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ON INTERTWINING DILATIONS. IV

GRIGORE ARSENE AND ZoOIA CEAUSESCU
(Received March 8, 1977, revised September 27, 1977)

Abstract. We give a generalization of the theorems of the existence
(see [9]) and the uniqueness (see [3]) of the contractive intertwining dilations
in the presence of some representations of a C*-algebra.

1. Let H; (5 =1,2)be some (complex) Hilbert spaces and let & (H,, H,)
denote the set of all (linear bounded) operators from H, into H,. For a
Hilbert space H, &<(H) will stand for &< (H, H). If Te ¥ (H, H,) is a
contraction, then we denote D, = (I — T*T)"* and <, = D, (H,)". For
a contraction Te ¥ (H), Ue ¥ (K) will be the minimal isometric dilation
of T; in other words:

K:H®9T®9T®"’

and
T 00
D, 0 0
v=10 I 0
0 0 I

(For this and for any fact connected with the geometry of isometric
dilations of contractions see [9], ch. I and II).

If T;e (H;) (j =1, 2) are two contractions, I(T,, T,) will be the set
of all operators Ae . (H,, H,) such that T\A = AT,. LetU;ec < (K;) be
the minimal isometric dilation of T; and P; the (orthogonal) projection
of K; onto H; (j =1,2). For a contraction Ae I(T, T,), a contractive
intertwining dilation (T, T,)-CID) of A will be a contraction Be I(U,, U,),
such that P.B = AP,.

The existence of a (T, T,)-CID for every contraction of I(T,, T,) was
proved by B. Sz.-Nagy and C. Foias in 1968 (see [9], ch. II, th. 2.3);
recently T. Ando, Z. Ceausescu and C. Foiag proved in [3] that the
uniqueness of the (T, T,)-CID is equivalent to the fact that one of the
factorizations T,-A or A-T, be regular (in the sense of [9], ch. VII, §3).
A generalization of this criterion is used in [6] for the uniqueness problem
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of the lifting of operators which commute with shifts (see [4] for the
existence problem). In [5] it is given a generalization of the existence
theorem of [4] for isometries (instead of shifts); the uniqueness in this
case asks for a uniqueness theorem of lifting involving representations
of C*-algebras.

In this note we formulate such a theorem (section 2 below) and use
it for a generalization of the uniqueness criterion of [3], in the presence
of representations of a C*-algebra.

We take this oppertunity to express our gratitude to Professor C.
Foiag for posing the problem and for helpful discussions concerning this
matter. We also thank D. Voiculescu for discussions concerning Theorem
2.1.

In the sequel let a be a C*-algebra and p: a+— < (H) a representation
of a. We use the terminology of [7] concerning representations of C*-
algebras. So, for any set M ¥ (H), M’ will be the commutant of M
and for a projection P = P, c[po(a)] we denote by o, (or o ) the sub-
representation of p given by P. If p;:a— < (H;) (j =1, 2) are repre-
sentations of a, we denote by I(o, p,) the set of operators A: H,— H,
such that A e I(o,(x), p,(x)), for every x€a; p, and p, are disjoint (0, & 0.)
if I(p, p;) = {0}. We use without quotations the properties of I(0,, 0,),
of disjointness or of equivalence of representations as they are presented
in [7], §§2 and 5.

The typical situation in this note is the following: for 5 = 1, 2, p;: ar—
Z(H;) are representations of a and T;e[p;(a)]' are contractions. Note
that PgTj elp;@)] (7 =1,2); we consider for every n =1, 2, ---, o the
representation

(L.1) o =00 (Bri) G=12),

where 7;; = (p,-)@Tj for every <.
An easy computation proves that

(1.2) Uselpi?(@) (1=12),

where U; € £ (K;) is the minimal isometrie dilation of T;. Let Ae I(T,, T,)
be a contraction such that A e I(p,, 0,).

DEeFINITION 1.1. If B is a (T, T,)-CID for A, we say that B is a
(0, 05 Ty T-CID for A it Be (o, pi).

Recall that for Se ¥ (H,, H,) and Re <¥(H,, H,), the product R-S
is called a regular factorization of RS, if ZZ(R-S) = {0}, where

(1.3) ABR-S) = D, P T © {DpSh, ® Dsh,: h, € H} .



INTERTWINING DILATIONS 425

With our notations we infer that

(1.4) Pou,.0€l(0.® 0)@)] and Puyr,elof(@] .
By (1.4) the following definition makes sense:

DEFINITION 1.2. With previous notations, we say that A is (o, o
T,, T,)-regular if

(1.5) (0. D O)airynr & (O)ziary -

REMARK 1.1. If the representations p, and o, are non-disjoint and
factorial, the condition (1.5) is equivalent to the condition that one of
the factorizations T,-A or A-T, be regular.

