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ON INTERTWINING DILATIONS. IV

GRIGORE ARSENE AND ZOIA CEAUSESCU

(Received March 8, 1977, revised September 27, 1977)

Abstract. We give a generalization of the theorems of the existence
(see [9]) and the uniqueness (see [3]) of the contractive intertwining dilations
in the presence of some representations of a C*-algebra.

1. Let H3 (j = 1, 2) be some (complex) Hubert spaces and let £f(H19 H2)
denote the set of all (linear bounded) operators from Hί into H2. For a
Hubert space H, ^f(H) will stand for £f(H, H). If Te£f(Hlf H2) is a
contraction, then we denote Dτ = (I - Γ*Γ)1/2 and grτ = DriH^. For
a contraction T e Jϊf(H), U e £f(K) will be the minimal isometric dilation
of T; in other words:

K =
and

U =

IT o o
Dτ 0 0

0 / 0

0 0 Z

(For this and for any fact connected with the geometry of isometric
dilations of contractions see [9], ch. I and II).

If Tj e cSfiHj) (j = 1, 2) are two contractions, I(Tlf T2) will be the set
of all operators A e £f(Hif HJ such that TγA = AT2. Let Uά e £f(Ks) be
the minimal isometric dilation of T3 and P3 the (orthogonal) projection
of Kj onto H3 (j = 1, 2). For a contraction AeI(T19 Γ2), a contractive
intertwining dilation ((Γlf Γa)-CID) of A will be a contraction B e I(Ulf U2),
such that PXB = AP2.

The existence of a (2\, T2)-CID for every contraction of J(ϊ\, Γ2) was
proved by B Sz.-Nagy and C. Foias in 1968 (see [9], ch. II, th. 2.3);
recently T. Ando, Z. Ceausescu and C. Foias proved in [3] that the
uniqueness of the (2\, Γ2)-CID is equivalent to the fact that one of the
factorizations T^A or A Γ2 be regular (in the sense of [9], ch. VII, §3).
A generalization of this criterion is used in [6] for the uniqueness problem
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of the lifting of operators which commute with shifts (see [4] for the
existence problem). In [5] it is given a generalization of the existence
theorem of [4] for isometries (instead of shifts); the uniqueness in this
case asks for a uniqueness theorem of lifting involving representations
of C*-algebras.

In this note we formulate such a theorem (section 2 below) and use
it for a generalization of the uniqueness criterion of [3], in the presence
of representations of a C*-algebra.

We take this oppertunity to express our gratitude to Professor C.
Foias for posing the problem and for helpful discussions concerning this
matter. We also thank D. Voiculescu for discussions concerning Theorem
2.1.

In the sequel let α be a C*-algebra and p: a h-> Jzf(H) a representation
of α. We use the terminology of [7] concerning representations of C*-
algebras. So, for any set Tt c £f(H), W will be the commutant of 9K
and for a projection P = PHo e [p(a)]' we denote by pP (or ρHo) the sub-
representation of p given by P. If p3: a t-* ̂ f(Hj) (j = 1, 2) are repre-
sentations of α, we denote by I(plf p2) the set of operators A: H2\-+ Ht

such that A e I(Pi(x), p2{x)), for every x e a; pγ and p2 are disjoint (pλ i p2)
if I(pl9 p2) = {0}. We use without quotations the properties of I(pί9 p2),
of disjointness or of equivalence of representations as they are presented
in [7], §§2 and 5.

The typical situation in this note is the following: for j = 1, 2, p5: αι-»
£f(Hj) are representations of α and T5e[ρά{a)\r are contractions. Note
that P&τ. e [pj(a)Y (j = 1, 2); we consider for every n = 1, 2, , oo the
representation

(1.1) rt } = Λ

where τH = (pi)&Tj for every i.
An easy computation proves that

(1.2) UjSlprWY (i = l , 2 ) ,

where Uό 6 Sf{Kά) is the minimal isometric dilation of Tό. Let A e I(Tlf T2)
be a contraction such that A e I(plf p2).

