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1. Introduction. Recently, we [4] have extended an existence theo-
rem of Nagumo for boundary value problems in second order ordinary
differential equations (cf. [3], [4]). This paper is a further extension
of our result to functional differential equations, and the proof given in
this paper is simpler than that in [4].

As the phase space for retarded functional differential equations, Hale
[1] first considered a Banach space of functions which satisfies some axioms.
Recently, Hale and Kato [2] have improved the axioms for the phase
space. We shall discuss the theory of functional differential equations
in a semi-normed linear space as a phase space, and we shall assume
some axioms which are essentially equivalent to those in [2]. Under
these axioms, our results contain not only the theory for infinite delay
but also the theory for finite delay and ordinary differential equations.

First we shall introduce the axioms for the phase space in Section
2, but our notations are somewhat different from those in [2], and we
shall prove Kneser's property in Section 3 and apply this to a boundary
value problem for some functional differential equation in Section 4. For
a contingent functional differential equation, where the phase space is
the class of all bounded and continuous functions, Kikuchi [5] proved
the Kneser's property on Rn.

2. Preliminaries. Let B be a linear real vector space of functions
mapping (— °o, 0] into Rn with the semi-norm | |. For any elements φ
and ψ in B, φ = ψ means φ(Θ) = ψ(θ) for all 0e(— oo, 0]. The quotient
space of B by the semi-norm | |, which is denoted by & — B/\ |, is a
normed linear space with the norm | | which is induced naturally by the
semi-norm and for which we shall use the same notation. We do not
assume & is a Banach space. The topology for B is naturally defined
by the semi-norm, that is, the family {U(φ, ε):φeB,ε> 0} is the open
base, where U(φ, s) = {ψeB: \φ—ψ\<e}. Generally, B is a pseudo-metric
space for this topology, and hence it may not be a Hausdorff space. The
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natural projection π: B —> & is a continuous, isometric, closed and open
mapping.

For an iϋ"-valued function x defined on an interval (—°o, σ) and for
a t e(— oo, σ)f let xt be a function defined on (—°°, 0] such that

Xt{θ) = x(t + θ) , β 6 (-oo,0] .

Given an A, 0 < A <; oo, and a. φ in B, let ^*A(φ) be the set of all iϋw-
valued functions # defined on (— oo, A) such that xQ = φ and x is continuous
on [0, A), and denote

For a /3 ̂  0 and a φ in 5, let ^ be the restriction of <£> to the interval
(— oo, —/3] and let ΰ^ be the space of such functions φβ. We can define
a semi-norm | \β, β ^ 0, in β^ by

\η\β = int{\ψ\:ψeB, ψβ = η) , ) ? e ^ .

This semi-norm is also a semi-norm in B by the relation \φ\^ = \φβ\β, φeBf

that is,

= inf

We shall assume the following axioms on B.
(Al) If x is in ^ , 0 < A <: oo and t e [0, A), then xteB and α̂  is

continuous in t e [0, A).
(A2) There is a positive and continuous function K(β) of β ^ 0 such

that

for any φeB and any /3 ̂  0, where |φ{θ)\ is any norm of φ(θ) in Rn.
(A3) For any φ in B and /5 ̂  0, | ^ | = 0 implies | Tβφ\β = 0, where

Γ̂  is a linear operator from J5 into Bβ defined by Γ^(^) = φ(β + θ)>θe
(— oo, —/3]. Here notice that axiom (Al) assures TβφeBβ.

(A4) It φeB and 191 = 0, then <p(0) = 0.
The following two axioms which are stronger than (A3) and (A4) will

be assumed.
(A3*) There is a positive and continuous function M(β) of β ^ 0

such that

for any φeB and β ^ 0.
(A4*) There is a positive number Iζ. such that
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EXAMPLE 2.1. Let B be the set of all ϋ^-valued functions which are
continuous on a compact interval [—r, 0], and let

\φ\ = sup{|<p(0)|: - r ^ θ ^ 0} , φeB .

Then I I is a semi-norm in B and ^ is the Banach space C([ — r, 0]; Rn)
of all continuous functions from [ — r, 0] into Rn with uniform convergence
topology, and in particular, & = 22* if r = 0. This space £ satisfies all
axioms in the above.

For other examples, see [2].
It is not difficult to prove the following two lemmas.

LEMMA 2.1. // both spaces B^ and B2 satisfy one of the above axioms,
then a semi-normed linear space B = BtxB2 also satisfies the same axiom
and ^ = ^ x ^ J .