The main result of this note is the following:

THEOREM 1.1. Let a be a C*-algebra, 0;: a— ¥ (H;) a representation
of a, T;e[p;@] a contraction (j =1, 2) and Aec (T, T,) N Ip, 0,) @
contraction. Then:

(1) A has always a (0., 0,; T, T,)-CID.

(2) A hasa unique (0,, 05; T, T,)-CID ¢ ff A is (0,, 05; Ty, To)-regular.

In the last section we give an application concerning a recent result
of T. Ando [2].

2. In this section we analyze the following situation: a is a C*-
algebra, p;:a— £ (H;) (j = 1, 2) are representations of a, H,C H, is an
invariant subspace for p, and P = P,,. Then Pe[p,(a)]'. Let also T,e
I(0,, (0,)») be a contraction.

DEFINITION 2.1. A contraction T e I(0,, p,) is called a contractive
intertwining lifting of T (shortly a CIL for T,) if Ty, = T..

Note that T,P is always a CIL for T,. Since T,e I(p,, (0.)), We
infer that PgTae[pz(a)]'. Let 1 — E be the central support of 1 — P (in
[0.(@)]) and 1 — F be the central support of P (in [0,(0)]).

THEOREM 2.1. The following conditions are equivalent:
(1) T, has a unique CIL.
(II) (101)1—1’ <5 (pz)z,a-
(III) a) (O)i-r & (pz)kerrg-
b) T, 78 a partial tsometry on (1 — E)P(H,).
Iv) a) (O)-r b (pz)kerrg-
b) T(=2r,)c T.E(H,).
Moreover if R is the projection on T(1 — E)P(H,)", then R is central
in [o,(a@)]'.



426 G. ARSENE AND Z. CEAUSESCU

PrROOF. The theorem is trivial when H, = H,. Let us suppose that
H,+ H,.

(I) = (II). Let us suppose that T, has an unique CIL and though
there exists Y € I((0,)=,5 (0)i-p), ¥ #0. We can choose Y such that || Y|
1. Define S: H, — H, by

(2.1) S= TP+ DnY(1 — P).
From (2.1) it is clear that
(2.2) Slg, =T, .

Because Dy: is a positive selfadjoint operator and Y takes values in 2y,
we have that DT;Y # 0. So:

(2.3) S+ TP.

From T,€ I(0, (0,)) we infer that D € I(0, 0,), whence DY € I((0,)z,;
(0):-p). Using (2.1) we obtain:

(2’4) Se I(pz» 101) .
We have:

SS* = T,T¥ + Dp(1 — P)Y*DTS < T,T¥ + D%S =1, so
(2.5) S| = [iSS*|"* = 1.

The relations (2.2), (2.4) and (2.5) prove that S is a CIL for T,; the
relation (2.3) contradicts the uniqueness of a CIL for T,.
(II) = (I). Let T be a CIL for T,; with respect to the decompositions:

H =H®HOSOH,) and H,= T(H,)” @D ker T,
T is the matrix
o )
0 T,)’°

Where T1 € I((pz)To(Ho)—’ (p1)1—P) and Tz € I((Pz)kerray (.01)1—?)- USing the hypo-
thesis and the fact that ker T c &, we have that T, = 0. Now, let

us denote:
H,= T(H)  © To(gf'o)—; H, = To(gTo)_ .

From this, T, = T, + T, where TmGI((Pz)Hm, (0):-p) and T, € I((0:)x,,s

(01):-p)-
We have (see [9], ch. I, section 3):

(2.6) Gy = T Zr,)” D ker T¢ = T(Zr,)” @ (H, © T(H,)") .
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Using (2.6) we infer that:

H,c 2, and H,CH,© 2 =ker Dps = {hy€ Hy: || To'hs|| = || Rel} -
So, by hypothesis, T, = 0. Let h,cker D,;; we have

IT*h [ = |I[(T& + Ths|* = [| TR + || TR |* = || o |* + [| TSR |I*
But ||T||<1, so Ty,=0. This proves that T = T,P, thus 7, has a
unique CIL.

(ITI) = (III). The condition (a) follows from (2.6) and the hypothesis.
We infer also that

(2.7) Oz & (O)i-r -

Let us denote by 7, the operator T, from (1 — E)P(H,) into R(H,) =
T(1 — E)P(H,)~, where Re[p,(a)] is a projection. We have

(2.8) Toe (0 s (O)p-z) -

But(1— E)YP=P — E <1 — FEand (2.7) implies that R < F, which means
that R(H,) C ker D,;. Because T* = T |zzy, this proves that T, is a
co-isometry.