DEFINITION 1.1. If B is a (2\, Γ2)-CID for A, we say that J? is a
(plf p2; T19 Γ2)-CID for A if Bel(pl~\ p™).

Recall that for Se^(H19H2) and Re£f(H29H3)9 the product i? S
is called a regular factorization of RS9 if &(R-S) = {0}, where

(1.3) ^P(Λ S) = ^ Λ 0 ^ θ {A*SΛi θ
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With our notations we infer that

(1.4) P Λ ( Γ l ^e[(f t0ft)(α)] ' and P^A.Tz) e [p™(a)]' .

By (1.4) the following definition makes sense:

DEFINITION 1.2. With previous notations, we say that A is (ft, p2;
2\, T2)-regular if

(1.5) (ftθftW rA> i (^%(i Γ2) .

REMARK 1.1. If the representations ft and p2 are non-disjoint and
factorial, the condition (1.5) is equivalent to the condition that one of
the factorizations T^A or A-T2 be regular.

The main result of this note is the following:

THEOREM 1.1. Let a be a C*-algebra, p3: α ι-» Sf{Hό) a representation
of α, TyefjOyία)]' a contraction (j = 1, 2) and AeI(Tί9 Γ,) Π /(ft, ft) a
contraction. Then:

I1) A has always a (ft, ft; Tly T2)-CID.
( 2 ) A feαs α unique (ft, ft; ϊ\, T2)-CID i # A is (ft, ft; T^ T2)-regular.

In the last section we give an application concerning a recent result
of T. Ando [2].

2. In this section we analyze the following situation: α is a C*-
algebra, pμ a \-* SfiJI$) ϋ = 1, 2) are representations of α, Ho c fli. is an
invariant subspace for ft and P = PHQ. Then P e [ft(α)]'. Let also TQ e
J(ft, (ft)P) be a contraction.

DEFINITION 2.1. A contraction T 6 /(ft, ft) is called a contractive
intertwining lifting of JΓ0 (shortly a CIL for Γo) if T\Ho = TQ.

Note that T0P is always a CIL for Γo. Since Γo e /(ft, (ft)P), we
infer that P^τ* e [ft(α)]'. Let 1 — E be the central support of 1 — P (in
[ft(α)]') and 1 — F be the central support of P^Γ* (in [ft(α)]').

THEOREM 2.1. The following conditions are equivalent:
( I ) To has a unique CIL.
(II) (ftX_P A (ftUΓ;.
(III) a) (ftX_P A (ft)kerrj.

b) To ^ α partial isometry on (1 — E)P(H^).
(IV) a) (ft)x_p A (ft)kerr;.

b) U&u)<zT<$HHd.
Moreover if R is the projection on T0(l — £r)P(i/1)", ίfeen R is central

in [ft(α)]'.
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PROOF. The theorem is trivial when Ho = Hγ. Let us suppose that
HQ Φ Hγ.

(I) => (II). Let us suppose that Γo has an unique CIL and though
there exists F 6 % ) % ; , (pi\-P), YΦO. We can choose Y such that || Y\\ ^
1. Define S: Hx \-> H2 by

(2.1) S = T0P + DT*Y(1 - P) .

From (2.1) it is clear that

(2.2) S U 0 = To.

Because Dτ* is a positive selfadjoint operator and Y takes values in &τ*t

we have that DT*Y Φ 0. So:

(2.3) SΦ TQP.

From ToeI(pΛ,(Pι)p) we infer that Dτ*el(p2, p2), whence ΰΓ;Γe/((ft)v0»
(ft)i-p) Using (2.1) we obtain:

(2.4) Sel(p2, ft).

We have:

SS* = ΓoΓo* + Dτp. - P ) Γ * D n ^ ΓoΓo* + D2

T* = 1 , so

(2.5)

The relations (2.2), (2.4) and (2.5) prove that S is a CIL for To; the
relation (2.3) contradicts the uniqueness of a CIL for TQ.

