
Tόhoku Math. Journ.
30(1978), 177-210.
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(Complex structures on the products of generalized Brieskorn manifolds)
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This paper is the continuation of our previous paper under the same
title [2], which we refer to as Part I. In Part I, we studied contact
structures on the generalized Brieskorn manifolds as a generalization of
the connection form of the Hopf fibration. Our objective in this paper
is to study complex structures on the products of generalized Brieskorn
manifolds. These complex structures may be considered as a generalization
of the Calabi-Eckmann complex structures [6]. Therefore, we are parti-
cularly interested in studying those aspects of the complex manifolds
which Calabi and Eckmann studied on the products of odd dimensional
spheres. In fact, we show that our complex manifolds possess properties
analogous to the Calabi-Eckmann manifolds.

Let Σί and Σ2 be generalized Brieskorn manifolds; see Part I for the
definition and examples. First we show that Σ1 x Σ2 admits a complex
structure which is intimately related to the normal contact structures
on Σx and Σ2. It is then shown that this complex structure admits no
Kahlerian structure and that Σ1 x Σ2 is the total space of a holomorphic
fibration on a complex analytic space Bx x B2. This fibration, unlike the
Calabi-Eckmann case, is not necessarily a fiber bundle; however, the fibers
are elliptic curves. Our first main result is that any analytic sub variety
of Σt x Σ2 has the induced fibration over a complex analytic space. In
particular, the fibers are the only irreducible analytic subvarieties of
dimension 1; hence, they have no singular point. Earlier, Calabi and
Eckmann have shown that their complex manifolds possess the same
property [6]. However, their proof does not apply to our case directly,
for Σγ x Σ2 may have non-vanishing middle homology and B1 x B2 may
not admit a projective imbedding.

Next, we show that many of the Σ1 x Σ2s admit infinitely many
seemingly different complex structures. Indeed, many such examples are
constructed. After introducing a criterion to distinguish these complex
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structures, we show that Σι x Σ2 admits infinitely many distinct complex
structures if either Σ1 or Σ2 is a Brieskorn sphere (exotic or standard) or
a generalized lens space. It is also shown that S1 x S2 x x S4fc-1

admits infinitely many distinct complex structures.
Some observations are made concerning the automorphisms of Σx x Σ2.

For instance, we show that the set of infinitesimal automorphisms of
Σλ x Σ2 which keep the fiber fixed is isomorphic to C (over C). We also
mention the vanishing of the Ghern numbers on Σι x Σ2.

In concluding this introduction, we point out that the above classifi-
cation of complex structures is still crude, and we hope that a more precise
classification can be made in the near future. It also seems quite reasonable
that some kind of classification can be made by means of deformation.
Fortunately, the fundamental machinery of deformation is available. In
fact, Morita [20] has recently given a classification of complex structures
on S1 x Σ in terms of the homotopy of the underlying almost complex
structures, where Σ is a Brieskorn sphere.

Finally, we thank J. Erbacher for our discussions with him during
his stay at Connecticut. We also thank Professor S. Sasaki for reading
this manuscript.

Complex structures on products of generalized Brieskorn manifolds.
In the proof of Theorem 2 in Part I, we showed that the contact structure
on a generalized Brieskorn manifold Σ is normal, i.e., the torsion tensor
of that contact structure [X, Y] + φ[φX, Y] + φ[X, φY] - [φXf φY] -
{Xη(Y) — Yη(X))ζ = 0 everywhere, where φ is the (1,1) tensor of the
associated almost contact Riemannian structure. Making use of this fact,
we show the following theorem.

THEOREM 1. Let Σ1 and Σ2 be two generalized Brieskorn manifolds.
Then Σ1 x Σ2 admits a complex structure, and also 2\ x Sι admits a
complex structure.

PROOF. Here we assume that Σx and Σ2 are the intersection of given
varieties and the unit sphere. We do not lose any generality by assuming
so by Theorem 3 in Part I. It is well known by a theorem of Newlander-
Nirenberg [22] that an almost complex structure J on a smooth manifold
is a complex structure if and only if its torsion TJ(X, Y) = [X, Y] +
J[JX, Y] + J[X, JY] - [JX, JY] = 0. Now let ηx and η2 be the normal
contact structures on Σ1 and Σ2, respectively. Let (φlf ξlf ηύ and (φ2, fa, η2)
be the associated almost contact structures on Σ1 and Σ2f respectively.
Let TΣt and TΣ2 be the tangent bundles of Σλ and Σ2, respectively. Then
the tangent bundle T(Σ1 x Σ2) of Σt x Σ2 can be naturally represented
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by the exterior direct sum of TΣt and TΣ2, which we will denote by
TΣλ φ TΣ2. Then any tangent vector X of Σ1 x Σ2 can be written uniquely
as X = X1 0 X2 where JŜ  and X2 are the TΣt and jΓ2Vcomponents of
X, respectively. Now making use of φλ and φ2, we define an almost
complex structure / on Σt x Σ2 as follows.

JX = faXt - η2{X2)ξx) © (&X2 +

Then, we have

J*X = J[{^X, - η2(X2)Q 0 (φ2X2 + η

ηι(Xι)ξt)ξι}

Hence, J2 is an almost complex structure.
The rest of the proof follows from the argument of Morimoto [19].

q.e.d.

The theorem follows immediately from Theorem 2 in Part I and a
result of Morimoto [19]. Nevertheless, for the sake of later use, let us
describe how a complex structure is obtained from the normal (almost)
contact structure discussed in Part I along the line of Morimoto's argu-
ments.

As was pointed out in Part I, Brieskorn [4] showed that an odd
dimensional homotopy sphere bounding a parallelizable manifold has
infinitely many Brieskorn manifold representations. Thus, we have

COROLLARY 1. Let Σ1 and Σ2 be two Brieskorn spheres (exotic or
standard). Then Σx x Σ2 admits infinitely many seemingly different
complex structures.

REMARK 1. As Brieskorn and van de Ven [5] pointed out, by a result
of R. de Sapio, products of two exotic spheres are usually diffeomorphic
to products of two standard spheres except for the case that one of the
factors is Sι and the other is an exotic sphere.

COROLLARY 2. a) Sn x Sn+1 x Sw x Sm+1(n, m >̂ 2) admits infinitely
many seemingly different complex structures, where n and m are even.

b) S1 x S2 x x S4*"1 admits infinitely many seemingly different
complex structures.

PROOF, a) follows from the result of Kauffman [15] as is mentioned
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in Corollary 2 in Part I. As for b), S 2 x S 3 x S 4 x ••• x S4*"1 can be
decomposed into the product of (S2 x S3), (S4 x Sδ), , (S4k~2 x S4*"1), each
of which has representations as Brieskorn manifolds by [15]. Remove
one of those products, say S* x Si+1, and combine it with S\ and match
up the rest of the products into pairs. Then by Theorem 1, each of
these pairs admits infinitely many seemingly different complex structures;
and therefore, the products of these pairs admit infinitely many seemingly
different complex structures in a natural way.

COROLLARY 3. Let L(p, qlf •••, qn^) and L(p', q[, •••, q'n-d be two

generalized lens spaces. Then L(p, qlf , qn-x) x L(p\ q[, , q'n-J admits

a complex structure.

PROOF. This follows from Corollary 5 in Part I and Theorem 1.
q.e.d.

These complex structures are closely related to those of Hopf [13],
Calabi-Eckmann, and Brieskorn-van de Ven [5]. In fact, by mimicing
the method of Brieskorn-van de Ven [5], we can construct more complex
structures on Σ1 x Σ2 as follows: Define an action fτ of Con (FJo x (F2)0

by

fr(t; Zo, . -- , Zm; ω0, , ωn)

= (e2πPQtZ0f , e2πp^Zm; e2πq°tTω0, , e2πq"tτωn) .

Here τ is a complex number such that Im τ Φ 0, (pOf , pm) and (q0, , qn)
are positive integers. Then one can construct a diffeomorphism of C x
Σ1 x Σ2 onto (FJo x (F2)0 by defining (ί, z, ω) π->/Γ(ί; z, ω). It can be seen
that the action fτ is a free, holomorphic, locally proper action; therefore,
by [12], the quotient space, say H(p0, , pm; q0, — ,qn) is a complex
manifold. Our above diffeomorphism, then, induces a diffeomorphism
from Σ1 x Σ2 onto H(p0, , pm; q0, , qn). Therefore, Σ1 x Σ2 admits a
complex structure.

Let S2p+- and S2g+1 be two odd dimensional standard spheres, and let
these spheres admit the normal contact structures which are induced
from the Hopf fibrations. Then it is, of course, well known that S2p+1 x
S2g+1 admits a complex structure which is naturally induced from these
normal contact structures. It is also evident that this complex structure
arises among the Calabi-Eckmann structures on S2p+1 x S2g+1 as a very
special but typical example, which carries a lot of information. In a
way, our complex structures on Σ1 x Σ2 occupy the corresponding status
among the complex structures which are given by mimicking the Brieskorn-
van de Ven method; however, our complex structures make it possible
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to investigates the interrelations between them and contact structures
on the factors. On the other hand, such interrelations between the gen-
eralized Brieskorn-van de Ven complex structures and some differential
geometric structures on each factor space remain to be investigated. In
this sense, it seems to us that our structures are more accessible from
the differential geometric point of view.

The following is an immediate generalization of a theorem of Calabi-
Eckmann [6].

THEOREM 2. Let 2\ and Σ2 be two generalized Brieskorn manifolds.
Then a) If Σx is simply connected, then the complex structure on
Σλ x S1 does not admit a Kdhlerian structure) therefore, Σx x S1 is not
protective algebraic.

b) If Σx and Σ2 are ^-connected, then the complex structure on Σx

and Σ2 does not admit a Kdhlerian structure) therefore, Σx x Σ2 is not
protective algebraic. In particular, most of the generalized Brieskorn
manifolds in Examples 1, 2 and 3 given in Part I satisfy the above
conditions.

PROOF. It is well known that if M is a compact Kahlerian manifold,
then every odd Betti number is even, and every even Betti number is
positive.