LEMMA 2.2. Let X and Y be any topological spaces. If F is a
continuous mapping from a subset & of X x & into Y, then F can
be naturally regarded as a continuous mapping from a subset D =
(lz x π)-\&) of X x B into Y, where lx: X-+ X is the identity mapping
on X. Conversely, if Y is a Hausdorff space and F is a continuous
mapping from a subset D of X x B into Y, then F can be naturally
regarded as a continuous mapping from a subset £& — (lx x ττ)(-D) of
X x & into Y.

By Lemma 2.2, if D is a subset of R x B and F: D->Rn is a con-
tinuous function, then F can be regarded as a continuous function from
a subset 3F of R x & into Rn, and vice versa, and so we consider the
following functional differential equation;

(E) χ\t) = F{t, xt) i! = d/dt) ,

where F is a continuous function defined on a subset D of R x B.

DEFINITION 2.1. The function x is a solution of (E) on an interval
J c R if x is a mapping from U{(— °°> t] t e J) ίn t o -B* s u c h that (t, &t) 6 D
for £ e J and # is continuously differentiable on J and satisfies (E) on J.
For a given (σ, £>) 6 D, we say α? = x{σ, φ) is a solution of (E) through
(σ, φ) if there is an A > σ such that x is a solution of (E) on [σ, A) and
#σ = φ.

THEOREM 2.1 (Existence). Suppose (Al) and (A2). Lei Ω be an open
subset ofRxB and F: Ω —* Rn be continuous. Then for any (σ, φ) e Ω,
there exists a solution of (E) through (σ, φ).

REMARK. This theorem can be proved by the same method as in
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the proof of Theorem 2.1 in [2], though they further assumed (A3) and
(A4*) (which correspond to (a2) and (a4) in [2], respectively) since their
initial function is an element of &. Under axioms (Al) through (A4),
we have the following assertion: If x and y are solutions of (E) on [σ, A)
such that \xσ — yσ\ = 0, then the function z: ( — oo, A) —> Rn defined by
zσ = χσ and z(t) = y(t) for t e [σ, A) is also a solution of (E). This means
that the initial value problems are determined by the elements of &.

3. Kneser's property. Throughout this section, let I be a compact
interval [σ, Γ], σ < T, and let C = C(I; Rn) be the Banach space of all
continuous functions from I into Rn with the norm || || defined by

= s u p { | ? ( t ) | : t e Γ } , ξeC.

For an Rn-valued function u defined on (— oo, T]9 let u\Σ be the restriction
of u to the interval 7. If u\Σ is continuous on I, then we write | | t&| 7 | |
simply by \\u\\.

Clearly, if F: I x 2?-> Rn is bounded and continuous, then all solutions
of (E) through (σ, φ) are continuable to the whole interval I for any
φeB under axioms (Al) and (A2).

THEOREM 3.1. Suppose (Al) and (A2). If F: I x B->Rn is a bounded
and continuous function, then the set

S = S(φ) = {x\Σ: x is a solution of (E) through (σ, φ)}

is a continuum {i.e., compact and connected) in C for any φeB.

PROOF. Let φeB he fixed and M> 0 be a bound for F, that is,
\F(t, ψ)\ ^ M for (ί, ψ)elx B.

Let L be the set of all functions u: (— oo, Γ] —> i2Λ such that uσ — φ
and w is (Λf + 1)-Lipschitzian on /, that is,

\u(t)-u{t')\ ^(M+ l ) | ί - ί ' | for ί , ί ' e l ,

and let

£/ = {ut: ueL,teI} .

Then we can regard L as a subset of C, and in this sense, L is clearly
compact in C. Therefore, by (A2), it is not difficult to show that E is
a compact subset of B, and hence F is uniformly continuous on I x E.
This implies that for any ε, 0 < ε < 1, there exists a δQ = δQ(ε) > 0 such
that for any tf sel and ψ,ηeE,

(3.1) \F(t,ψ)-F(s,7))\^e if | t - β | ^ δ 0 , | t - 7 l ^ * o .

Now let ε, 0 < ε < 1, be fixed and K be a positive number such that
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K ^ max {K(β): 0 ^ β ^ T - σ). For the above δ0 = δo(ε) > 0, we can
find a number δ, 0 < δ < min {δ0, dJ2K(M + 1), ε/(M + 1)}, such that for
any t, se I and u, weL,

(3.2) |wt - w.l ^ δo/2 if |ί - s| ^ δ, | |u - w|| ^ δ .