(II) => (I). Let T be a CIL for To; with respect to the decompositions:

Ho) and if2 = Γ0(iϊ0)- 0 ker Γo*,

Γ is the matrix

(To Tλ

\0 Tj '

where Γx 6/((ft)Γo(Ho,-, (ftX-p) and T,e J((ft)ker2*, (ft)i_P). Using the hypo-
thesis and the fact that ker To* c ^ i we have that Γ2 = 0. Now, let
us denote:

H10 = Γo(flo)~ θ o o

From this, Γx = Γ10 + Γ U f where T10 e I((p2)Hl0, (pλ-p) and Tn e I((p%)Hil,

(ftX-p).
We have (see [9], ch. I, section 3):

(2.6) 3fn = T0{&τχ 0 ker Tf = T o C ^ Γ 0 (fl. θ Γo(flo)-) .
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Using (2.6) we infer that:

Hn c 3 f n and H10aH2Q 3f^ = ker Dτ* = {h2 eH2:\\ Tfh2\\ = \\h2\\) .

So, by hypothesis, Tn = 0. Let h2 e ker Dτ*; we have

+ T*)h2\\> = \\T*h2\\> + l | 2 % l l 2 = IIΛ.II1 + \ \ n h 2 \ \ 2 .

But | | 2 Ί | ^ 1 , so Γ10 = 0. This proves that T = T0P, thus Γo has a
unique CIL.

(II) => (III). The condition (a) follows from (2.6) and the hypothesis.
We infer also that

(2.7) (ftX-j 4

Let us denote by f0 the operator To from (1 - E)P(H1) into R(H2) =
T0(l - E)P(H1)-f where R e [ρ2(a)]r is a projection. We have

(2.8) ί o 6 ί ( ( A ) Λ I (ft)*-*).

But (1 - £ r)P = P - E ^ 1 - E and (2.7) implies that R ^ F, which means
that R(H2) a ker Dτ*. Because f0* = T0*l*<2r2>, this proves that f0 is a
co-isometry.

Moreover, R is central in [ρ2(a)]'. Indeed, let R1 be the central support
of R in [ρ2(a)γ. Because R ^ F and F is central in [ft(α)]', ^ ^ F. On the
other hand, f0 is with dense range, so (p2)R is equivalent to a subrepre-
sentation of (ftX-* (see (2.3)). But (pγ)E 4 ( f t ) ^ , so (ft)^ 4 (ft)Λ and then
(PI)E i (ft)Bl- This implies that

so

(2.9) TfRAHJ c (1 -

But R^ F implies that:

(2.10) ΓoΓo*λi = K for every h2 6 Λ

Using (2.10) in (2.9), we obtain that

c To(l -

which means R± = i2.
(Ill) => (IV). We must prove (IV)b. We have:

using that To is a partial isometry on (1 — E)P{Hλ).
Thus:
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TJ)TQ(PH1)CITJ)TJ<E(H1)) = T.ED^EH,) c

(IV) =* (II). From To(&To) c T^{HX) it follows that

(2.11) (ftX-p 6 (ft)ro(^o)-

The conclusion results from (2.6), (2.11) and (IV) a. The theorem is
completely proved.

REMARK 2.1. The conditions (Πlb) and (IVb) of Theorem 2.1 can be
replaced respectively by:

(IΠb') There exists a central projection Eγ e [^(α)]' such that Eγ ^ P
and To is a partial isometry on (1 — E^)P(Hλ).

(IVb') There exists a central projection Ex e [ft(α)]' such that Eλ <; P
and To(^To) c ΓΛ(ffi).

COROLLARY 2.1. With the notations of Theorem 2.1, if px and p2

are non-disjoint factorial representations of α, then To has a unique
CIL iff HQ = H1 or To is a co-isometry.

PROOF. TWO non-disjoint factorial representations of α are equivalent,
so two subrepresentations of them are disjoint iff one of the subrepre-
sentations is trivial. The corollary follows now from the condition (II)
of Theorem 2.1.

COROLLARY 2.2. Let T e ^f{Hly H2) be a contraction, HQcH1a subspace
of Hγ and To = T\HQ. The following conditions are equivalent:

(1) If Se^f{Hί9 Hi) is a contraction such that S\Ho = TQ, then
S= T.

(2) Ho = Hλ or To is a co-isometry.