Let M1 and M2 be two compact manifolds, and let BV(M^ and Bq(M2)
be the p-th and g-th Betti numbers of Mι and M2, respectively. Then
Br(M1 x M2) = ΣiP+q=r JBp(AΓi) x Bq(M2). For a), by Hurewicz isomorphism
theorem we have BX(ΣX) = 0. Therefore Bι(Σ1 x S1) = B^Σ,) x B^S1) +
Bγ(Σx) x ^(S1) = 1 x 1 = 1. Thus, Σx x S1 cannot be Kahlerian. For b),
B2{Σ, x Σ2) = BO(ΣX) x B2(Σ2) + B^ΣJ x B,{Σ2) + B2{Σ,) x B0(Σ2). Since Σ,

and Σ2 are 2-connected, B^Σ,) = Bλ{Σ2) = B2(Σ,) = B2{Σ2) = 0 by Hurewicz
isomorphism theorem; therefore, B%{Σ1 x Σ2) = 0. In order to show
that they are not protective algebraic, it suffices to point out that
any complex submanifold of complex protective space is automatically
Kahlerian with its induced metric from the Fubini-Study metric. As for
the last remark in Theorem 2, it has been shown that Examples 1, 2 and
3 in Part I give highly connected manifolds; for the details, see [4], [23],
[24]. q.e.dc

Concerning the proof of Theorem 2, it is known that there are many
3-dimensional manifolds which are associated with Brieskorn polynomials
and weighted homogeneous polynomials of three complex variables, and
which are not simply connected. In fact, by the work of Mumford [21]
a Brieskorn manifold Σ associated with a polynomial P(Z) = Za

0

G + Zp + Zl*
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is simply connected if and only if the origin is not a singular point.
This means that one of a0, a1 and a2 must be 1. Consequently, Σ must
be diffeomorphic to S3. Now let Σ be any three dimensional Brieskorn
manifold whose fundamental group is abelian and contains a copy of Z,
then B£Σ) = even > 0. By Poincare duality, B2{Σ) = B,(Σ) = even > 0.
Thus Σ x S1 or Σ1 x Σ2 (where Σx and Σ2 satisfy the same conditions as
above) satisfies the above necessary conditions to be Kahlerian. Therefore,
it is still possible that these manifolds admit a Kahlerian structure. Also
it is clear that the same argument as given to show a) and b) works
when Σj, and Σ2 have finite fundamental groups.

Next let us assume that the (n + l)-tuple (g0, -- , g j defining the
C-action on the variety V consists of all rational numbers. As we men-
tioned previously, this action induces a complex torus T = C/Γ action on
H = Vo/Γ, where Γ is the discrete subgroup of C generated by 1 and
V—Id. We also mentioned that the quotient space H/T, say B, is a
normal complex space such that the natural quotient mapping is holo-
morphic in the sense of complex (or analytic) space [7], [12]. The orbit
space of Σ with respect to the S'-action coincides with B, i.e., Σ/S1 =
B = H/T. Let Σi9 Bi and πt (i = 1, 2) be a generalized Brieskorn manifold,
its base space and the quotient map π^. Σt —> Bif respectively. Denote
by π = πt x π2 the Cartesian product of πγ and π2, i.e., π: Σι x Σ2 —> B1 x B2

is defined by π(x, y) = fa(x), π2(y)) for any (x, y)eΣ1 x Σ2. It is obvious
that π is a continuous mapping. We will show that π is indeed a holo-
morphic mapping in the sense of complex (or analytic) space under the
following condition which we think superfluous. Let Vt (i = 1, 2) be
the irreducible varieties defining Σt (i = 1, 2) as before. Let us denote
by Hs (j = 0, - , n) the complex hyper linear subspace of Cn+1 given by
Hj = {(ZQ, , Zn)eCn+1: Z3 = 0}. We say that Vt is in general position
if Vt Π Ho (i = 1, 2, j — 0, —, n) is a complete intersection with the origin
as its only singular point. Note here that F* Π Hά—{the origin} is a complex
submanifold of Hό of dimension kt — 1, where fc; is the complex dimension
of Vi. As a matter of remark, we would like to point out that the class
of varieties in general position is quite broad and most of the interesting
examples lie in this class. For instance, all the varieties of Example 1
in Part I are in general position, and most of the varieties in Examples
2 and 3 in Part I are also in general position. Finally, we say Σt is in
general position if it is obtained from the variety Vt in general position.
Then we have

LEMMA 1. Let (Σif πif B{) (i = 1, 2) be fibratίons such that Σt ( i=l, 2)
are in general position. Then the mapping π = πί x π2: Σ1 x Σ2->Bι x B2
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is holomorphic in the sense of complex space. Here Bx x B2 has the
complex space structure of the Cartesian product of Bγ and B2.

PROOF. First of all we point out that π~ι(x, y) is diffeomorphic to
a torus for all (x, y)eBί x B2. This can be seen as follows. πτ\x) is
the S^orbit on Σλ through a point x in πz\x) and π2\y) is the S^orbit on
Σ2 through a point y in π2\y). These orbits are diffeomorphic to S1. Thus
π~X%, v) = (^Γ1^), πϊ\y)) = πr\fi)xπ*\v) is diffeomorphic to S1 xS1 which is
nothing but a torus. By the definition of the complex structure on Σ1xΣ2,
the tangent bundle of π~\x, y) is invariant under the almost complex struc-
ture J; therefore, π~\x9 y) is a complex submanifold of complex dimension
1. Thus π~\x, y) is an elliptic curve and will be called a fiber of Σ^Σ2

over (x9 y). Next we show that the union of all fibers over pairs (x9 y)
such that one of x and y is singular in the previous sense is contained
in a union of a finite number of thin subsets of Σ1 x Σ%. Denote this
union by W. For the definition of thin sets, see Gunning-Rossi [11].
Recall here that we say x (or y) is singular in B1 (or B2) if πϊ\x) (or
π2\y)) is a singular orbit. Now let V be a variety in general position,
and let t(ZQ, , Zn) = (e27τ9°HZ0, , e2πq^Zn\ t e [0, d) be the induced S1-
action on V, where d is the least common multiple of the denominators
when qt (0<^i^n) is expressed as a fraction of relatively prime positive
integers. As we know, the S^action on Σ is the restriction of the S1-
action on Cn+1. Thus any point Z = (Zo, •••, ZJ which belongs to Σ
and to a principal orbit of the Sι-action on Cn+1 must belong to a principal
orbit of the S'-action on Σ. Since the S^-action on Cn+1 is effective, a
point Z — (ZQ, •••, Zn)eCn+1 belongs to a singular orbit only if at least
one of Zi vanishes. For more details, see Neumann [23] or Janich [14].
VPiHj;(i = 0, , n) is a sub variety of Hά and it is invariant under the
C-action on Cn+\ Since V is in general position, V Π Hj — {0} is a complex
submanifold of Hά of complex dimension k — 1, where k is the complex
dimension of V. Let S be the unit sphere in Cn+1 and let Ss- be the
intersection S3- = Sf]Hj (j = 0, , n). Note that S3 is the unit sphere
of Hj (j = 0, , n). Then applying the same argument as in Lemma 1
in Part I, Sf](VπHj) = S,-(1(^(1 fly) is a generalized Brieskorn manifold
of dimension 2k — 3. In fact, this manifold may not be a connected
manifold. To be more precise, one should apply the argument of Lemma
1 to each connected component of V Π H3 — {0} (j — 0, •••,%) (or each
irreducible branch of FπϋΓy). Thus SniVΠHj) is a disjoint union of
a finite number of generalized Brieskorn manifolds. It is clear that S Π
(V ΓΊ Hj) is a submanifold of Σ and each connected component admits a
normal contact structure as in Theorem 2 in Part I. Also it is not hard
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to see that the associated almost contact Riemannian structures on these
connected components are exactly the restriction of that on Σ to these
components considered as naturally imbedded submanifolds of Σ. Con-
sequently, applying the argument in Theorem 1 to each component, we
see that the Cartesian product of S Π (V Π Hό) and any generalized
Brieskorn manifold admits a complex structure as given in Theorem 1.
It is evident that this Cartesian product is a complex submanifold of
the Cartesian product of Σ and the above generalized Brieskorn manifold
with the complex structure given in Theorem 1. Now denote Wuj =
SiΠiV.ΠHi) (j = 0, . . . , m ) a n d W2Λ = Sιf)(V2f)Hι) (I = 0, ••-, n ) , w h e r e

m and n are the complex dimensions of the ambient complex Euclidean
spaces containing V1 and V2, respectively. Then by the above observation,
it is clear that W is contained in (\J?=ΛWU3 x Σ2)) U (U?=i (^i x W2tl)).
Denote this set by W. Since each Wltj x Σ2 and Σ1 x W2,ι are a finite
union of complex submanifolds of Σι x Σ2 of complex codimension 5^1,
and since a complex submanifold is a thin set, we have shown that W
is contained in a union of a finite number of thin sets. Next we show
that π = πx x π2 is holomorphic in the sense of complex space. Let (x, y) e
B1 x B2 be a point of Bt x B2 such that neither of them is singular.
Then by the same argument as given in the proof of Lemma 12 in Part
I, there are neighborhoods Uλ and U2 of x and y, respectively, such that
the complex structure of JB< restricted to Ut (ί = 1, 2) is non-singular. In
other words, Ut (i = 1, 2) is a complex manifold with respect to the quotient
complex structure. Since B1 x B2 has the Cartesian product complex
structure of B1 and B2, the neighborhood U = Uι x U2 of (β, y) is a complex
manifold with respect to the complex structure of ^ x ΰ 2 . It is easy
to see that π restricted to π~\U) is a smooth mapping and that the
Jacobian mapping π* of π in π~\ U) commutes with the complex structure
on π~\ U)cΣ1 x Σ2 and the complex structure on U. This can be seen
by recalling the definition of π and the argument in Lemma 1. Thus
π\π~\U) is holomorphic. Since (x, y) is taken arbitrarily in such a way
that neither of them is singular, we have shown that π is holomorphic
outside W. Now let (x, y) be a point in π(W), and let U be an open
neighborhood of (x, y). Let f:U^C be a continuous function which
represents a local section of the structure sheaf of Bλ x B2 over U.
Now we want to show that foπ in π~\U) represents a local section
of the structure sheaf of ΣxxΣ2. In other words, /°ίτ in π~\U) is
a holomorphic function in the usual sense. Clearly foπ is continuous
in π~\ U) and it is holomorphic in π~\ U) —W since we showed that π
in Σ1 x Σ2 — W is holomorphic. W being a finite union of thin sets
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implies that W Π π"\ U) is again a union of a finite number of thin
sets in π~\U). Since foπ is continuous, it is locally bounded. Thus
applying the Riemann removable singularity theorem [11], we see that
foπ is holomorphic in π~\U). Thus π is holomorphic in the sense of
complex (analytic) space. q.e.d.

Now we have

THEOREM 3. Let Σx and Σ2 be two generalized Brieskorn manifolds
and assume that they are in general position. The triple (Σx X Σif π,
Bί x B2) is an analytic fibration with elliptic curves as its fibers. Here
π is a holomorphic mapping in the sense of complex space. This fibration
is in general not a fiber bundle.

PROOF. Obvious by virtue of Theorem 1 and Lemma 1. (2\ x Σ2,
π, B1 x BJ becomes a fiber bundle with a torus as its typical fiber if
and only if both (Σlf πίf Bt) and (Σ2, π2, B2) are S^bundles. q.e.d.