Let

j : σ = (70 < σx < < σN = T

be any division of I such that m a x ^ ^ (^ — σ^i) < δ, and let v0, v19 ,
v^-i be any vectors in Rn such that |t;<| ^ e, 0 ^ i ^ N — 1. For this j
and 0 = (tf0, Vi, , Vjr-x), we construct the function <pε(v)('): (—°°, T]-*Rn

in the following way. First, define φ°:(— ©o, σ 0]-^i2TO and bQeRn by

9°0 = 9> and 60 =

For & = 0, 1, , N - 1, we define φk+1: (σkJ σk+ί] -> Rn, bk+1 e Rn and φk+1:
(—^9σk+ϊ]—>Rn inductively in the following way:

φk+\t) = - σk){F(σk, φik) + vk) for t e (σk, σk+ί] ,

φ\t)

and

Thus we finally obtain a function φN. We denote this function φN by
£>e(ΐ>) or simply φ\ Since 0 < ε < 1, £>e belongs to L.

Next we shall show the following inequality concerning φε;

t 6(3.3) \φε(t) - £>(0) - (V(s, 9>j)d8| ^ 2e(t - σ) ,

For ί e (σ0, σj, it follows from (3.1) and (3.2) that

φε(t) - φ(0) -

^ Γ |F(σ0,
Jσ0

(ί -, φl)ds

- Jf(β, 9»ί)|dβ + K l ( ί - σ0)

^ e(t - σ0) + ε(t - σ0) = 2β(ί - σ0) ,

because |α 0 - s | < δ < δ0 and \φa

σQ - φl\ ^ δo/2 < δ0 f or σ0 ^ s ^ ί ^ (7t. If
(3.3) holds for ί 6 (σ0, crfc], 1 <L k <^ N - 1, then for t 6 (σk, σk+ί], it follows
from (3.1) and (3.2) that

φ\t) - φ(0) - f φl)ds φ\t) - φ\σk) - Γ F(8, φl)ds
Jσk
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φ%σk) - φ(0) -

(t - σk){F(σk, φε

σk) + vk} - [ F(s, φί)ds 2ε(σk -σ)

^ Γ \F(σh, φε

σk) - F(s, φl)\ds + \Vk\(t - σk) + 2ε(σk - a)

^ ε(t - σk) + e(ί - σk) + 2ε(σk - σ) = 2e(ί - σ) ,

because \σk — s\ < d < δ0 and 19?̂  — φ\\ ^ δo/2 < δ0 for σfc ^ s <; ί ^ α fc+ι.
Therefore (3.3) holds for t e I.

Let

\ji v = (v0, vl9 , v^), I Vi I <; ε, 0 <; i <; iV - 1} .

Then ίΓe( J) is a continuum in C, because the mapping v \-» φε(v) 17 is
continuous by (A2) and the set {v — (v0, v19 , vN^): \ vt \ ̂  ε, 0 ^ ΐ ^ iSΓ—1}
is a continuum.

For this set Kε(A), we shall show that if x is a solution of (E) through
(σ, ^?), then

(3.4) dist (x I z, 1Γ(J)) < ε ,

where dist (x\l9 K\Δ)) = inf {||sc|x - f | |: ξ e K\Δ)}. Let x be fixed and let
y: (—<*>, T]—>iZ% be the function satisfying yσ — φ and combining the
points (<70, »(̂ o))» (σi> (̂°"i))> •••> (^> ίc(^)) linearly on /. Obviously cceL
and ί/el/. If we show #1 7eUL£(J), then (3.4) holds since \\x — y\\ ^
(Af + l)δ < ε. Let

Then by (3.1) and (3.2),

y(σύ = x(σx) = x(σ0)

and

Vo = —^— \'1{F{8, X8) - F(σ, φ)}ds .
σi — σo J σ o

σ± - σo){F(σ, φ) + v0}

i — σo J σ o
, x.) - F(σ, φ)\ds^ ε(σ, - σ0) = ε ,

because | s — σ0 \ < δ < δ0 and | a?, — φ | = | a?β — a?σo | ^ δo/2 < δ0 for OΌ ^ s <; o .̂
Therefore we have

y{t) = (ί - σ t e (σQ, σx] .

Assume that there exist vectors v0, vlf , vk-t such that \vt\ ^ ε, 0 ^ i ^
fc — 1, l ^ f c ^ i S Γ — 1, and
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y(t) = yiσ,.,) + (ί - ffi-iMίXo1,-!, ϊ j + v,-i}

for t e ( α M , σ j , i = 1, •••, fc .