PROOF. Let α = C and ps: C3\v-+\Iπ.G£f(Hi) and apply Corollary
2.1.

REMARK 2.2. Corollary 2.2 appeared (with a direct proof) in one of
the preliminary versions of [3], (namely T. Ando's one).

COROLLARY 2.3. Let Uj e £f{Hs) be unitary on H5—separable Hilbert
space—(j = 1, 2), Ho a reducing subspace for Ulf P = PHo, V1 = Uί\Ho αwd
TQeI(U2, VΊ). The following conditions are equivalent:

( i ) T0P is the only contraction SeI(U2, UΊ) such that S\Ho= To.
(ii) IfW^U,]HlθHo and W2=U2\&τV then J(Wt, WJ = {0}.
(iii) If W'2=U2U&vTl, then:

a) I(Wί Wi) = {0}.
b) There exists (Oj-Borel set in the spectrum of Uj-(j = 1, 2), such
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that Pωi ^ 1 — P and To is a co-isometry from Pωi(H0) onto Pω2(H2), where
Pωj is the spectral projection of U3 corresponding to ω3 (j = 1, 2).

(iv) a) I(W29 WJ = {0}
b) There exists ω[-Borel set in the spectrum of U1—such that

Pω{ ^ P and TQ(^TQ) C T.P^H,).

PROOF. Let α be the C*-algebra of continuous (complex valued)
functions on T = {z e C: \ z | = 1}, p3 the representation of α given by U3-
(j = 1, 2). Since H3 is separable, by a theorem of J . von Neumann, every
central projections of [p3(Q)Y corresponds (by the Borel functional calculus)
to a Borel subset of the spectrum of U3 (i = l,2). Using Putnam-Fuglede
theorem, the corollary follows from Theorem 2.1 (see also Remark 2.1).

3. Consider again the situation of the first section: let α be a C*-
algebra, p3 a representation of α in £f(H3), T3 e [p3(cι)Y a contraction,
U3 e £f(K3) the minimal isometric dilation of T3 and P3 = PH3 e £f(Ks) (j =
1, 2). Let AeI(T19 T2)Γ\I(pί9 p2) be a contraction. We will prove that in
the Definition 1.2, T2 can be replaced by Z72. To this end, consider A =
AP2 6 £f(K%, Hx). It is clear that A e I(T19 U2) n I(ρ19 ρt]).

Since U2 is an isometry, &(A'U2) is identified in the sequel with
U2). With this identification we write {pi^^u u^ instead of

LEMMA 3.1. a) An operator Be£f(K29 Kx) is a (ft, ft; T19 Γ2)-CID
for A iff B is a (ft, pϊ"*; T19 Z72)-CID for A.

b) A is (ft, ft; T19 T2)-regular iff A is (ft, pί°°u

9 T19 U2)-
regular.

PROOF, a) is an easy computation.

b) because U2 is an isometry, we can write that:

(3.1) &{A- U2) = S2f? θ DzUJJC^Γ .

Let i2: H2 i—> K2 be defined by

ίi(Λi) = K ® 0 0 0 © (h2eH2) .

Since A* = i2A*, we infer that

thus

n i — T ϊ * 2 — J o A*AP — Γ)2 Ά T
UA — ±jζ_2 -ΓL -ΓL — ±κ2 V2<£± JΛ.Γ2 — ±J£ KJP J-}

DA 0 0 \

0 I O

0 0 /•••

•
.
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Using this, we obtain that:

(3.2) 3fχ =

Since

/ DΛ 0 0 \

0 I O

0 0 I "

'. '. '. '. i

0 0 « \
DΓ2 0 0

0 1 0

IDAT2 0 0
(r2 0 0

I 0

we infer that:

(3.3) D2 U2{K,)- = {DA j %

From (3.1), (3.2) and (3.3) it follows that:

&{A- Ut) = &{A Γ.) φ {0} e {0} θ

which means that

(3.4) (pWau Tj is equivalent to (pf^

On the other hand

A) = &Tί 0 &2 θ {DT

θ {DTιAh2 φ I> /̂ι2 φ K: K e -ff2, Aί 6

which implies that

(3.5) (p, 0 pt)aiTl.A) is equivalent to (ft 0 ft^O

The relations (3.4) and (3.5) prove the lemma.
We will give now another characterization of the notion of (plf p2;

T» Γ2)-regularity.
Let S = T,A 6 Sf{Ht, HJ and Z: 3ίs M> SfTχ 0 3tA be defined by:

(3.6) Z(Dsh2) = DTlAh, 0 DJi, , (h2 6 Ht) .