Note here that this last theorem is also an extension of a result of
Calabi-Eckmann [6]. They have also shown the following. Let S2p+1 and
S2q+1 be two odd dimensional spheres and let CPP and CP9 be complex
protective spaces of complex dimension p and q, respectively. We denote

by S2p+1 x S2q+1 Λ CPP x CPq the Calabi-Eckmann fibration. Their result
states every compact complex subvariety is fibered by tori. The following
result is the analogue to their theorem; however, their method cannot
be applied directly to our case since Σ1 and Σ2 can have non-vanishing
middle homologies.

π
THEOREM 4. Let Σx x Σ2 —* Bt x B2 be such an analytic fibration as

given in Theorem 3. Let W be a compact complex subvariety of Σί x Σ2.
Then W is the total space of analytic fibration with tori as its fibers,
and the fibration is induced from that of Σ1 x Σ2.

Proof. Without loss of generality, we can assume that W is irreduc-
ible. So from now on W is assumed to be irreducible. It is well known
that any such subvariety is a cycle in the sense of homology, and denote
the cycle by [W] and call it the carrying cycle of W. Since W is irre-
ducible, the set of all regular (or simple) points of W is connected, open
and dense in W. Denote it by R(W). It is also well known that J?(T7)
is a complex manifold of certain pure dimension k. In this case [W] is
an element of H2k(Σ1 x Σ2; R) via de Rham theorem, where HZ\Σ1 x Σ2, R)
is the 2&-th cohomology group of Σλ x Σ2 with real coefficient. The
following is also well known. Let M be in general a complex manifold
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and let W be an analytic subvariety of pure dimension k, and let R{W)
be given as before. Let D*(M) denote the set of all real valued differential

i-forms on M with compact support. Then for all ω e Df(M), \ o) is

S JΛ(TF)

dω = 0, where the integrations
R(W)

are always taken with respect to the natural orientations on M — R( W)
induced from the orientation on M. For the details, see [10] for the
first half; as for the 2nd half, this will be shown by the extended version
of Stokes' theorem [25].

Let η1 and η2 be the normal contact structures on 2\ and Σ2 as in
Theorem 2 in Part I, respectively. As before, we denote by Θγ and Θ2

the kernel subbundles of η1 and η2i respectively. Let ξ1 and ζ2 be the
velocity vector fields of the S^orbits on Σ1 and Σ2, respectively. Then
we know that & and Θλ (or ζ2 and Θ2) span TΣι (or TΣ2). Now define a
1-form ω on Σί x Σ2 as follows.

= Vitii) = 1 (i = 1, 2)

ω(βt) = Vi(Θi) = 0 (i = 1, 2) .

If we define 1-forms ηι and rj2 on Σγ x Σ2 by

Vi(TΣt) = Vi(TIt) (ί = 1, 2)

^,(Γ^) = 0 (i, i = 1, 2 and i ^

then

<» = ^1 + ^2

Clearly ω is a smooth 1-form. Thus,

ώω = d ^ + dη2 ,

and

( * ) (dω)1 = dω Λ - Λ dω = (d^ + ώ^
i-times

= (dη, + rf^2) Λ - - - Λ

Z-times

= Σ f ί Wi) 'Λ (d7.)1"'
ί = 1 \ % I

Note here that drj1 and d̂ "2 are 2-forms, so they commute with the wedge
product.

LEMMA 2. ί (dω)k = 0 .
J.RUF)
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PROOF. AS we explained, this integral is well defined. Since Σ1 x Σ%

is compact, any differential form on Σί x Σ2 can be considered as a form
with compact support. Now define a (2k — l)-form φ on Σί x Σ2 by φ =
ω Λ {dω)k~\ Then dφ = dω A (dω)^1 = (dω)k. By the above generalized

Stokes' theorem, I (dω)k = \ dφ = 0. q.e.d.

Let P£: T(Σ1xΣ2) ->θt (ΐ = 1, 2) be the natural projection defined by

P<{TΣS) = 0 (iΦ j)

(i,j = 1,2).

Now define a natural projection P: T{ΣX x ^2) = T2\ 0 TΣZ -^θί®θ2 by
the exterior direct sum of Px and P2, i.e., P = PX@P2\ therefore for any
X = X, 0 X2 in TO x ^ ) f P(X) = PάXJ 0 P2(X2). We also denote by
T(Σ1 x 2r

2)(X,2/) the tangent space of Σx x Σ2 at (α?, j/).

LEMMA 3. Let rji (i = 1, 2) 6e r̂it e^ as before. Then we have,
i) dηt{Σf Y) = 0 if Xe TΣt and Ye TΣά (j Φ i\ i, j = 1, 2,

or X, YeTΣj (j Φ ί).
ii) dηfa, X) = 0 /or αίί Xe TO x ^i), ΐ, J = 1, 2 .

iii) d^(X, Γ) = d^(X, Γ) if X and Ye TΣt (i - 1, 2).

PROOF. AS d ^ is a tensor, we can assume that X is independent
of the points in Σs and Y is independent of Σt. Then

dfr(X, D - XUY) - ^ W - 7*K Y] = 0- Yηt{Z) - 0 - 0 .

This proves i), and ii) can be shown in the same way. As for iii),

= XVi(Y) - YVί(X) - ηIX, Y] - dηt{X, Y) . q.e.d.

LEMMA 4. Let Xl9 , Xlf JXlf , JXi be any 21 linearly independent
vectors in T{Σ^ x Σ2){x>y)9 where J is the complex structure of Σ1 x Σ2.
Furthermore, assume that they are ordered in the above way. Then
we have,

(dω)\Xίf .., Xx, JXιt •• ,JXι) = ( - l)Hl~1)/2 Σ

Ni(0 t^ i ύ I) is a non-negative constant which will be given in the
following proof, and <*>* and ξt (i = 1, 2) are given as before.

PROOF. Let us denote by Sp (X) the span of {Xlf , Xlf JXlf , JXt}.
Sp (X) is a complex vector subspace of T(Σι x Σ2){XlV) of complex dimension
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i, where a complex vector space of dimension I means a real 21 dimensional
subspace of T{Σ1 x Σ2){X}y) which is invariant under the complex structure
J. Now for the sake of convention, denote Xx — Elf , Xx = Ex; Eι+1 =
JXlf , E2l = JXX. Then by the above (*), we have,

(**) (dω)\X19 ...,-ar,; JXlf ••., JXX)

\y Λ

Σ
i

Σ ( ) Γ Σ (sgn σXdη^E^ Eω) • dη^E^^, Eolu))

x (dη2(Eσ{2i+1), Eσi2ί+2)) dη2(Eσl2l-1)9 Eσ{2i)) .

Here @ is the set of all the permutations of 21 letters (1, •••, 21), and
sgn σ is the sign of σ. Denote by Sp (ξί9 Q the span of ζ± and ξ29 and
assume that Sp (X) is not transversal to Sp (ζlf ξ2). In other words,
Sp(fi, ί a )cSp(X). Note here that Sp (fx, f2) is a complex line in T(ΣX x Σ2){x>y).
Then we can take a new ordered basis {YΊ, •••, Y^ JY19 •••, J F J for
Sp(X) such that Y1 = & and J X = f2. Since {Yi9 JYt}Lι forms a basis,
we have for 1 <; i ^ i,

X, = α^Γi + + aHYt + δuJFi + +

JX, = -bHY, + + (-&MΓ,) + aHJY, + +

The coefficient matrix L is written as

IA -B
L~\B A,

where A = (α^ ) and B = (btί), 1 ^ i, i ^ Z. As is well known, the deter-
minant of L, say |L | , is positive. By elementary exterior algebra, we
have

(dω)\xlf..., xl9 jχlf..., jχx) = iLKd^y;, . ., γlf JYlf , m .

By the similar expression to (**) for the second half, each summand of
that expression must contain a term of the form ±drj1{!ζ1, *) or ±(Z 2̂(*> &)•
By Lemma 3, these terms are zero; hence, (dω)\X19 , Xl9 JX19 , JXt) =
0. Therefore, we can automatically assume that Sp (X) is transversal
to Sp (ξ19 ξ2). In this case P restricted to Sp (X) is a complex isomorphism
of Sp (X) onto its image P Sp (X) under P. P Sp (X) is contained in
θi Θ ®2 a n ( i k a s complex dimension I. Let us denote by Pt (i = 1, 2) the
restriction of Pi to PSp(X) for the sake of convenience. Denote the
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kernel of P* by KerP* (ΐ = 1, 2). Clearly, KerP, (i = 1, 2) is orthogonal
to each other with respect to the Riemannian metric g, where g is given
as the product metric of gi (i = 1, 2) which is the associated Riemannian
metric on Σt (i = 1, 2). Now let PSp (X) be as before, and let T7be the
orthogonal complement of (Ker P2) 0 (Ker PJ in P Sp (X). Then P Sp (X)
can be written as the orthogonal direct sum (Ker P2) ®T7® (Ker PJ.
Notice here that Pι restricted to (Ker P2) 0 W is an isomorphism, and
similarly P2 restricted to WφKerPj is an isomorphism. Furthermore,
Pi(KerP2) and Pγ{W) are orthogonal to each other in Θ19 and similarly
P2(Ker PJ and P2{W) are orthogonal to each other in Θ2. Denote by p, q,
and r the complex dimensions of (Ker P2), W and (Ker Px), respectively.
Let {Zly *Zpy JZιy , JZP} be an ordered unitary basis for Px(KerP2), and
similarly{Zp+19 , Zp+q, JZP+1, , JZp+q}and{Zp+q+1, , i £ p + ί + r = ι , JZp+q+1,
•••, J ^ p + g + r = J be ordered unitary bases for PX(W) and P2(KerPi), respec-
tively. Define 21 vectors in P S p (X) denoted by {Yίf , Γ,, JYly

in such a way that P ^ Γ J - Z19 •••, P^Γ,) = ^ p , PΛYP+ί) =
Pt( r , + f ) - Z,+ f > P,(Γ,+ff+i) = ^, + . + i , , P.(Γi) = ̂  and
J ^ i , , P1(JYp) = JZpf P1(JYp+1) = JZp+lf , Pί(JYp+q) = JZp+q9 P2(JYp+q+1) =
JZp+q+1, , P2(JYι) = J ^ z . Since P x | Ker P2 0 T Γ is a complex isomorphism,
{Y19 •••, Γ,, JF X , —-jJYJ forms an ordered complex basis for P S p ( X ) ,
and the orientation induced by the order coincides with the induced
orientation from the natural orientation of the ambient space. Now let
{Xί9 ,_X*, JXl9 , J X J b e given as follows. P(X t) = Yl9 . , P(Xt) =
Yl9 P(JXd = JY1L , P{JXχ) = JΓ Z . Since P: Sp (X) -» PSp(X) is a complex
isomorphism, {Xx, •••, Xlf JXly •••, JXJ in the given order forms an
ordered basis for Sp (X) with the natural induced orientation. Denote
it in the same order as follows: Eλ = Xlf , Έx = Xl9 Ei+1 — JXlf ,
E2l = JXι. In order to compute (dω)1 at (Eί9 * 9El9Eχ+19 •• ,£ r

20, we
make use of the expression (**).

