7(£r) can be extended to an isomorphism of
Γ\E) onto Γ~\E) and c^lNlli ^ <(# + αl)w, u>0 ^ cWu]], for some posi-
tive constant c: Namely ((H + al)uf u)0 gives an hermitian inner prod-
uct which is equivalent with < , X

By Lemma 5.4, the resolvent R(z, flLJ induces an isomorphism of
Γk~\E) onto Γk+\E) for every k ^ 0. Since <jBΓw, u>0 is real, the re-
solvent R(a, Ho): Γ\E) h- Γ°(J5) is self-adjoint, where Ho: &(H0) = Γ 2 ^ ) H>
Γ°(JS) is the Friedrichs extension of H. Therefore, σ(H0) a{x > — α}
and the eigenspaces of H is complete in Γ(E). R(a, Ho) is also the
restriction of R(a, flLi).

On the other hand, D: Γ(E) H> Γ(£r) can be extended to bounded
linear operator Do: Γ\E) ι-> Γ\E).

LEMMA 5.6. Every resolvent R(z, Do): Γ\E) \-+ Γ\E) induces an iso-
morphism of Γ\E) onto Γk+\E) for any k ^ 0, and on any ray
{reid; r ^ 0} with a fixed θ such that eiθ Φ ± 1 , R(zf Do) exists and satisfies
\R(z, Do)\\o ̂  CΘ(1/Z), z = reiθ, for sufficiently large r.

PROOF. Set D = H + A. Then A is a differential operator of order ^ 1
and A can be extended to a bounded linear operator Ao of ΓXJE') into
Γ\E). Since jff0 self-adjoint, we get \\R(z, jffo)||o^l/lm 2. Since there is a
positive constant C such that
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we have

for any ε > 0. Thus, we get

\\A0R(z, H0)u\\0 ^ {ε + ( e α + e\z\ + G/2e)(l/\z\ s m θ ) } \ \ u \ \ Q

Therefore, if z is on a ray {reiθ; r ^ 0} with eiθ Φ ± 1 , then

\\A,R{z, HQ)\\0 £ {6(1 + l/sin0) + ((l/|s|). (l/sin0))(eα + C/2ε)} .

Take ε so that it may satisfy ε(l + 1/sin θ) < 1/2. Then for sufficiently
large z on the ray we have || AQR(z, Ho)\\o < 1 and there is a constant
Kθ such that | | ( I - Aoi2(z, flo))"Ίlo ̂  -K*. Thus, we get the existence of
R(z, Do) for such z and \\R(z, A) Ho ̂  (l/laφC* by using the identity

zI-DQ = (I- A0R(z, Ho))(zl - Ho) , * έ σ(£Γ0) .

Moreover, since (/ — Aoi2( ,̂ HQ))'1 is an isomorphism of Γ\E) onto
itself, we see that R(z, Do) induces an isomorphism of Γ\E) onto Γ\E).
Thus, by the same reasoning as in Lemma 5.4, we have that every re-
solvent induces an isomorphism of Γ\E) onto Γk+\E) for every k >̂ 0.

Now, by Corollary 5.3 and the equality R(zm, Am) = IΪΓ=i #(z<^, A),
there is a positive integer m such that the resolvent R(z, Do

m) of D™ is
of Hilbert-Schmidt class. By Lemma 5.6, we see that ||22(ί3, D*)||o ^
(l/\z\)Kθ for sufficiently large z on every ray such that eimθ Φ 1, where
Kθ is a constant depending on θ.

Using the resolvent equation ([5] p. 600) and applying the com-
pleteness theorem ([5] p. 1041), we get the generalized eigenspaces are
complete in Γ\E), and hence in Γ(E) by Lemma 5.4. (See also the
proof of the next corollary.)

Let {λjn=1>2,... be the eigenvalues of D. By the compactness of the
resolvent, we see that lim \Xn\ — oo. However, since |argXn\ < π/4 for
sufficiently large n, we see that lim Re λΛ = °o. This complete the proof
of the first half of Proposition 1.1.

The second half is given by the following:

COROLLARY 1.7. Let {λΛ}%=1)2>... be the eigenvalues of D such that
| λ j ^ |λ2 | ^ •••. Let ^ n be the closure of Σ ϊ U θ ^ ^ Γ(β). Then,
Γ(E) = Eλl® Eh® φ #v_,0 ^ for any n^l, and flS

PROOF. Let a be a complex number such that the resolvent R(a, Do)
exists. We set A = — R(a, DQ), and μn = (Xn — a)~\ By the resolvent
equation —R(μ~ι+a, D0) = μ2R(μ, A) — μI, we have easily that {μn}n=U2,...Ό
{0} is the spectral set of A. Let E'μ be the generalized eigenspace of
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A of eigenvalue μn. Then, plainly, Eμn = Eλn.
Let cn (resp. c'n) be a smooth simply closed curve in C such that the

interior of cn (resp. c'n) contains the eigenvalue μΛ (resp. the eigenvalues

{ft}***). We set εn = (l/2πi) f i2(s, A)dz, ei = (l/2πi) f i2(z, A)<Zz. Then,

by Theorem 10 [5] p. 568, we have ε2

n = εn, e» = e'n9 εnεm = ewεΛ = 0
O =s£ m), sUy = ε X = 0 (j < n) and εx + ε2 + + εn^ + ε'n = I. Note
that εnΓ\E) = ̂ w = £7^. Hence, we get Γ\E) = Eh@Eh@ . . . © ^ . ^ φ

Since A"1 induces an isomorphism of Γk+\E) onto Γ\E) for any
& ̂  0 and the spectral set does not depend on k, εn and ε'n are also
projection operators on Γ\E) for all k. Thus, we get Γ\E) = J5^φ 0
Ex^θε'nΓKE) for every fc, and hence Γ(^) = ̂ φ φ ^ θ O T ) .
Remark that ε'nΓ(E) is A-invariant and hence 2)-invariant. Consider
the restriction D: ε'nΓ(E) i-> ε'nΓ{E). Then, applying the first half of Prop-
osition 5.1, we have that ε'nΓ{E) is the closure of Σ ^ θ ^ v becuase
the same estimate of the resolvent holds for the restricted operator.

Let ^~» be the closure of ^l in Γ°(E). We have only to show
that Π <^~% = {0} Moreover, it is enough to show the desired one for
the Hilbert-Schmidt operator Am, because the relation of generalized
eigenspaces of Lϋx and L-λ given in the proof of Lemma 5.5 holds by
replacing L_x by A. Thus, we consider the Hilbert-Schmidt operator Am

in what follows.
Let N = Γl ̂ 'n and B= Am\N. Then, B: N^N is a quasi-nilpotent

Hilbert-Schmidt operator. Since the same estimate holds for the resolvent
of the restricted operator B, we have that \\R(z, B)\\ = O(\z\~ι) for
sufficiently small z on any ray {reiθ; r ^ 0} with eimθ Φ 1. Thus, by
Phragmen-Lindelof's theorem, zR(z, B)u is a Γ°(£')-valued entire func-
tion. Hence by Liouville's theorem, \\zR(z, B)u\\Q is constant. Using
Schwarz's theorem, we get R(z, B)u = v/z, v e N.

On the other hand, if z is sufficiently large, then by Neumann series,
R(z, B) = I/« + B/z2 + J52/z3 + . Therefore, we get Bu = 0. Since %
is an arbitrary element of N, we have AmN = {0}. Thus, N = 0 because
otherwise (Do —

 aI)m can not be defined as an operator.
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