The operator Z is an isometry (see [9], ch. VII, section 3) and

(3.7)

Put

We have that S e lip,, pt), Z e /((ft 0
t 6
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and Dzle[(ρ,)^τγ.

LEMMA 3.2. The representations (Pif&pJ&^.A) αwcZ (ftX* *
* *

PROOF. Let V: &tz^ H-» Ξϊz* be defined by:

ViD^h,) = D^ih, 0 0 ) , (h, e.

From the equalities

IIA^iH 2 = P i l l 2 - ll^i^ill 2- I I M 1 - I
= WDAK 0 0) | | 2, (KeHj ,

we obtain that V is isometric.
Note now that V is unitary, that is Dz*(&Tl 0 {0})~ = 2ίz*. Indeed,

consider h^h2e &z* Q Dz*(&Tl 0 {0})~. Then, from (3.7) we obtain

(K 0 h2, DTlAh2 0 DAK) = 0 , for every h'2eH2,

which means

(A*DTιh1 + DAh2, hf

2) = 0 , for every h2eH2 ,

therefore

(3.8) A*DTlh1 + D A = 0 .

But htφh2 is orthogonal on Dz*(^Tlφ{0})~f therefore

(3.9) <fcx 0 Λ2, Ar*(ftί 0 0)> = 0 , for every h[ e ΞfTχ .

Because Z is an isometry, Dz* = P^z* and from (3.9) we obtain that
(Jii 0 h2, h[ 0 0 > = 0 , for every fe[ e ϋ ^ , which means that ^ = 0.

Using (3.8), we deduce that h2 = 0 and therefore V is unitary. For
x e α, we have

(ft 0 Pι)*Ti&*A(x)V(Dz.h1) = (ft 0 p2Uτ^A(x)DAh10 0)

= DzipiiΦi 0 0 ) = Fi?^

for every /̂  e ̂ r i , which implies that

^eJtfftφftW^, ,

The lemma is now completely proved.

COROLLARY 3.1. A is (ft, ft; 2\, T2)-regular iff

(3.10) (ft)-,* i (^-0^(2.^)

PROOF. Since the proof of Lemma 3.1 shows that (ft 0 p2)^TvA) is
equivalent to (ftφjO^O^cTyl)* the lemma follows from Lemma 3.1 and
Lemma 3.2.



432 G. ARSENE AND Z. CEAU§ESCU

4. We will analyze now the iterative construction (see [9], ch II, section
2, or [3], section 3) of a (Tlf ί/2)-CID, in order to prove that the relation
(3.10) can be also iterated, and that the presence of the representations
is not difficult to handle. Let us start with H[o) = Hl9 Tί0) = 2\ and Bo = A.

The first step consists in the following construction:
Let H? = Hί0) 0 &rTί and Bt: K2 h^ HP defined by:

(4.1) B, = ί^°j , where X,: K2 H-> 2fTχ .

The problem is to find Xx such that:

(4.2) a)

b)

c)

where TP = (jj J).

As in [9] or [3], we take X1 = CXDB^ where C1 is a "suitable" extension
of the contraction C,: DBJJ2{K2)~ v-+3fTγ, defined by:

(4.3)

Note that from (4.3) it is clear that Cx e /((ft)^ , {P^D^U^K^-)- Using
that, we deduce that there exists an extension of Ct such that B1 fulfills
(4.2) (take C, =

LEMMA 4.1. A is (plf p2; T19 T2yregular iff

(4.4) (ft)^. i (pPU^uj .