To be more precise, put Et = ( α ^ 0 P,P{EX)) © ( 6 ^ 0 PzP{Ei))f i =
1, , 2Ϊ. By Lemma 3, we have for 1 ^ i, j ^ 2i,

(***) d ^ ί ^ , Ei) = d7i((αA 0 PiP(^)) 0 (6

o α,f, © PJ>E,)
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Similarly,

dη2(Eίf Ei) = dη2(P2PEif P2PEd) , l £ i , j £ 2 l .

Therefore, for 1 ^ i ^ 21, each summand of the expression (**) becomes

( # ) (sgn σ)drjί(Eσωt Eσ{2)) ^ 1 ( £ ' σ ( 2 ί _ 1 ) , Eo{2i))dη2(Eσ{2i+1), Eσ{2ί+2))

• dy]2(Eσ{2ι^1)f EoM))

= (Bg&σXdη^PEoM, P,PEσ{2)) . dη^P.PE^.^ P1PEσ{ii)))

x(dη2(P2PEσ{2i+ι), P2PEσ{2i+2)) . dη2(P2PEσ{2l.1)f P2PEσ{2l)) .

Since P^Ei = 0 if PEi belongs to Ker Px, the term (#) vanishes unless
all Eσω, •••,#,<„> satisfy that PEσ{ί), ---,PEO{U) belong to KerP 2φT7.
Hence, we treat the case mentioned above. In other words, PγPEσ{ι)1 ,
P.PE^ belong to Ker P2 @W. By the definition, {Zl9 , Zp+ff, JZU

JZp+q] forms an ordered unitary basis for Ker P2 0 W. Thus for a fixed
σe@, the span of P^PEa^ through PJϊEo^ is a subspace of Ker P2 φ W.
Now recall b) in Lemma 5, then we have dy^X, Y) = <JX, Yy/ω^)
where < > is the induced metric on βx from the standard metric on Cn+1.
This metric also coincides with the associated Riemannian metric on θlf

since we consider Σ1 as the intersection of the variety and the standard
hypersphere. As remarked before, P^PEa^, •••, PιPJSr

α(2<) are among the
unitary basis {Zlf •••, Zp+q, JZίf •••, J^p+g} for KerP2©TF. This means
that dηάPJPE.^, P ιP^σ ( I i )) = 0 unless P1PEσ{2j-1)=±JP1PEσ{2j)(j = l, • , 0
In other words, (#) ̂  0 only when σ(l) = σ(2) ± ϊ, , σ(2i — 1) = σ(2i) ± I.
Now let (7 be the permutation for which (#) does not vanish. Denote σ

π _ /1» 2, , 2i, 2i + 1, , 21 \ τ , ,
σ - U d ) σ(2i) σ(2i + 1) σ(2ϊ)/' ^U d ) , , ( ) , ( + 1), , σ(2ϊ)/

of 2i ordered letters Ml), , σ(2i)} such that μ permutes {σ(l), , σ(2i)}
into the ordered set {μ(ϊ), •••, μ(2i)} with JM(1) < μ{2) < ••• < jw(2i).
Similarly, let τ be the permutation of 2(1 — i) letters {σ(2i + 1), , σ(2l)}
such that τ permutes {σ(2i + 1), , σ(2l)} into {r(l), , τ(2(l - ϊ))} with
r(l) < τ(2) < < τ(2(Z - i)). Let α be the number of pairs (σ(2j - 1),
σ(2j)) (j = 1, , i) such that σ(2i — 1) = σ(2j) + I, and let /3 be a number
of transpositions to get τ. Then after a lengthy but elementary obser-
vation of permutations involving reshuffling the indices, we obtain that

sgnα = (-i)«+>+*<«-*-i>/2 = (_i)«+* <*'-«-i>/»sgnτ .

Next consider the set ©σ of permutations in @ such that each member
of Θσ coincides with σ on the first 2i letters. Then we have,

(##) Σ (sgn p)dη1(Ep{1), Ep{2)) . dηλ(Ep{2i.ι)y Ep{u))dη%(EPlti+ι), Ep{2i+2))

l-1)f Ep{2l))
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= Σ ( - l r ^ - ' - ^ s g n r ) ^ ^ , , #,„,) dηλ{Emi-», EPM)))

x (dη2(EP(2i+ί)j Ep{2i+2)) dη^EpM-D, Ep{2t)))] .

Here τ is the permutation of the last 2(1 — i) letters σ(2i + 1), , σ(2ΐ).
Taking into account that for any ρe&σ the first 2i-letters are always
given as σ(l), •• ,σ(2i), we can identify any such element p e ® , with
the permutation of the last 2(1 - i) letters (σ(2ί + 1), ••-, σ(2l)). There
are exactly the same number of permutations in @σ as the set of all
permutations of 2(1 — i) letters. Denote the latter by ©'. Here any
element of ©' is identified with τ" 1, where τ is given such as before.
In other words, τ transforms the last 2(1 — i) letters of any permutation
p in @α into (τ(l), , τ(2(l - i)) such that r(l) < τ(2) < < τ(2(l - i)).
Also note here that sgn τ = sgn T" 1 . With these in mind we have,

(##) = Σ (-l) α + ί ^- ί - 1 ) / 2 (sgn τ)[d7i(^(i,, Eσ{2)) . dηx{EM-1)t Eσm))Γ 6 @ σ _
χdη2(Eτ-i{ί)f Eτ-ι{2)) d7]2(Er~H2u-i)-i)9 -^r-i(2(z-*»)]

= {_ir+w-i-»n\dΎ]ι{pιPEσ{ι)j PίPEalz))...d7}ι(PίPE.{u-1)9 PίPEβ{u))]

x [ Σ (sgnτ-1)di71(P1PBΓ-i(l,, P%PET-ί{t))
s'

Σ
res'

By the definition of α, applying the same argument as in the proof of
Theorem 2 in Part I,

Also the term inside the second bracket [ ] in the above (##) is equal
to (dη%)ι'\PtPEτ{ι)f , P 1PS r ( 1 ( l-< ) )). Recall that (P2PEτ{1),. , PβPKP(κi-i»)
forms an ordered complex basis for their span in P 2 ( W φ K e r PJ, since
P 2 | 1 F Γ φ K e r P 1 is a complex isomorphism and {PEv{ι)f •• , P E ^ ^ } forms
a complex basis for their span which has the natural induced orienta-
tion. Note here that JP2PEτ{1) = P2PE> ( 2 α_ ί ) + 1 ), , JP2PEτU-i) = P2PEτi2U-i)).
Now let (ely , e^ίf Jelf •••, Je,^) be an ordered unitary basis for the
span of (P2PET{1), , P2P r ( 2 U_ i } )) with the induced orientation. Then there

/A — β\
is a non-singular 2(£ — i) x 2(ϊ — i) matrix of the form! & A ) relating

\i> JL/σ

(P2PEτ{ίh •••, PaPE^u^,)) to (βi, •••, β,.,, Jβ w •••, J e ^ ) . By e lementary
facts on exter ior algebra, we have

A - £ fj NZ v

D , (dη%)ι'\elf , β,.,, J ^ , , Jβ^) .

X> A σ

As in the beginning of this proof, we can easily compute that

Ί — if ^^lt * * *> dCi — i) —— \ Λ.)
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where Ka is the number of non-vanishing terms which appear as the
s u m m a n d s o f { d η ^ 1 " ^ , •••, et-it Jeu •••, J e ^ ) . T h u s w e h a v e

A -B

B A
l-i

A -B

B A

Next let a denote a member in
EaiH)) Φ 0. Then we have

such that , Eσ{2)) ;ϊ-l)>

Σ (sng σ){dη,{EaM, E.ιt)) d^1(£7(T(2ί_1), #,,„,))
σe<5

x (df]2(E0[2i+l), E σ i 2 i + 2 ) )

κι-D/1- A ~ ~ β

° B A

Here the symbol Σt means to sum over all the permutations in © given
as follows. Partition @ in such a way that σ and τ belong to the same
class if and only if σ(j) = τ(j) (j — 1, , 2i). Pick a representative from
each class and denote the set of all the representatives by Σt. Then the
summation Σi must be taken over all the permutations in Σt. Note here
that Σt does not depend on the choice of representative. Notice also

A -Bthat in the last expression for (##), only Kσ(>0) and ^ ^ (>0) depend
on the choice of σ given as above. Therefore, the last expression can
be either positive or negative according to the value of 1(1 — l)/2, depen-
dending only on I but not on i (1 <; i <; I). Now by the similar expression
to (**) for Xl9 , Xl9 JXly , JXU we have

(dω)\X19

= Σ ( .

x(d7}2(Eσ{2i+1),l

-έ(ί)μ-
= (-i)I(I-1)/ iΣΓ(ί

<=1 \ %

l_ι)y E -(«)))]
A
B

A

' B

-B
A

-B

A

(Λ

a

-

σ _

\l-i

Here 2^ means the summation given as above. Now since the given
vectors {Xί9 , Xu JXlf , JXJ and {Xlf , Xlt JXlf , JXJ both form
ordered bases for Sp (X) with the natural induced orientation with respect
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to the complex structure J, there is as before a non-singular 2,1 x 21-

matrix of the form
them. Thus we have

A -B
B A

(A -B\
\B A) with

A
B

-B
A

> 0 which connect between

• ;JXι)

{dω)\Xu.-,XltJXu ••-,

— (__i \ia-D/2 A -B
B A

A -B
B A

Now let Nt be
result.