If we put

1 Γσfc+i

, yσk)}ds ,

then by (3.1) and (3.2),

0(0*+i) = &(**+i) = &(**) + (σk+1 - tffc){F(<7fc, ^ ) + vk]

a n d

\ ° k + 1 , x8) - F(σk, yσk)\ds ^ * ε(σk+1 - σk) = ε ,

because \s — σk\ < δ < δ0 and

Is. - V.J ^ I a?. - «σj + \xσk ~ Vok\ ^ - ^ + K{σh-σ) sup

^ A + J : sup i a?(ί) - »(ί) i ̂  A + ίr(M + i)δ < A + A = δ0.
2 tei 2 2 2

Thus we have

V(t) = y(σk) + (ί - σfc){F(ί7fc, y j + vk)

for ί 6 (σfe, σk+ί], and hence 1/ can be written as φ\v) for the above v =

(%, Vi, ' , VN-I) T h i s i m p l i e s y\xe K\A).

Finally, we shall show the set S is a continuum in C. Clearly, S is
compact in C. Assume that S is not connected. Then there exist two
nonempty compact sets Sλ and S2 such that Si Π S 2 = 0 and S t U S2 = S.
Let dist (S l f S%) = inf {||£x - f,||: fx e S19 ξ% e S,} = 2η > 0, and let U =
[/(iSx,)?) be the open ^-neighborhood of Sx in C. For this 57 > 0, we may
assume 0 < ε < η. It follows from (3.4) that both U Π K*(Δ) and Uc Π Kε

(A) are nonempty, where Uc is the complement of U in C. Since Kε(Δ)
is connected, there exists s, vε = (v0, vί9 , vN^9 \vt\ ^ ε, 0 <Ξ i ^ -W — 1,
such that

where dU is the boundary of U in C.
Now replace ε by ε̂  > 0 and φεj(vε^) by φ\ j = 1, 2, , where ε, —> 0

as j-*oo. Since φjeL and L is compact, we may assume that there
exists a « e L such that {<pj} converges to z uniformly on I as j —> 00,
and hence \φ{ — «β| -> 0 as j—> 00 for any s e / by (A2). On the other
hand, it follows from (3.3) that <pj satisfies
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φi(t) - φ(0) - (V(s, φί)ds ^ 2s3 (ί - σ) , t 6 I .
Jσ

Therefore we have

z{t) - φ(0) - \*F(8, z8)ds = 0 for t e I,

and hence z is a solution of (E) through (σ, 9?). Since dU is closed and
g^liGdU, we have 2|7e3Z7Γ)S. This is a contradiction. q.e.d.

COROLLARY 3.1. Under the same assumptions as in Theorem 3.1,
for any φeB, the sets

Σ = Σ(φ) — {x(T): x is a solution of (E) through (σ, 9?)}

and

S^ — £^(φ) = {xτ:x is a solution of (E) through (σ, φ)}

are continua in Rn and in B, respectively.

PROOF. The mappings on S(φ) defined by x\τ\-+x(T) and x\z\-+xτ

are continuous onto Σ and Sf, respectively. Since S(φ) is a continuum,
Σ and Sf are also continua. q.e.d.

COROLLARY 3.2. In addition to the assumptions as in Theorem 3.1,
suppose (A3*) and (A4*). Then for any continuum Q in B, the sets

= \J{S(φ):φeQ},

and

are continua in C, in Rn and in B, respectively.

PROOF. We shall prove this only for the set S = S(Q), since the
arguments for the other sets are similar, in particular, Σ(Q) is a con-
tinuous image of S.

First we shall show that S is compact in C. Let {uk} be any sequence
in S. Then for each uk, there exists a solution xk of (E) such that xk \ 7 =
uk and xk e Q. Since Q is compact and the mapping xk 1—• xk(0) = u\σ) is
continuous by (A4*), the family {uk} is uniformly bounded and equicon-
tinuous. By taking a subsequence if necessary, we may assume that
xk —» φ° in B and uk —> u° uniformly on I as k —> 00 for some φ° e Q and
u° e C. Clearly, u\σ) = ^°(0).

Define a;0: (-00, T]-> jBΛ by a;0(ί) = u\t) on / and x°σ = φ\ Since ccfc

is a solution of (E), it satisfies
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(3.5) as*(ί) = x \ σ ) + [ F ( S , xΐ)ds , t e l .
Jσ

For any sel, by (A2) and (A3*),

\xt - xl\ ^ K{s - σ) sup |*ϊ(0) - xl{θ)\ + I Γ—(** - <p°)|,-.