PROOF. The construction made in relations (3.6) and (3.7) can be
made for every factorization: let Z (resp. W) be the operators constructed
like Z in (3.6) for factorization 2\ A (resp. BQ U2). Because U2 is an
isometry, W can be identified with the unitary from £&BQU2 onto DBJJ2{K2)~,
defined by:

(4.5) W(DBQU2k2) = DBo U2k2 , (fc2 e K2) .

From (4.3) and (4.5) we infer that:

(4.6) C, = P^TZW* .

Let i&τ : 3ΓTχ h-> Hx be the operator i&τ (λj = hl9 (ht e <&Tι). Then:

Now lemma follows from Corollary 3.1.
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Next steps consist in repeating the construction with the new objects;
more precisely:

%-times

X .
, where Xn: K2

ΐίn) by

(n ^ 2) ,

such that

(4.8)
a) || J

b) B,

c) Bn e I(pln), |θΓ') » where
2\ 0 0 0\

Dτ, 0 0 0

0 I 0 ••• 0 , ((n + 1) x (w + l)-matrix) .

\o o o / o /
We take Xn = CBZ>ίM_1, (n ^2), where Cκ is a "suitable" extension of the
contraction Cn: DBn_JJt{K^~ \-^ £&Tχ, defined by

(4.9) CnDBn_JJt = £>,(-«£._, , (» ^ 2) .

The same argument as in the first step shows that such a "suitable"

/?. ?\
extension always exists. Note also that Dτw — \\ . n ή I ((w + 1) x

\ θ 0 1/
(% + l)-matrix), for every n Ξ> 1, therefore (4.9) implies that:
(4.10) CnDBn_JJ, = Xn.x = fi.-A,., , (Λ ̂  2) .

LEMMA 4.2. (1) ^ σ ; = ^rc;_1» for every w ^ 2.

(2) If CM = CnPO]} pjur,)-, then the representations

((OΓO^^-rί/a) and (/OΓOΛ ^.PS) are equivalent, (% ̂  1).

PROOF. (1) Define Mn: DBnUt(KJ-ι-+&„_,_ by

Then:

= \\UA\\* - \\BnUA\\2 = P 2 | f - \\Bn^UA\\2 -

p2||2 -
p2||2 - ?^tfAl l 2 -
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= ||λ;2||
2 - WB^UAW2 - II^-AII1 + II TΓ^B

= HAWAII1 - \\B.-iUA\\% + \\Bn^UA\\% = HAWAII2,
(k2 6 K29 n ^ 1) .

Therefore Λf« is an isometry with dense range, that is, a unitary (n ^ 1).
Using (4.10), we infer that

(4.11) Cn = O k ί . - i , (n ^ 2) ,
therefore

which implies that £&c*n = £&δ*%_l9 (n ^ 2).
(2) Define QΛ: D^D^^K,)- \-+ 3ίB% by

(4.12) QJLD^DB^K) = DBnk2, (fe € K2y n ^ 1) .

Then:

Therefore QΛJs unitary.
Because Cn = C Λ ^ ^ t ^ - , we have that:

Using this, we infer that:

θ DBnU2(K2y = QJ&HP^ U2)) 0 Qn{DCnDBn_JJ2{K2)-)

θ DBnU2(K2)- = QJ&iβ^ U2)) , (Λ ̂  1) .

It is easy to deduce from (4.12) that

which proves the lemma.

5. Proof of Theorem 1.1. (1) Since £ w satisfies (4.8), (w ^ 1), taking
B the strong limit of the sequence {Bn} n ^ 1, it is easy to prove that
B is a (ft, ^ 2\, Z72)-CID for Ά, so (using Lemma 3.1(a)) B is a (ρ19 ρ2;
T19 Γ2)-CID for A; moreover, every (ft, ft; T19 Γ2)-CID for A arises in this
way.