A -B
B A Then we have the desired

q.e.d

Going back to the proof of Theorem 4 consider R(W) as a complex
submanif old of Σ1 x Σ2 of complex dimension k, and consider it is imbedded
by h into Σ1 x Σ2. Then

\ {dωf = \ h*(dω)k = \ {d(h*ω))h,
JhiRiW)) JRiW) JR(W)

where h* is the pullback homomorphism induced from h. Let us assume
that R(W) has the induced orientation from that of Σ1 x Σ2. Now further
assume that there is a point (x, y) in Σx x Σ2 at which the tangent space
TR(W){χ,y) is transversal to the span of ξx and ξ2. In other words,
h*(TR(W)(X,y)) does not contain the span of & and £a at ft(α, y). According
to the definition of integral on manifolds, let us choose a locally finite open
covering of R(W) in the following way. Let (Uo; x01, , xok, Vκ> , Vok)
be a local coordinate system about (x, y) such that the coordinate
functions satisfy the Cauchy-Riemann equations, i.e., d/dyoi = J(d/dxoi) and
d/dxQj — —J(d/dyoj), where J is the induced complex structure (0 ̂  i ^ k,
0 ^ i ^ k). Clearly, this coordinate system has the induced orientation.
Next let {{Uu (xiίf •••, xikf yilf •••, yik)}ΐ=i be a locally finite collection of
open sets of R(W) such that \jT=iUt covers R(W) — Uo and such that these
coordinate functions satisfy the Cauchy-Riemann equations with respect
to the induced complex structure J. Note here that these neighborhoods
have the induced orientation in the natural way. Now let {̂ J5°=o be the
partition of unity subordinate to the covering {J7i}JL0 Then

\ {h*{dω))k

JR(W)

= Σ ί Φjh*(dω)Xdldxjlf , d

x dxh - dxjkdyh dyjk ,

ju, d/dyh, , d/dyjk)
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where the summand of the right hand side is the usual Riemannian inte-
gral. Since φj^O (j = 0flf •••) on R(W) and since by Lemma 4, either

h*(dω)k(d/dxh, , d/dxikf d/dyh, , d/dySh) ̂  0 or ^0 ,

\ φsh*(dω)ι(βldxh, , d/dxjk, d/dyil9 , d/dyίk)dxSί dxjkdyh dyjk is

either ^0 or ^0 according to 1(1 — l)/2, for all j = 0, 1, •••. In par-
ticular, again by Lemma 4, the above integral for j = 0 is either strictly
positive or strictly negative. This can be seen easily as follows.
h*(dω)k(d/dx01, • , d/dxok, d/dy01, •• , d/dyok) > 0 (or <0) at (x, y) by the
assumption. By continuity, the value must be positive (or negative)
in a neighborhood of (x, y) which has positive measure with respect to

dxOίΛ--ΛdxokΛdyoιΛ- 'Λdyok. Thus \ h*(dω)k>0 (or <0), and this
JR(W)

is a contradiction to Lemma 2. Therefore, no tangent space of R(W)
can be transversal to the span of ξ1 and ζ2, i.e., it always contains the
span of ξx and ζ2. As for the points which belong to the singular locus
of W, let W = R(W) U W*"1 U W1 U T7° be the splitting of W by di-
mension [26, p. 98]. Each W3~ι (j = 2, •••,&) can be considered as a
complex submanifold of complex dimension j — l(>0), and it is exactly
the set of regular points of the subvariety W3'"1 U U W°, i.e., W3'"1 =
R(W*~i\J U W°). Thus evaluating (dω)3'-1 on Wj~ι in the same way as
above, we can conclude that each tangent space of each point of W3'1

(j = 2, •••, Jfc) must contain the span of ζt and f8. As for Wo, there are
only a finite number of points belonging to Wo since TF is compact.

Next we show that for each point of W there exists an elliptic curve
which is a fiber of (Σt x Σ2f π, B) such that it contains the given point
and it is completely contained in W. First of all, let us point out that
in each W3 (j — 1, , k) the distribution defined by assigning to each
point in W3 the span of & and ξ2 at that point is integrable. This
can be seen by noticing that & and ξ2 are tangent to the fibers every-
where; therefore, the span of & and ζ2 is tangent to the fiber. Thus
the distribution is involutive. The maximal integral submanifolds of
the distributions must be open submanifolds of some fibers. Let
TF* be a 1-dimensional compact subvariety of Σ1 x Σ2. Then clearly
R(W*) must consist of these maximal integral submanifolds. Any
singular sets of "FT* which consist of a finite number of points are limit
points of R(W*), so they belong to the closure of R(W*)f say R(W*).
Let CR(W*) be a connected component of R(W*), and let CR{W*) be the
closure of it in TF*. Notice that CR(W*) - CR(W*) consists of a finite
number of points in the singular set of W*. Let us call CR(W*) an
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irreducible branch of FT* according to Gunning-Rossi [11]. CR(W*) is a
sub variety of TF* of dimension 1. It is also clear that CR(W*) is a
maximal integral submanifold of the above distribution. Therefore,
CR(W*) is contained in a fiber F. Since F is closed, F-DCR(W*). If
x is ap oint in Ci2(TF*) cOR(ΐΓ*), since CJ?(T7*) is an open subset of F, x
is an interior point of GR(W*) as a subset of F. Let x be a point in
CR(W*) - ORCTF*). There are only a finite number of points in this
set, so each point is isolated in F, too. We want to show that there is
an open disk in F which has x as a center and which is entirely contained
in CR(W*). Note here that since Σ1 x Σ2 has the Rimannian metric g
and since F and CR(W*) are subsets of Σ1 x Σ2, we can naturally assume
that these are metric spaces. For any n (positive integers), denote by
Dn the open disk of radius 1/'n in F which has x as its center. Suppose
that for any n > 0, there is always a point in F — CR(W*), say yn, in
Dn. Since x is isolated in F, we can assume that there is no other point
of CR(Wη - CR(W*) in each Dn except for x. Since CR(W*) is connected
and since x is a limit point of CR(W*)t there is a certain nQ > 0 such
that JDW0 — S»0+i contains a point in Ciί(W*) and at least a point yn oe
F - C#(ΐ7*). In fact (DnQ - Ϊ5ΛO+1) Π C#(ΐf*) is nonempty open subset
of F. Thus it must have at least a point in F — CR(W*) as a limit
point of CR(W*). Since Ci^W*) is closed (compact), we have a contra-
diction. Hence there is an open disk Dnι (for some nγ > 0) which is
entirely contained in CR(W*). Thus we have shown that x is an interior
point of CR(W*), so CR(W*) is an open subset of F as well as closed;
therefore, CR(W*) is F itself. In fact, it can be easily shown that
CR(W*) coincides with F as an analytic subvariety by removing singularity
of the identity map between them. This process can be applied to any
irreducible branch of W* to show that W* is a disjoint union of some
fibers. Note here that this argument actually tells us that there is no
singular point in 1-dimension analytic subvariety of Σι x Σ2. Now applying
this observation to our W\ we have that W1 is a disjoint union of some
fibers of Σx x Σ2. Let C(W2) be a connected component of W2, and let
CζΨ) be its closure in W. Since W2 U W1 U W° is closed, CζW2) - C(W*)
is contained either in W1 or W°. Let x be a point in C(W2) and let M
be the maximal integral submanifold of the above distribution passing
through x. Then the closure I of I is contained in W2 U W1 U W°.
Let us denote by F the fiber that contains M. If M contains a point
in W1, by the previous observation F must be M. This is a contradiction,
because M contains a point in W2 as an interior point. Note here that
Wj (j = 0, •••, fc) are mutually disjoint. If M consists of points in W2
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and points in W°, there are basically following two cases. The first is
that M consists of only points in W2. Thus M is a compact surface
without boundary; hence M is open and closed in F. This implies M— F
(and M = F). In the second case, M — M contains at most a finite number
of points in W°. By the same method used previously, we can actually
show that F = M' — M biholomorphically. Continue in like manner, we
can show the desired result in our theorem. Our argument automatically
gives us that there is no zero dimensional singular variety of W unless W
itself is of 0 dimension. It is well known [11] that if h: X-+Y is a proper
holomorphic mapping from an analytic space X into an analytic space Y,
then the image h(X) of X under h is an analytic subvariety of Y.

Since π: Σj x Σ2 —> B1 x B2 is holomorphic by Lemma 1, and since W
is compact, π(W) is a subvariety of Bι x B2; and π restricted to W is
holomorphic. Thus (W, π \ W, π( W)) is an analytic fibration. q.e.d.

REMARK 2. a) It is not necessary to assume that Σ1 and Σ2 are in
general position in order to show that W is fibered by elliptic curves.
In this case, however, we do not know whether or not π is holomorphic.
b) Theorem 4 can be shown by making use of the fact that every
irreducible compact analytic subvariety can be triangulated in such a
way that each descending chain of singular loci can also be triangulated
simultaneously and that it forms a descending chain of simplicial sub-
complexes. For the details, see Giesecke [8].

The following is a little more precise result than Theorem 4.

THEOREM 5. Let M be a compact complex manifold of complex
dimension k and let h: ikf —>2Ί x Σ2 be a proper mapping from M into
Σγ x Σ2. Then f(M) is fibered by elliptic curves, and the fibration is
induced from that of Σx x Σ2. In particular, if h is an immersion,
M is foliated by elliptic curves, h restricted to each leaf is a covering
projection. Furthermore, let B denote the quotient space by the foliation.
Then B has the natural structure of an analytic space, and there is a
holomorphic mapping h from B into Bx x B2 such that the following
diagram commutes.

M-^Σ, x Σ2

\π 7Γi X τr2

B-^B,x B2

Here π is the natural projection, and (Σlf πlf Bt) and (Σ2, π2, B2) are the
fibrations in general position.
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PROOF. The proof of Theorem 4 applies verbatim to the first half
of the statement because h(M) becomes an analytic subvariety of Σx x Σt.
However, we do not have to use the generalized version of Stokes theorem
here as we will show. Let ω and φ be the same 1-form and (2k — 1)-
form as in the proof of the last theorem. Denote by h* the pullback
homomorphism and by h* the Jacobian mapping induced from h. Consider