^ K(s - σ)\\u" - M || + Af(β - σ)|»» - φ"\ ,

and hence |x£ — x",\ —> 0 as k—> oo. It follows from this and (3.5) that

x \ t ) = x \ σ ) + ( V ( s , xΊ)ds , t e l .
Jσ

Thus x° is a solution of (E) and x°σ = <p°e Q, and hence u° = xo\ΣeS. This
means S is compact in C.

Now we prove the connectedness of S. Assume that S is not con-
nected. Then there exist two nonempty compact sets Sx and S2 such that
S, Π S2 = 0 and Sx U S2 = S. Define

ζ^ = {φ e Q: S(9>) Π Si is nonempty} , i = 1,2 .

Clearly, Qt is nonempty, i = 1, 2, and Q = Qi U Q2 The compactness of
Si and the same arguments as in the proof of the compactness of S —
S(Q) imply that Qt is compact in B, i = 1, 2. If there is a φ in Qx Π Q2>
then S(φ) Γ\ St = Xt9 i = 1, 2, are nonempty compact sets, and Xι U X2 =
S(<p) while l ! n X2 = 0 This contradicts the connectedness of S(φ).
Therefore Qx Π Q2 = 0 This contradicts the connectedness of Q. Thus
S is connected. q.e.d.

4. Boundary value problems. In this section we assume that the
elements of B are R-valued functions defined on (— oo, o] For any φ and
ψ in B, the notation φ^ψ means that φ(θ) ^ ψ(θ) for all θe(— oo, 0],
and define a nonnegative real valued function X(φ) by

λ(9>)(0) = |9>(0)l for ffe(-oo,θ],

where |φ(<9)| is the absolute value of <p(0).
Now we assume the following hypothesis for B.
(A5) λ is a continuous mapping fromi? into B.
Prom this hypothesis, we obtain the following lemma.

LEMMA 4.1. Let φ and ψ be in B. If we assume (A5), then the
functions φ V ψ and φ A ψ defined by (φ V ψ)(θ) = max {φ(θ), ψ(θ)} and
(φ Λ ψ)(θ) = min {φ(β), ψ(θ)} for θ 6 (— oo, 0] are elements in B, and fur-
thermore φ V ψ and φ A ψ are continuous in (φ, ψ) e B x B.

PROOF. The equalities φ\/ψ = {φ + ψ + χ(φ — ψ)}/2 and φ A ψ =
{φ + ψ — \{φ — ψ)}/2 complete the proof.
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We consider the following boundary value problem for the second
order scalar functional differential equation

(El) x'\t) = f(t, xt, x\t)) ,

(4.1) xσ = Ψ and x(T) = A ,

where / is continuous on a certain subset of I x B x R, I — [σ9 T], and
ψeB, AeR. Equation (El) is equivalent to the system

(E2) x\t) = y{t) , y'(t) = /(ί, xt, y{t)) .

As was seen in Example 2.1, R can be written as ^ for some space
Bo which satisfies all axioms (Al), (A2), (A3*) and (A4*). If the space B
satisfies one of these axioms, then the product space B x Bo satisfies the
same axiom by Lemma 2.1. By Lemma 2.2, we can assume that the
domain of / is a subset of I x B x Bo. Therefore the results obtained
in Sections 2 and 3 are applicable to equations (E2) and (E3) which will
appear in Lemma 4.2.

LEMMA 4.2. Suppose (Al) and (A2). Let f be a bounded and con-
tinuous function on I x B x R. For any fixed ξ and η in B such that
ξ^η, let q = q(ξ, η) be a mapping from Z = {σ} x {r e R: £(0) ^ r <̂
?7(0)} x R into B x R such that

q(σ, r, y) = (μ(r), y) ,

where

y(0) - r r - g(Q) i f

[ψ if 5(0) =
for any fixed | e ΰ such that ξ^ψ^η. Then for any continuum H in
Z, the set Q — Q(ξ, η; H) defined by q(H) is a continuum in Y = {φeB:
ζ<^ φ <ί Ύ]} x jβ, and the set

Σ (ξf V\ H; f) = {(a (Γ), y(T)): (x, y) is a solution of (E2)

such that (xσ, y(σ)) e Q}

is a continuum in R2. Here notice that any solution of (E2) is continuable
to t = T by the boundedness of f.