(2) Let A be (ft, ft; ϊ\, T2)-regular; using Lemma 4.1 we obtain
that (ft)^j A Gf^W.tf,), which means by (3.1) that (pΓWθ



INTERTWINING DILATIONS 435

The application of Theorem 2.1 with H, = &z9 Ho = D2U2(K2Y9

To = C, p1 = (pt^&j a n ( * ft = P" s ^ o w s that t h e o n l y ^i s u c l 1 t h a t -Bi
satisfies (4.2) is Cx = C ^ P ^ ^ , - . Therefore ^ g = 3tcχ and Lemma 4.2
implies that

Theorem 2.1 shows again that C2 is unique such that B2 satisfies (4.8)
for n = 2. By induction, <?„ is unique such that Bn satisfies (4,8) and
therefore A has a unique (p19 p2; Tl9 T2)-CID.

Conversely, if A has a unique (ρu ρ2; T19 Γ2)-CID, then Cx = C1PD2u2(κ2)-,
therefore (by Theorem 2.1)

(P(2°))&2QI)AU2(>K2)- i (^i)^c-*

This condition implies (by Lemma 4.1) that A is (plf ρ2; Tlf T2)-regular.
The theorem is completely proved.

COROLLARY 5.1. // px and p2 are two non-disjoint factorial repre-
sentations of α, then A has a unique (plt p2; Tlf T2)-CID iff one of the
factorizations T^A or A T2 is regular.

PROOF. Use a similar argument as in the proof of Corollary 2.1.

COROLLARY 5.2. ([3]) A has a unique (T19 Γ2)-CID iff one of the
factorizations Ϊ\ A or A-T2 is regular.

PROOF. Take α = C and pμ CθλH\I H .e£f(H ό )(j = 1, 2) and apply
Corollary 5.1.

6. We give now some applications to the case of a pair of commuting
contractions. Fix the following notations. Let Tίf T2eJίf(H) be a pair
of commuting contractions, α a C*-algebra, p: a h-> £f(H) a representation
of α such that Tά e [ρ(a)Y, (j = 1, 2). From Ando's theorem [1], the pair
{T19 T2} always has a minimal isometric dilation {Ulf U2}, U3-e <Sf(K),
U = 1, 2).

DEFINITION 6.1. A minimal isometric dilation of {Tlf T2} on Knamely
{Ulf U2}, is called p-adequate if there exists a representation p: a ι-> Sf(K)
such that H is an invariant subspace for p, (p)H = p and U3 e [p (α)]r,
(i = 1, 2).

Note that, given {U19 U2}9 if such a p exists, then it is unique.

THEOREM 6.1. 1) The pair {ϊ\, T2} always has a p-adequate minimal
isometric dilation.

2) The pair {T19 T2} has a unique (up to an isomorphism) p-adequate
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minimal isometric dilation iff (p © p)^{Tvτ2) A (P Θ P)^kτ2-τ^
3) If p is a factor representation, then the pair {Tlf T2} has a

unique p-adequate minimal isometric dilation iff one of the factorizations
T,-T2 or T2-T, is regular.

PROOF. (1) Because T2 e I(Tlf ΓJ Π I(p, p) we can apply Theorem 1.1
(1) to find a (p, p; T19 TJ-CID for T2. This means that if U, e £f(Ky) is
the minimal isometric dilation of Tlf then there exists a contraction
f2 e £f(Kύ such t h a t f2U,= U,T2, PHT2= T2PH and T2 e [<0(oo)(α)]', where p{oo)

is defined by (1.1). Now i71e/(Γ2, T2) Π I(p{oo\ p{oo)) and we apply again
Theorem 1.1 (1) to find a (ρ{00), ρ{oo); f2, T2)-CID for U,. This means that
if U2££f(K2) is the minimal isometric dilation of Γ2, then there exists
an unique isometry UιeSf{K2) such that PKιU1 =UΊPKl, UιU2 — U2Uι and
Ui e [do(00))(co)(α)]'> (see [8], Proposition 10.8). The pair {ϋlf U2}f which is an
isometric dilation for {T19 T2], contains a minimal isometric dilation {Ulf U2]
on the space K= Vn=oU?U?(H). It is clear that Pκ e [(|0(oo))(oo)(α)]', therefore,

m=Q ^ ^

taking p = ((|0(OO))(0O))U:> we see that {U19 U2} is ^-adequate.
(2) Let {U19 U2} be a ^-adequate minimal isometric dilation (on K)