the integral I h*(dω)k. Using the ordinary Stokes theorem on M, we

have,

h*(dω)h = [ (dh*ω)k = \ dh*φ = ( h*φ = 0 .
M )M JM JdM

Note here that the boundary dM of M is empty. This tells us that at
each point xeM, there exists a complex vector subspace of TMX which
is mapped onto the span of ξx and ξ2 at h(x) by h*. Otherwise, we would
have a contradiction as in the proof of Theorem 4. However, the above
observation gives a little more information than just applying the argument
in Theorem 4 directly. Now let h: ikf —> Σx x Σ2 be a holomorphic immer-
sion. Then by the above observation, for each xeM, there exists a
unique complex line in TMX which is mapped isomorphically onto the
span of ξx and ξ2 at h(x) under h*. Assign to each xeM that complex
line, say Dx. Then since h is a holomorphic immersion the assignment
D(x) = Dx gives rise to a smooth distribution on M. Again since h is
an immersion and since the span of ξ1 and ξ2 defines an integrable distri-
bution on Σx x Σif D is integrable on M. Clearly each leaf of D is a
compact Riemann surface. This can be seen as follows. Let g be the
Riemannian metric on Σί x Σ2. Then it is easy to see that each fiber in
Σx x Σ2 is a totally geodesic submanifold of Σx x Σ2 with respect to the
metric g. Let M have the induced Riemannian metric from g. By the
definition of D, we can readily see that D is a totally geodesic distribution
on M with respect to the induced metric. Since M is complete with
respect to the metric, each leaf must be complete with respect to the
induced metric, too. For the details, see Abe [1J. Since M is compact,
all the leaves are compact, too. Let L be a leaf of the distribution D.
Then h restricted to L is an immersion and h(L) is contained in a compact
fiber F of Σx x Σ2. Since L and F have the same dimension, h\L is a
covering mapping. For this part, see Kobayashi-Nomizu [17, Vol. 1, p.
176]. Now since F is diffeomorphic to the torus S1 x S1, we can put a
flat Riemannian metric on F. Since h \ L is a covering projection, we can
lift the metric on F to L, and L becomes a flat manifold with respect
to the metric. Then by Gauss-Bonnet theorem, the genus of L must
be 1; therefore, L is an elliptic curve.
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Next let B = M/D be the quotient space of M with respect to D.
Since h is a local diffeomorphism which maps the leaves of D into the
fibers of 2Ί x Σ2, the quotient topology of B is locally the same as that
of the image of h(M) under πλ x τr2. Note here that πx x π2 being proper
and holomorphic implies that (πt x π2)(h{M)) is an analytic subvariety of
the analytic space (complex space) Σ1 x Σ2. (See [11].) Thus we have
naturally induced continuous mapping h: B->Bγ x B2 which is a local
homeomorphism. Now let 0>{B1 x B2) denote the structure sheaf of the
analytic space, then the induced sheaf h*^(B1 x B2) gives rise to an
analytic structure sheaf of B where h* is the morphism induced by the
mapping h. It is also easy to see that B and B1 x B2 are locally isomorphic
to each other as analytic spaces. To show that π: M-+ B is holomorphic,
let / b e a local section of h*έ?(Bt x B2). JΊien there is a local section
g of &{Bλ x B2) such that h*(g) = f, i.e.,_/ = goh, where o denotes the
composition of g and h. Therefore, ττ*(/) = π*h*(g) — gohoπ. Since the
above diagram clearly commutes by the definition of h, gohoπ =
g°(π1 x π2)ofι. Since (π1 x π2) and h are holomorphic, the composition
of them is holomorphic. This means that ττ*(/) = π*(h*(g)) = gohoπ =
^o(7rx x τr2)ofe is in the structure sheaf of ikf, showing that π is holomorphic
in the sense of analytic space. This completes the proof of Theorem 5.

q.e.d.

The following lemma may be convenient to clarify the situation.

LEMMA 5. Let (Σx x Σ2i πx x π2, B1 x B2) be the analytic fibration as
before, and let Y be any analytic space. Let h be a holomorphic mapping
from Σ1 x Σ2 into Y such that each fiber of Σx x Σ2 is mapped into a
point. Then h induces a holomorphic mapping h from B1 x B2 into Y
such that the following diagram commutes.

Σ,x Σ2

I \
V

X π2 \

Bγ x B2 —^ Y
h

PROOF. Let us denote by ΣlχΣ2έ?, B^B^ and γ& the structure sheaves
of Σι x Σ2, B1 x B2 and Y, respectively. It is clear that h is naturally
defined as a continuous mapping in such a way that the above diagram
commutes. Therefore, it is sufficient to show that h is holomorphic.
Here recall that Bγ x B2 has the natural Cartesian product structure as
its complex structure. As is observed in the previous section, the complex
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structure of Bt (i = 1, 2) is the quotient structure of the Seifert fibration
(H\ πi9 HιjT = Bt). We wish to show that for any (xl9 x2) eBλ x B2 and
yeY such that h(x19 x2) = y, h^{γ^y)(Z.BιXBzd7{XvX2). Let (17, φ, W, Ck) be a
local coordinate system of Y at y, and let (Ui9 Φt, Wif Cki) be a local
coordinate system of Bt at xt (ΐ = 1, 2). This means that for instance,
U is a neighborhood of y, and W is a local analytic subvariety of Ck such
that there exists a homeomorphism ^ between U and W such that φ*
gives an isomorphism between the structure sheaves υ(? and wέ? of £/
and W, respectively. By the definition of Cartesian product of two
sub varieties [11], the local coordinate system of B1 x B2 at (xί9 x2) is given
by the product (ϋix Ui9 φγ x φ%9 W, x W2, C*1+*2 = Cfci x C*2). Thus it is
sufficient to show that for any local section / of π&9 f°h is a local section
of ulXU2^. Equivalents, foφoho{φι x &)-1 is a local section of WιXWi<?9

where / is a holomorphic function on W such that f°φ = f. Now restrict
foh to Ut (i = 1, 2), and denote it by ^ (i = 1,2). Since i?t has the quotient
complex structure of Hi/Ti9 it is sufficient to show that ^07^ is holomorphic
in order to show that ψt is holomorphic. It is quite easy to show that
Hi is diffeomorphic to S1 x Σi9 or more precisely via this diίfeomorphism
the complex structure of S1 x Σt is identified with that of H^ In other
words, Hi is biholomorphic to S1 x Σt. Note here that the complex
structure Jt restricted to θt is always the same as the induced complex
structure from the ambient complex Euclidean space as was observed
earlier. Let {a, b)eΣ1 x Σ2 be a point such that πλ x ττ2(α, b) = (x19 x2),
and let W be the orbit of the S'-action on Σ2 through beΣ2. Then I ^ x S 1

is a naturally imbedded complex submanifold of Σί x Σ2. Since this S1-
action has a finite cyclic group as the isotropy group, we have the natural
immersion j from Σί x S1 onto Σλ x SίaΣ1 x Σ2 in such a way that
j(m, n) = (m, ί(w)), where t:n-+ t(n) is the S^action for any (m, w) e
Σ1 x S1. By this immersion the complex structure JΊ restricted to Θt is
mapped precisely onto the complex structure J of Σ1 x Σ2 restricted to
θ,. (Note here this immersion may not be holomorphic.) It is also clear
that h°j = ho(π1 x π2)°j = ϊίoπι as mappings on any sufficiently small open
subsets of πΓ^C/Ί). Let v be a point in π^\x^)9 and let (V9 7, V, Cι) be
a local coordinate system of Σx x S1 about v such that V is so small that
the above equalities hold. Then foφohoπ^Ύ'1 = foφohojoj-1 is a smooth
function in the usual sense, since foφoh is a holomorphic function in the
usual sense in the open subset j(V) = j°Ί~\Vr) of 2Ί x Σ29 and since
J07-1 is a smooth mapping from V onto i(F). Since 2Ί x S1 is a complex
manifold, the coordinate system (V9 7, F', CO is the usual local coordinate
system of Σx x S1 about v. Thus, in order to show that foφohojoj-1 is
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holomorphic, it is sufficient to show that the Jacobian map (f°Φ°hojoy-1)^
of foφohojoj-1 is a complex linear mapping in the sense that it commutes
with the complex structures on Σ1 x S1 and C. This can be seen easily
as follows. First of all, we know that the Jacobian map (foφoh)* of
foφok is a complex linear map, since foφoh is holomorphic in j(V). Next
let {elf , e2k} be a 2&-frame on V such that T*1^), Ί~i\e2) span the
tangent space to the fibers on Σ1 x S1 and the rest span θ t . By the
definition of j , the Jacobian map (i°7~% of j^J"1 maps {elf e2} into the
tangent space of the fibers. Again by the definition of j , the Jacobian
map of j restricted to ΘL commutes with the complex structures Ji
restricted to Θ1 and J restricted to θ1# Note that J^Θ^ and J\Θί are
nothing but the same structure by the definition of the complex structure
of Σx x Σ2. Sincef °φ°h maps a fiber into a point, the Jacobian map
(feφvhojoΎ'1)* of foφohojoy-1 maps the span of eλ and e2 into the zero
vector. For any et (2 <: i ^ 2fc), (foφohojΌy-^j^ = (foφoh)^^"1)^ =
Jo(f°Φ°h°joT~1)ei, where Jo is the standard complex structure of C. Thus
(foφohojΌy-1) is a complex linear mapping. Thus we have shown that
fiO^ is holomorphic, i.e., 'f,, is holomorphic. Applying the same argument,
we can show that ψ2 is holomorphic. This tells us for any (xlf x2) eBλx
B2, h restricted to (xlf B2) and (Blf x2) are holomorphic. Then by the
generalized version of Hartogs' theorem [9], h is holomorphic in B1x B2.

q.e.d.

COROLLARY 4. Let (Σ^xΣ^ T^XTΓ,, BXXB2) and (Σ3xΣ4, π3xπit B3xB4)
be two fibrations as given in Theorem 3. Let h: ΣιxΣ2-+ ΣzxΣι be any
holomorphic mapping from Σx x Σ2 into Σz x Σ4. Then h maps any fiber
of ΣλxΣ2 into a fiber of Σ3xΣ4) therefore, h induces a holomorphic map-
ping h from B1xB2 into B3xB4 such that following diagram commutes.

2\ X

!•

B, x

Σ 2 - ^

Γi X 7Γ2

y v
•*-* 3 ^

1
15o X

X 7Γ4

In particular, if h is one to one, then each fiber of Σι x Σ2 is mapped
biholomorphically onto a fiber of Σ3 x ΣA.

PROOF. It is sufficient to point out that each fiber of Σx x Σ2 is
mapped onto a subvariety of complex dimension 1; therefore, it must be
contained in a torus by Theorem 5. If h is one to one, h restricted to
a fiber of Σ1 x Σ2 must map the fiber onto a fiber of Σ3 x Σ4; therefore,
it is biholomorphic on the fiber. q.e.d.
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The following corollaries are essentially due to Calabi-Eckmann [6].

COROLLARY 5. Let (Σί x Σ2, πγ x π2, Bx x B2) be a fibration as before.
Let W be a subvariety of Σ1 x Σ2(W can be Σx x Σ2 itself). Then there
exists a 2-cycle in H\ W, R) which is represented by a compact complex
analytic submanifold of W. In particular, if H\W, R) = 0, W cannot
be Kahlerian.

PROOF. Take the fibers of the induced fibration of W. These are
topologically tori, thus represent 2-cycles. If H\W, R) = 0, these cycles
are homologous to 0. Since no 2-cycle represented by a compact complex
submanifold in a Kahlerian manifold can be homologous to 0, W cannot
be Kahlerian. q.e.d.

This also shows that many Σ1 x Σ2 cannot be Kahlerian since many
of Σ1 and Σ2 are highly connected.

COROLLARY 7. Let (2Ί x Σ2, π1 x π21 B1 x B2) be a fibration as above.
Let h: Σ1 x Σ2 -+ S2 be any holomorphic mapping into the Riemannian
sphere. This means that h is a meromorphic function on Σ1 x Σ2. Then
h is constant on each fiber; therefore, it induces a holomorphic mapping
h from Bγ x B2 into S2 such that the following diagram commutes.