PROOF. Since we have

(4.2) Mr,) - Mr.) = ( o ) I g ( o ) ( y ~ g ) i f

q is continuous from Z into Y. Therefore the first part is obvious.
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We now prove Σ — Σ(ξ, rj; H; f) is a continuum in R\ Since / is
bounded and H is compact, Σ can be written as {(x(T), y(T))\ (x, y) is a
solution of (E3) such that (xσ, y(o)) e Q} for a system

(E3) x\t) = PM{y(t)) , y'(t) = f(t, xt, y(t)) ,

where PM: R —> i2 is a continuous function such that

'Λf for y > M

PM(y) — y for

,-M for

and M > 0 is so large that any solution (x,
Q becomes a solution of (E2) and vice versa.
(E3) are bounded.

First we show that Σ is compact. Let {sk} be any sequence in Σ.
Then there exists a solution (x\ yk) of (E3) and hk e H such that sk =
(x\T), y\T)) and (xk

y y\σ)) = g(fc*). Here, notice that fefc = (σ, rk, y\σ))
and μ(rk) = ccϊ for some rfc e [f(0), ^(0)]. By the compactness of H, we
can assume that there exists an h° = (σ, r°, y°) e H such that hk —> Λ°, that

» < -Λf

2/) of (E3) satisfying (xaf y(σ)) e
The right hand sides in

is, rk and y° as & Since the family of solutions {{xk, yk)}
is uniformly bounded and equicontinuous on 7, we can assume that there
exist two continuous functions x and y defined on I such that xk and yk

converge to x and y unifomly on I, respectively. Notice that /^(r°)(0) =
lim^oo μ(rk)(0) = lim^oo ^fe(ίτ) = x(σ) and ^(α1) = y\

Let x and y be the functions defined on (—oo, T] and I, respectively,
such that xσ = μ(r°) and x(t) = ί(ί) f or ί 6 I and #(ί) = ^(ί) for ί e l . Then
(Xo, y(σ)) - (μ(r°), y{σ)) - 9(Λ°) 6 Q. Since (xfc, ?/fc) is a solution of (E3), we
obtain

PM(y\s))dsx\t) -

On the other hand, for any s e /, by (A2),

|a?ϊ - α>.| ^ -K(* - *) sup \xk(θ) - xs{θ)\
θ

^ K(s - σ) sup \x\t) - x(t)\ +
tel

for ί G J ,

f o r t e l .

It then follows from this, (4.2) and the linearity of Ts

0 as k —> co for any s e ί . Therefore we obtain

(μ(rk) - μ{r"))\^o .

that \xk — x8\

x{t) = for ί e
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y(t) = y(σ) + I /(s, x8, y(s))ds for t e I,

that is, (x, y) is a solution of (E3). Since (xσ, y(σ))eQ, we obtain (x(T),
y(T)) e Σ. Obviously, sk = (αfc(Γ), i/fc(Γ)) -> (x(T\ y{T)) as A; -> «,, which
implies that Σ is compact.

The connectedness of Σ can be proved by using the same arguments
as in the proof of the connectedness of S in Corollary 3.2 and by the
results in Corollary 3.1. q.e.d.

THEOREM 4.1. Suppose (Al), (A2), (A4*) and (A5). Let a and β
be R-valued functions defined on (— ̂ , T] and twice continuously
differ entiable on I = [σ, T] such that a(s) ^ β(s) for s6(-oo, T] and
aa, βσ 6 B. Let V and W be It-valued continuously differentiate functions
on the domain {(t, x): tel, a(t) ^ x <: β(t)} such that V(t, x) <: W(t, x) on
this domain. Furthermore, assume that f is a bounded and continuous
function on the domain D = {(£, φ, y): t e /, φ e B, at <̂  φ ^ βt1 V(t, φ(0)) ^
y ^ W(t, <p(0))} and that the following inequalities hold;

fα'(ί) ^V(t, a{t)) for tel

\β\t) ^ W(t, β(t)) for tel,

(a"(t)^f{t,at,aχt)) if a\t) £W(t, a{t)) for tel

\β'\t) ^ fit, βt, β\t)) if β\t) ^ V(t, β{t)) for tel,

(fit, φ, V(t, φ(0))) - Vt(t, φ(0)) - Vx(t, φ(0))V(, tφ(0)) ̂  0

' l/( ί , φ, W(t, φ(0))) ~ Wt{t, φ(0)) - W.(t, φ(0))W(t, φ(0)) ^ 0
for t e /, φ e B, at ^ φ ^ βt

and

[f(t, φ, a\t)) ^ f{t, at, a\t)) if ait) = ^(0) and a\t) ^ W(t, ait))
( 4 # 6 ) l/(ί, φ, β'W) ^ fit, βt, β'it)) if βit) = φφ) and β\t) ^ V(t9 βit))

for t e I, φ e B, at <L φ <L βt .