for {T19 T2) and let K, = \/Z=0U?(H). The minimality of {Uίf U2} implies
that H is invariant for Uf and therefore Kλ is reducing for U^ Denote
V1 —Uγ\Kl and V2 = PKlU2\Kl; then V1 is a minimal isometric dilation for
Γx and, up to an isomorphism of dilations (see [9], ch. I, section 4.1 for
definition), we can consider that Vt e Sf{K^) is the "standard" minimal iso-
metric dilation described in section 1. Let p be the representation which
appears in the definition of the fact that {Uίf U2) is ^-adequate. Then
Kγ is invariant for p and because VΊ 6 [(p)Kl(

a)Y w e have (up to an iso-
morphism) that (ρ)Kί = p(co) (see 1.1). This implies that V2 is a (p, p; Tlt ΓJ-
CID for Γ2, and, by Theorem 1.1 (1), that {ί^, U2, p) is unitary equivalent
to the p^-adequate minimal isometric dilation obtained from{Fi, V2f p{oo)}
(see the second part of (1)). Because the factorization V1 V2 is always
regular (see [9], ch. VII, Proposition 3.2 (b)), the uniqueness problem for
a jO-adequate minimal isometric dilation of {Tlf T2} is solved by the u-
niqueness of V2. So we can apply Theorem 1.1 (2) in order to get the
conclusion.

(3) is a consequence of (2).
The theorem is completely proved.

COROLLARY 6.1. A pair {T19 T2) of commuting contractions has a
unique minimal unitary dilation iff one of the factorizations T\ T2

or T2-Tλ is regular.

PROOF. Apply theorem 6.1 (3) f or α = C and p: Cs λ ι-> XlH e
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REMARK 6.1. This corollary was communicated to us by Professor
C. Foias in connection to [3].

T. Ando proved in [2] that if T19 T2, T3 are contractions on H such
that T3 doubly commutes with 2\ and T2 and 2\ commutes with Γ2, then
the system {Tlf T29 T3} has a unitary dilation. Using the techniques of
[2], one can prove the following more general result, which we present
here as a consequence of technique involved in Theorem 6.1.

COROLLARY 6.2. Let {T19 T29 {Sω}ωeΩ} be contractions on H such that
Sω doubly commutes with T1 and T29 for every ωeΩ, T1 commutes with
T2 and the system {Sω}ωeΩ has regular unitary dilation {see [9], ch. I,
§9). Then the system {T19 T2, {Sω}ωeΩ} has a unitary dilation.

PROOF. Let α be the C*-algebra generated by {Sω}ωeΩ and p the
identical representation of α on H. Making the same construction as in
the proof of Theorem 6.1 (1), we obtain the system {U19 f29 {SUωeβ} on
K19 where V^eS^iK^) is the minimal isometric dilation of T19 f2 is a
dilation of T2 which commutes with Uι and doubly commutes with

Sω = S ω 0 S ω U T i e S ω | S r i 0 .. , (ωeΩ) .

It is easy to see (using for example the condition (9.12) from [9], ch. I)
that the system {Sω}ωei2 has a regular unitary dilation. The Proposition
9.2, ch. I of [9] finishes the proof.

Added in proof. Recently, Z. Ceausescu and C. Foias proved in "On
intertwining dilations. V" (Acta Sci. Math. 40 (1978), 9-32) that there exists
an explicit bisection between the intertwining dilations of a contraction
A and the sequences of "choice operators" for A (that means the sequences
of contractions {Γn}n with ΓL: ^ ( 2 \ A) H-> ̂ ( A T2) and Γn: 3tΓn_γ -» ^rl_x

for n^2).
Using the methods of this paper and the preceding result, one can

prove the following (in the conditions of Theorem 1.1 above) "There exists
an explicit bijection between the (pl9 p2; T19 Γ2)-CID for A and the choice
sequences for A which fulfil the conditions:

(2) Γne I ( ( A 0 p^ , {p£]hrl x), (n ^ 2)".
1 n—1 x
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