I \

B,x £2 — S2 .

Indeed, the same result holds for any holomorphic mapping h: Σ1 x Σ2 —> X,
where X is an analytic space.

PROOF. Let y be a point in S2. Then h~\y) is a closed analytic
subvariety of Σx x Σ2. By the previous theorem, h~\y) is fibered by
elliptic curves induced from the fibration on Σx x Σ2. This means that
if x is a point such that h(x) = y, then the fiber that contains x is
entirely contained in h~\y). Therefore, h restricted to the fiber is
constant. By Lemma 5, there is a unique holomorphic mapping h which
satisfies the above condition. q.e.d.

COROLLARY 8. Let {Σ1 x Σ2, πγ x π2, Bγ x B2) be given as before, and
let {aίy , an} be a finite subset of 2Ί x Σ2. Then Σ1 x Σ2 — {alf , an}
is an open complex manifold which contains 2-cycles represented by
elliptic curves. Thus most of Σt x Σ2 — {aly •••, an} cannot admit a
Kahlerian structure. Now let h be a holomorphic function defined on
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Σγ x Σz — {alf , α%}. Then h is constant.

PROOF. Notice that Σ1 x Σ2 — {(&„ •••, αΛ} are fibered by elliptic
curves and possibly elliptic curves with finite points removed. Those
elliptic curves are dense everywhere on the set, and they represent 2-
cycles. Next by using the homology exact sequence of the pair (Σx x Σ2,
Σx x Σ2 — {alf « ,αj) and the excision theorem, we can readily show
that H2(Σλ x Σ2; R) is isomorphic to H2(Σ1 x Σ2 — {alf , an}; R). Since
most of Σί x Σ2 are more than 2-connected as mentioned before, H2(Σ1 x
Σ2; R) = H2(ΣX xΣ2- {alf , an}; R) = H2(ΣX x Σ2; Z) ® z R s π2(Σ, x Σ2) x
® z i ί = 0. The last equality comes from Hurewicz isomorphism theorem.
Finally, h restricted to any elliptic fiber is constant by the maximum
principle. Since such elliptic fibers are dense in Σ1 x Σ2f f restricted to
any type of fiber must be constant along the fiber. Thus by the similar
argument to Lemma 1, h induces a holomorphic mapping h from B1 x B2

into C such that the following diagram commutes.

Σλ x Σ2

B1xBι-^>C

Since Bx x B2 are compact and connected, h is constant by the maximum
principle for analytic spaces. For the details, see Gunning-Rossi [11].

COROLLARY 9. Let (Σlf πlf JBJ and (Σ2, π2, B2) be the triples such that
Σx and Σ2 are Brieskorn spheres, and let (Σx x Σ2, πγ x π2, Bγ x J52) be
the fibration. Denote by Σ1 — {a} (or Σ2 — {b}) the open subset of Σ1 (or
Σ2) obtained by removing a point {a} (or {&}) from Σt (or Σ2). It is then
easy to see that (Σx — {a}) x (Σ2 — {b}) is homeomorphic to a complex
Euclidean space. It contains infinitely many 2-cycles homologous to
zero. It neither can admit a Kdhlerian structure, nor be covered by a
single complex coordinate system, nor admit any non-constant holomorphic
function.

PROOF. AS before, notice that {Σ1 — {a}) x (Σ2 — {b}) is fibered by
elliptic curves, C and cylinders Sι x R. Of course, each of these fibers
is contained in a fiber of ^ x ^ . Again the elliptic fibers are everywhere
dense in the set. Next it is easy to see that this complex manifold is
homeomorphic to some complex Euclidean space. (Actually, it is diffeo-
morphic to a complex Eucidean space, because the latter admits the unique
differentiable structure.) Therefore, it is contractible. This implies
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H\{Σ, - {a}) x (Σ2 - {&}); R) = 0. So it cannot be Kahlerian. The last
assertion can be shown in the same way as before. Now suppose that
(2Ί — {a} x (Σ2 — {&}) admits a single complex coordinate system. Then
every coordinate function gives rise to a holomorphic function on it;
therefore, constant. This is a contradiction. This completes the proof.

q.e.d.

Let us denote by M an analytic space, and by Aut (M) the set of
all the automorphisms of M, i.e., the set of all biholomorphic mappings
of M onto itself. It is well known that if M is a compact complex
manifold, Aut M is a complex Lie group and its Lie algebra aut M is
identified with the set of all the holomorphic vector fields on M. To be
more precise, let X be a vector field on M. X generates a local 1-
parameter group of local transformations. Denote by J the complex
structure on M. A vector field X on M is said to be an infinitesimal
automorphism of J on M if LXJ = 0, where Lx is the Lie differentiation
in X direction. This condition is the same as [X, JY] = J[X, Y] for all
vector fields Y on M. It is easy to see that this condition is also equivalent
to the one that the local transformations generated by X are holomorphic.
Since M is compact, all the vector fields generate a global 1-parameter
group of holomorphic transformations (or automorphisms). Thus via the
exponential map, aut M can be identified with the set of all the infinitesimal
automorphisms of J on M, each of which is identified with a holomorphic
vector field Z on M by Xv->(X — iJX)/2 — Z. For more details, see
[16] or [17].

Now we state a result related to the last corollary.

COROLLARY 10. Let {ΣxxΣ2, πxv,π%, Bγx JS2) be an analytic fibration.
Then there exists a homomorphism h: Aut {Σ1 x Σ2) —> Aut {Bι x B2). The
set of infinitesimal automorphisms induced by the kernel of h, say ker h,
is isomorphic to C. Here C is considered to be the vector space over C.

PROOF. Let φ be an element of Aut ( ^ x Σ2). By Theorem 4 each fiber
is mapped onto a fiber biholomorphically. By Lemma 5 φ induces a holo-
morphic mapping φ: B1xB2-^BιxB2 such thah πλxπ2oφ=φoπ1 xττ2. Clearly
φ belongs to Aut(J5x x B2). Define the homomorphism h: Aut(2Ί x Σ2)—>
Aut (B1 x B2) by h{φ) = φ. It is easy to see that h is a homomorphism,
and the proof is left to the reader. Next since an element φ of Kerh
leaves all the fibers fixed, φ induces an automorphism on each fiber. Let
L denote a fiber. Then φ\L is an automorphism of L. Since L is an
elliptic curve, the associated infinitesimal automorphism to φ\L on L is
a constant vector field. In other words, it is a vector field represented
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by a constant vector in the universal covering space C. Going back to
φ itself, let X be the infinitesimal automorphism associated to φ on Σί x
Σ2. Note that we can identify φ and X, since Σx x Σ2 is compact. Then
X satisfies the identity [X, JY] = J[X, Y] for any vector field Y on Σ, x
J 2 . Let E be the subbundle of T{Σ1 x J2) generated by & and £2. Then
by the above observation X is a smooth section of i£, and (X — iJX)/2
is a holomorphic vector field on Σ1 x 2^ which is constant on each fiber.
Next we show that E is a trivial bundle generated by two infinitesimal
automorphisms. Clearly ξt (i = 1, 2) generates E. Then by the same
argument as in the proof of Lemma 4, Part I, we can show that Lξ.J= 0
(i=l,2). Thus (ξj—iJξi)/2 (j = l,2) are holomorphic vector fields, and these
are linearly dependent over C. If a vector field X is an infinitesimal
automorphism of J and a linear combination of ξι and £2, then (X — iJX)/2
is a holomorphic vector field and linearly dependent of (& — iJQ/2, over C.
Thus, (X — iJX)/2 is a holomorphic section of the trivial holomorphic
bundle (Σλ x Σ2) x C generated by (& — iJQβ. Let P be the natural
projection of (2Ί x ί 2) x C onto C. Then P is a holomorphic mapping;
and therefore, P<>Z is a holomorphic function in 2Ί x Σ2 for any holo-
morphic vector field Z. Since 2Ί x Σ2 is compact, Poi? must be a constant
function. This gives us the identification of Z with a complex number
which is the value of P<>Z. Conversely, any such a constant gives rise to
a holomorphic vector field, and consequently an infinitesimal automorphism
in the kernel of h. Thus, ker h is isomorphic to C over C. q.e.d.

As a special case we have,

COROLLARY 11. Let (2Ί x Σif πγ x π2, Bι x B2) be a fibration as before.
If Aut (2?! x i?2) is α ,/mΐte group, the Lie algebra of Aut (Σλ x Σ2) is
equal to the Lie algebra of Ker h, where h: Aut (Σx x Σ2) —> Aut {Bx x B2)
is the above homomorphism. Thus, Aut (2Ί x Σ2) = C

REMARK. It is of some interest to notice that there are quite a few
complex manifolds which have a finite automorphism group. As for the
base space Bt x B2t some sufficient conditions for Bt (i = 1, 2) to be a
complex manifold have been obtained in the case of Examples 1, 2 and
3; see [4], [23], [24]. Thus it makes sense to speak of some sufficient
conditions for a compact complex manifold to have a finite automorphism
group. The following are those conditions, a) B1 x B2 is a complex
manifold and has negative first Chern class, b) Bλ x B2 is hyperbolic
manifold in the sense of Kobayashi. c) Bx x B2 is a protective algebraic
manifold of general type and finally, d) Bx x B2 is a compact Riemann
surface of genus ^ 2 . For the details, see Kobayashi [16]. In particular,
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d) is of greatest interest because of the following reasons. As we pointed
out earlier, our induced S^-action on Σ gives only principal orbits and
exceptional orbits without fixed point if dimension of Σ = 3; therefore,
the orbit space Σ/S1 = B is always a manifold. In fact, it has been
pointed out [23] [24] that B is a topological manifold if and only if B
is a complex manifold with the induced complex structure and the quotient
map is holomorphic. Combining these, we see that if dimi? = 3, the fibra-
tion (S1 x Σ9 π, B) is an analytic fibration with a compact Riemann surface
B. For instance, if Σ is an original Brieskorn 3-manifold, Neumann's
characterization gives us that there are plenty of compact Riemann
surfaces of genus ^ 2 which arise as an orbit space B — Σ/S1. As for
the Chern classes of Σι x Σ2, the highest Chern class of Σt x Σ2 always
vanishes. This can be seen as follows. The tangent bundle T{Σ1 x Σ2)
can be expressed Sp (ξlf ζ2) 0 (θx 0 Θ2) as a complex vector bundle, where
Sp (fi, Q denotes the span of ft. and ζ2. Sp (ζ19 ζ2) is a trivial complex
line bundle over Σx x Σ2 and has the trivial Chern classes. By the
Whitney sum axiom, we have the desired result. In particular we have,

COROLLARY 12. Let Σι x Σ2 be a complex manifold given as before.
Then its Chern numbers vanish.