Then for any number A such that α(Γ) ̂  A ^ /5(T), there exists a ψe
B, aσ ^ ψ ^ βa, for which (El) has at least one solution satisfying (4.1).
In particular, if α(σ) = βio), we can arbitrarily choose ψ such that
aσ^ψ^ βσ.

PROOF. We consider an equivalent system (E2) instead of (El).
In order to extend f to I x B x R, first we construct an extension

g of / on the domain t e I, at <> φ <. βt, y e R so that the following
inequalities hold;
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(4.7) α"(t) ^ g(t, at, a'(t)) for t e I,

(4.8) β"{t)^g(t,βt,β\t)) for t e / ,

(4.9) g(t, φ, V) SL At, φ, W(jt, φ(0))) ΪOY t e I, (Xt ̂  φ ^ βt, V ^ W(t, φ(0)) ,

(4.10) g(t, φ, y) ^ f(t, φ, V(t, φ(0))) tor t e I, at ^ φ ^ βt, y ^ Vit, <p(0)) ,

(4.11) g(t, y, a\t)) ^ g(t, at, a'(t)) f or t e I, at ^ φ ^ βu <p(0) = a{t)

and

(4.12) g(fi, φ, β\t)) ^ g(t, βu β'(t)) for tel,at^φ^ βu φ(0) = β(t) .

Set g = / on D.
For tel,at<ί(p<^βt and # > TΓ(t, <ρ(0)), g is constructed in the following

way. If t 6 Ia = {t 6 I: α'(ί) > TΓ(t, α(t))}, φ = at and ?/ = αf (t), then we
define g by

g(t, φ, y) = min {α"(ί)f /(t, α t, T7(ί, α(ί)))}

Then clearly (4.7) holds. For tela,φ = at and W(t, a(t)) < y < a\t), define
g by joining f(t, atJ W(t, a(t))) and g(t, atf a'(t)) linearly in y, that is,

- y)f(t, at, W(t, ««))) + (y - W(t, a(t)))g(t, at, a\t))
a\t) - W(t,

For tel, φ = at and y > max {ot(t\ Wit, a(t))} = y(t), let

g(tf <p, v) = g(t, at, 7(0) .

For t 61, at ^ φ ^ βt and /̂ > W(t, φ(0)), let

ff(«, <P, V) = /(«, 9>, TΓ(ί, 9(0))) - /(ί, «*, W(t,

«(«)) + V - m*, 9(0))) .

Then it is easy to verify that (4.9) and (4.11) hold. Similarly, we can
construct g for tel, at ^ φ ^ βt and y < V(t, φ(0)) so that (4.8), (4.10)
and (4.12) hold. Obviously, g is bounded and continuous under (Al) and
(A4*).

For any tel and φeB, if we define a function Γtφ by Γtφ = at V
(βt Λ φ), that is,

= max {at{Θ\ min {&(«), φ(θ)}} for ί 6 ( - oo, 0] ,

then Γt is a continuous mapping from B into {<p e i?: α̂  <Ξ ̂ > <̂  /9J by
Lemma 4.1.

Now we define an extension h of g on I x J5 x R by
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9{t, / > , y) + £"> - " w if <p(O)>β(t)
1 + <p(0) - β(t)

g{t,ΓtΨ,y) if a(t) ̂  φ(0) ̂  β(t)

g(t,Γtφ,y)--Ά=JPWL- if

By (A4*), ft is continuous. Thus we obtain a bounded and continuous
extension h of /.

Instead of (El) or (E2), we now consider the equation

(E4) x"(t) = h(t, xt, x'{t))

or an equivalent system

(E5) x\t) = y(t) , y'(t) = h(t, xt, y(t)) .

Let Do, Dlt ' , A be the sets of points (t, x, y) such that

Do: t 61, a(t) ̂ x<; β(t) , V(t, x) g y ^ W(t, x) ,

A: t e I, a{t) S x ^ β(t), y > W(t, x),

D2:tel, x< a{t) , y ^ a'(t) ,

Ds:tel, x< a(t) , y ^ a'(t) ,

A: t e I, a(t) ̂  x ^ β{t), y <V(t, x),

D6:tel, x> β(t) , y S β'(t)

and

De:tel, x> β(t) , y ^ β'(t) .