Moreover, R is central in [p,(a)]'. Indeed, let R, be the central support
of R in[p,a)]. Because R < F and F is central in [p,(a)]’, B, < F. On the
other hand, 7, is with dense range, so (0.)z is equivalent to a subrepre-
sentation of (0,),-r (see (2.3)). But (0)r & (015 50 (0))z & (0:)z and then
(0)e & (0)z,. This implies that

TOE’(HI) C(l - Rl)(HZ) ’

so
(2.9) T¢R(H,)c(1 — E)P(H)) .

But R, < F implies that:

(2.10) T, T¢h, = h,, for every h,c R,(H,) .

Using (2.10) in (2.9), we obtain that
R,(H,) = T,T¢R(H,) c T(1 — E)P(H,)” = R(H,)

which means R, = R.
(III) = (IV). We must prove (IV)b. We have:

TODTol(l—E)P(Hl) = -DTaTOl(l—E)P(Hl) =0,

using that T, is a partial isometry on (1 — E)P(H,).
Thus:
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T.D,(PH,)c T,D,(E(H,)) = T,ED,;(EH,)C T,E(H,) .
(IV)=(1I). From T(=,)c T,E(H,) it follows that

(2.11) (0)i-r & (Oryory- -

The conclusion results from (2.6), (2.11) and (IV)a. The theorem is
completely proved.

REMARK 2.1. The conditions (IIIb) and (IVb) of Theorem 2.1 can be
replaced respectively by:

(IIIb’) There exists a central projection E,c[p,(a)] such that E, < P
and T, is a partial isometry on (1 — E,)P(H)).

(IVD") There exists a central projection E, €[p,(a)] such that E, < P
and T(Zr,) C T,E,(H,).

COROLLARY 2.1. With the notations of Theorem 2.1, if p, and p,
are non-disjoint factorial representations of a, then T, has a unique
CIL «ff H,= H, or T, is a co-isometry.

Proor. Two non-disjoint factorial representations of a are equivalent,
so two subrepresentations of them are disjoint iff one of the subrepre-
sentations is trivial. The corollary follows now from the condition (II)
of Theorem 2.1. '

COROLLARY 2.2. Let Te ¥ (H, H,) be a contraction, H,C H, a subspace
of H and Ty = T|y,. The following conditions are equivalent:

(1) If Se<(H, H,) is a contraction such that S|y, = T, then
S=T.

(2) H,=H, or T, is a co-isometry.

PROOF. Let a =C and p;: Cs )\, € &£ (H;) and apply Corollary
2.1.

REMARK 2.2. Corollary 2.2 appeared (with a direct proof) in one of
the preliminary versions of [3], (namely T. Ando’s one).

COROLLARY 2.3. Let U;e ¥ (H;) be unitary on H;—separable Hilbert
space—(J = 1, 2), H, a reducing subspace for U,, P = Py, V,=U,|y, and
T,e I(U, V,). The following conditions are equivalent:

(i) TP is the only contraction Se I(U,, U,) such that S|y, = Ti.

(ii) If W, =Ullmeon, and Wy =U,|ay, then KW, W,) = {0).

(iii) If W;="U.|xerrs;, then:

a) I(W, W,) = {0}.
b) There exists w;-Borel set in the spectrum of U;-(3 =1, 2), such



INTERTWINING DILATIONS 429

that P, =1 — P and T, is a co-isometry from P, (H,) onto P,,(H,), where
P,; is the spectral projection of U; corresponding to w; (j = 1, 2).
(iv) a) IW, W, = {0}
b) There exists w;-Borel set in the spectrum of U,—such that
P, < P and T(ZDr,) C ToPu(H)).

PrROOF. Let a be the C*-algebra of continuous (complex valued)
functions on T = {z€C:|z| = 1}, o; the representation of a given by U;
(7 =1, 2). Since H; is separable, by a theorem of J. von Neumann, every
central projections of [0;(a)] corresponds (by the Borel functional calculus)
to a Borel subset of the spectrum of U; (j=1,2). Using Putnam-Fuglede
theorem, the corollary follows from Theorem 2.1 (see also Remark 2.1).

3. Consider again the situation of the first section: let a be a C*-
algebra, p; a representation of a in £(H;), T;€[p;j(@)] a contraction,
U; e & (K;) the minimal isometric dilation of T; and P;=P,,c £ (K,) (j =
1,2). Let Aec T, T,)NIp, p.) be a contraction. We will prove that in
the Definition 1.2, T, can be replaced by U,. To this end, consider 4 =
AP,e #(K,, H). It is clear that A I(T, U,) N I(o, o).

Since U, is an isometry, #(A-U,) is identified in the sequel with
P, A%(E-Uz). With this identification we write (0{*). v, instead of
(O oy

LemMMA 3.1. a) An operator Be,i”({(z, K)) 18 a (o, 05 T, T,)-CID
for A iff B is a (o, 05; T, U,)-CID for A.

b) A is (0, 05 T, T)-regular iff A is (0, 01 T, Uy)-
regular.