PROOF. By the theorem of Bott [3], we know that if Σt x Σ2 admit a
non-vanishing holomorphic vector field, then all the characteristic numbers
(complex case) vanish. Since ξt (i = 1, 2) is such a holomorphic vector
field, in particular, the Chern numbers vanish. q.e.d.

We have seen that Σί x Σ2 as a differentiate manifold can admit
a infinitely many seemingly different complex structures as described in
Theorem 1. We have also discussed some properties of these complex
manifolds. In what follows, we attempt to distinguish these complex
structures. Perhaps, it should be mentioned here that there are two
generally accepted criteria to classify complex structures on a complex
manifold. One is the classification with respect to biholomorphic mappings,
and the other is with respect to the notion of complex deformation in
the sense of Kodaira-Spencer We use the former criterion. Note also
that Morita [20] recently obtained a classification of complex structures
on S1 x Σ2"'1 up to the homotopy of the underlying almost complex
structures, where Σ2n~ι is a Brieskorn homotopy sphere of dimension
2n — 1. Going back to the first case, let M and N be two complex
manifolds. We say that M and N are equivalent as complex manifolds
if there exists a biholomorphic map from M onto N.

Let Σt x Σ2 be the complex manifold and let Σt (ί = 1, 2) have the
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S'-action as before. Introduce a smooth torus T = S1 x Section on
Σι x Σ2 as follows. Let (s, ί) 6 T = S1 x S1 be an element of T, and let
(x, ί / J e ^ x ^2 be a point of 2Ί x Σ2. Define the T-action on Σι x £2 by
(s, t)(x, y) = (sx, ty), where sx and ί# denote the S^-actions on Σ1 and Σ2,
respectively. Let g be the Riemannian metric on Σx x Σ2 induced naturally
from the associated Riemannian structures with ηx and η2 on Σ1 and Σ2,
respectively. Then the torus action on Σx x Σ2 can be considered as an
isometric action with respect to g. Now let [Zp, ^ θ φ ^ φ σ P Q ]
and let [Zq, <τ?1φ φ \ φ t f ί 0 ] be the slice types of S^-actions on Σ1

and Σ2 at & and y, respectively. Here

(cos2πpit -sin2πpit\ .
σ« = (0 < ^ ^ m)

\sm 27r^£ cos 2πpitj

as the representation oί C = R2 and σPo is the identity representation of
a linear subspace. σqj (j = l, 9n) and σQo should be interpreted similarly.
Now it is easy to show that the isotropy group of the T-action at (x, y)
is precisely Zp x ZqaSl x S1. From the above observations, the slice
representation of Zp x Zq on the normal space to the orbit through (x, y)
with respect to g is given by

[Z, x Zq; σPl 0 . 0 σPm 0 σPo 0 J ? 1 0 σg% © σqo\ .

Here σ1>< is the representation of the torus T = S 1 x S1 given by ^ ( s , t) =
σp.(s) (i = 1, , m, 0), and <7g. is given by σff<(8, ί) = σu(t) (i = 1, ••-,%, 0).
Next let us regard the orbits of the S^action and the T-action as the
leaves of foliations on Σu Σ2 and Σx x Σ2. Let (Ulf xlf , xk) and (Z72, 2/x,
• , ί/i) be the cubical Frobenius coordinate systems at x and 2/, respectively,
such that the slices for the leaves are given by the first coordinates.
By the definition of the Γ-action on Σt x Σ2f it is clear that (tTJ x U2, x19

"••> χk9 yχi •••> ί/i) gives us a cubical Frobenius coordinate of foliation on
Σi x Σ2 at (α?, ?/). In this case the slices for the leaves are given by xι

and yγ coordinates. Suppose that a leaf Lγ on Σ1 passing through a
point in Uι meets C7Ί in a slices, and suppose that a leaf L2 on Σ2 passing
through a point in U2 meets U2 in β slices. Then it is clear that the
leaf A x L2 on Σλ x Σ2 meets U1 x ί/2 in #/3 slices which are all distinct.
Thus we have shown that,

LEMMA 6. a) The slice diagram of the above torus action on Σ1 x Σ2

is precisely the set of all the slice types described as above.

b) Let (xf y) be a point in Σt x Σ2. Assume that the S^orbits of
Σx and Σ2 through x and y, respectively, meet cubical Frobenius coordinate
neighborhoods of Σι and Σ2 in a and β different slices. Then the product
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orbit of Σj. x Σ2 meets the product Frobenius coordinate neighborhood
in aβ different slices.

Let G be a compact Lie group acting on a smooth manifold M, and
let A(G, M) be its slice diagram. Let [H, σ] be the slice type of an orbit.
We define the intersection number of [H, σ] to be the number of slices
given as follows in a sufficiently small cubical Frobenius neighborhood
of a point in the orbit. Let U be such a Probenius coordinate neighbor-
hood. Then take a leaf through U which is at the same time a principal
orbit of the G-action. The intersection number is defined to be the
number of slices in which the leaf intersects U. Note here that this
number neither depends on the choice of points where U is taken, nor
the choice of principal orbits. It also does not depend on the size of U
as long as U is taken sufficiently small. Finally, this number is constant
in the orbit bundle; however, two different orbit bundles can have the
same intersection number. Let us denote by I(G, M) the set of ordered
pairs (£, k) of integers I and k such that I runs over all the possible
intersection numbers associated with each slice type of Δ(G, M), and k
is the total number of connected components of orbit bundles which are
associated with the slice types of intersection number I. Then we have,

THEOREM 6. Let Σ1 x Σ2 and ΣB x ΣΛ be two products of generalized
Brieskorn manifolds. Assume that there is a diffeomorphism f: Σι x Σ2 —>
Σ3 x ΣA. Then f cannot be a biholomorphic mapping between them, unless
I(T, Σι x Σ2) and I(T, Σ3 x J?J are identically the same.

PROOF. Assume that / is biholomorphic. By Theorem 5, each fiber
of Σt x Σ2 must be mapped onto a fiber of Σ3 x Σ± biholomorphically. Let
Li be a fiber of Σ1 x Σ2 considered as an orbit of the Γ-action, and the
slice type of Lt has intersection number I. If we denote by L2 the image
fiber of Lt under /, then the slice type of L2 must have the same in-
tersection number I. This can be seen easily as follows. Let U be a
sufficiently small cubical neighborhood at a point x in Lιβ Since / is a
diffeomorphism which preserves the leaves, f(U) is a cubical Frobenius
neighborhood at f(x). Let L be a principal orbit passing through U.
Then /(L) meets f{U) in as many different slices as L meets U. Since
any principal orbit passing through f(U) meets f(U) at least as many
times as f(L) meets f(U), the intersection number of f(Lt) = L2 is ^ L
Applying the same argument to / - 1 , we have that the intersection number
of L2 = I, too. Thus I(Γ, Σ1 x Σ2) must be identically the same as

£ 3 X Σ<). q.e.d.

Note here that / may not be an equivariant mapping; therefore, we
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cannot conclude that the slice diagrams are the same. Next we give
some concrete examples for Theorem 6.

COROLLARY 13. Let S2n~ι be the (2n — ϊ)-dimensional standard sphere,
and let us assume that S2"'1 has the normal contact structures given in
Example 7 in Part I. Then Sι x S2""1 admits infinitely many distinct
complex structures. In fact, the complex structures are all distinct.

PROOF. Let S1 x Sf~ι and S1 x Sf-1 be the complex manifold cor-
responding to the polynomials PP(Z) = ZQ + Zλ + Z\ + + Zl and
Pq(Z) = Zo + Z, + Zl + + Zl, respectively. Then I{T, S1 x Sf"1) =
{(p, 1), (1, 1)} and I(T, S1 x Sf"1) = {(q, 1), (1, 1)}. Thus if p Φ q, they are
not the same complex structures. q.e.d.

It is clear that we can indeed give more precise criterion than that
in Theorem 6. For instance, even if I(T, Σ1 x Σ2) and I(T, Σz x ΣJ agree,
there cannot exist a biholomorphic mapping between them unless the
dimensions of corresponding orbit bundles agree (as submanifolds). From
this point of view, we immediately see that the complex structures on

SiχS2n-i corresponding to the polynomials Pt(Z) = Zo -\ + Z< + Zp

ί+1 +

V Zl (i = 1, •••, n) are all distinct, since the orbit bundle associated
with the intersection number p has 2i—1 as its real dimension ( i=l, , n).
Thus they are distinct complex structures on SιxS2n~γ. In general, the
complex structures corresponding to Pitq(Z) = ZQ-\ [-Zi + Zq

i+1-\ VZl
(i = 1, , n, q = 1, 2, •) are all distinct. It is also clear that we can
make many more distinct complex structures on Sι x S2n~\

COROLLARY 14. There are infinitely many Brieskorn exotic spheres
whose product with S1 admits infinitely many distinct complex structures.

PROOF. Use Example 9 in Part I and Theorem 6. q.e.d.

These corollaries are particularly interesting in the following context.
As is pointed out earlier, Morita showed that if n = 1 (mod 4) or n = 3
(mod 4), S1 x Σ2n~x (n ^ 2) admits a finite number of complex structures
up to almost complex deformation, where Σ2^1 is a Brieskorn sphere.
We know practically nothing as to which of the above complex structures
are distinct up to deformation.

COROLLARY 15. Let P,{Z) = Zo + Zΐ* + Zl*(i = 1, 2) be as in Theorem
6 in Part I. Then the complex structures on S1 x S* associated with
Pi {i = 1, 2) are distinct if the powers of Pi(Z) satisfy the same conditions
as in Theorem 6 in Part I.

PROOF. Under the given conditions, the I(T, S'xSys associated with
p.{Z) (i = 1, 2) are different. Now use Theorem 6. q.e.d.
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Note here that these surfaces (complex surfaces) must be equivalent to
one of so called Hopf type surfaces by the result of Kodaira [20], Finally,
let M b e a compact complex manifold of dimension n, and let K(M) be the
set of all meromorphic functions on M. It is well known that K(M) is
a field and it is finitely generated over C. Also its degree of transcendency
d is ^n. Now let S1 x Σ be a complex surface given as generalized
Brieskorn complex manifold. It is known that if d = 2, S1 x Σ is pro-
jective algebraic; therefore, for most of 2"s, d = 0 or 1. It is also known
that if d = 1, there are a compact Riemann surface iVand a holomorphic
mapping φ from M into N such that 0*: K(N)—>K(M) gives rise to an
isomorphism, and such that φ~\x) for x except for a finite number of
points, is an elliptic curve. These facts and our observations concerning
fibration (S1 x Σ, π, B) seem to agree. It seems natural to think that
even in the general case, K{Σ1 x Σ2) has the degree of transcendency
which is strictly less than its complex dimension.
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