We denote the intersection of A and the hyper plane ί = T by D*, i =
0,1, " ,6.

Consider a solution x of (E4) with initial value (xa, x'(σ)) eB x R. If

x(t0) < a%) and x'(t0) = α'(ί0)

for some ί o e J, then

1 hxt0, a (ί0)) τ

0, rHχt0, a'(t0))

H (by (4.11))
<: α"(ί.) (by 4.7)).

This means that if (ί, x{t), x'(t)) is in D2 at t = tιt then it is in A for
<τ ̂  ί ^ ίu and that if (ί, a (ί), *'(ί)) is in D3 &t t = t2, then it is in A for
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t2^t^T. In other words, A is negatively invariant and A is positively
invariant. Similarly, we can show that A is negatively invariant and A
is positively invariant.

Let H be any continuum in the intersection of A and the hyperplane
t = σ containing two points (σ, a(σ), y1) and (σ, β(σ), y2), where y1 and y2

are any numbers such that

(4.13) V(σ, a(σ)) ^ y1 ^ a\σ) , W(σ, β(σ)) ^ y2 ^ β\σ) .

For this set H and the functions aa and βaf we consider the sets
Q = Q(a0, βσ; H) and Σ = Σ(aσ, βσ; H; h) defined in Lemma 4.2 for system
(E5). By Lemma 4.2, J* = {T} x Σ is a continuum.

In order to see that Σ* is contained in A* U A* U A*> we now consider
a solution x of (E4) with initial value (xσ, x'(σ)) e Q. By negative
invariance of D2 and Dδ, (£, a (t), ίc'(ί)) cannot enter D2 U A Next we
shall show that (ί, x(t)9 x'(t)) cannot enter D19 If it did, then there is
a t0 6 I such that (ί0, α?(ίo)> #'(£<>)) e A> that is,

α(*o) ^ α(ί0) ^ iβ(«o) and a?'(t0) > TΓ(t0, a?(*0))

Then, by the above arguments and a(σ) ^ α?(σ) ̂  /3(σ), we have

Along this solution, set

ω(t) = [x'(t) - W(t, x(t))] exp [ Wx(s, x(s))ds .

Then, as long as x\t) > W(t, x(t)) and σ ^>

- J Wm(s,
= x"{t) - ^ ( ί , »(t)) - W.(t, x(t))W(t, x(t))

- TΓt(ί, x(t)) - TΓ.(ί, α?(ί))TΓ(

**(0))) - Wt(t, xt(0)) - ^.(*, Xt(β)W(t, xt(0)) (by (4.9))
^ 0 (by (4.5)) .

From this and α>(ί0) > 0, we obtain ω(t) > 0, that is, x\t) > W(t, x(t)) for
σ 1=kt t=kt0. This contradicts the assumption (xσ, xr (σ)) e Q or x' (σ) ^
W(σf x(σ))f which shows that (ί, α(t), »'(«)) cannot enter A Similarly,
we can show also that (t, x(t)9 x\t)) cannot enter A Therefore J * is
contained in A* U A* U A*. _ _

Now we shall show that both I * Π A * and Σ* Π Af are nonempty,
where Df is the closure of Df, i — 3, 6. Let xk be one of the solution
of (E4) such that
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xk = aσ and xk\σ) = y1 — 1/fc

for k = 1, 2, . Then (ί, xk(t), xk\t)) e D3 for σ < t ^ T by (4.13) and
positive invariance of JD8. We may assume that there is a solution x°
of (E4) such that x°σ = ασ, #

0/(σ) = T/1 and (#fc, xk') converges to (a;0, x0')
uniformly on / as k —> oo by taking a subsequence if necessary. This
solution xQ satisfies (x°σ, x°\σ)) e Q and (T, x°(T), x°\T))e Df, and hence
Σ* Π -D? is nonempty. Similarly, I7* Π A* is also nonempty.

For an arbitrary A such that a(T) ^ A ^ /9(T), let iSΓ be the set of
points (Γ, A, y) such that V(T, A) ^ y <>W(T, A). Since Σ* is continuum,
it must intersect with the set N, and hence there exists a solution x of
(E4) satisfying (xσ, x\σ)) 6 Q and x(T) = A. Clearly, this solution x satisfies
(ί, x(t), x\t)) e Do for t e /, and hence (ί, α:*, α?'(ί)) 6 i) for ί e /. Therefore
a? is a solution of (El). This completes the proof.
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