PrROOF. a) is an easy computation.
b) because U, is an isometry, we can write that:

(8.1) RB(A-U,) = 97 © DyULK,)" .
Let ,: H,— K, be defined by

() = h, DOPODH - - (h,€ Hy) .
Since A* = 7,A*, we infer that

Di = Iy, — A*A = I, — i,A*AP, = D5 @ Ixom,
thus

A

Dy=D,P IK26H2 =

OOOG

0 0---
I0--
0 I.--
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Using this, we obtain that:
(3.2) E=DZ(K2)_=9A€B9TZEB@T2€B'” .
Since
D, 0 0---\/T, 0 O--. D, T, 0 0---
0 I 0---\[D, 0 0---\ [Dy 0 0--.
)

DU, = | o 1 0---/=lo I 0---

.

we infer that:
(3.3) D;ULK,) = {D,T:k. D Drzkz: k, e Kz}— Q) gTz @ grz D---
From (3.1), (3.2) and (3.3) it follows that:
RBAU,) = BA-T) DO} DO}D -+,
which means that
(3.4) (0:")w .1y 1is equivalent to (00)s v, -
On the other hand
R(T,-A) = 2, ® Dz © (Dy, Ak, ® Dk ke K}~
= (@T1®.@A®9T2€99T2E9 "')
©{D;,Ah, ® Db, @ hy: hy € Hy, hye K, © H,)~
=Z(T,-A) D00} D---,
which implies that
(3.5) (0, D )20y 18 equivalent to (0, D 0" )z, -

The relations (3.4) and (3.5) prove the lemma.

We will give now another characterization of the notion of (o, 0,;
T,, T,-regularity.

Let S = T\Ae ¥ (H,, H,) and Z: D+ 2, @ 2, be defined by:

(3.6) Z(Dsh,) = Dy Ah, @ Db, , (h,e Hy) .

The operator Z is an isometry (see [9], ch. VII, section 3) and
3.7 AB(T,-A) = Dy

Put

Zl = Pngz: _@:g “"91'1 .
We have that Se (0, 0,), Z € I(0, D o), 09, (02)=)s £ € L(01)a,,, (02)=)
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and Dy el(p)s, I
LEMMA 3.2. The representations (0, @D 0,)ruz,.0) and (,ol)gzi are equi-
valent.
PROOF. Let V: 2y — 2. be defined by:
V(Dz{h1) = Dxu(h, D 0), (h, e 97'1) .
From the equalities
| Dggh, [P = || b, — [| ZE¥R P = [P — 1| Z%(h, @D 0) |
= ”DZ*(hq@O)Hz ’ (hleHl) ’
we obtain that V is isometric.
Note now that V is unitary, that is D,(=Z;, @ {0}))” = 2,.. Indeed,
consider h, P h,€ Z,.© D, (2, D {0})". Then, from (3.7) we obtain
Chy @ hyy Dy Ah; @ Dyhyy = 0, for every h,eH,,
which means
(A*Dy b, + Dby h;y =0, for every h,eH,,

therefore

(3.8) A*Dyh, + Dsh, = 0.

But &, @ h, is orthogonal on D,(Z,, @ {0})", therefore

(3.9) Chy @ hyy Dyu(h; B 0)) =0, for every hic 2, .

Because Z is an isometry, D,.= P., and from (3.9) we obtain that
Chy @ by hi B0 > = 0, for every h;€ =;, which means that h, = 0.

Using (8.8), we deduce that h, = 0 and therefore V is unitary. For
xre€a, we have

(0, D 03,05 ,(2) VDghs) = (0, D P2y 0 () Dy D 0)
= Dz (0(@)h, @ 0) = VDz0,(2)(hy) = V(01)s, (@) Dgy(hy)
for every h,€ 2, which implies that
Vel(o® Pdaarn » (0)ay) -
The lemma is now completely proved.
COROLLARY 3.1. A is (0, 05 T, Ty)-regular 4
(3.10) 0z, & (O)2Gvy -

PROOF. Since the proof of Lemma 3.1 shows that (0, D 0)aur,.4 i
equivalent to (0, 0)xr,.7, the lemma follows from Lemma 3.1 and
Lemma 3.2.



432 G. ARSENE AND Z. CEAUSESCU

4. We will analyze now the iterative construction (see [9], ch II, section
2, or [3], section 3) of a (T, U,)-CID, in order to prove that the relation
(3.10) can be also iterated, and that the presence of the representations
is not difficult to handle. Let us start with H® = H,, T® = T, and B, = A.

The first step consists in the following construction:

Let HY = H" @ 2, and B;: K,— H{" defined by:

B

(4.1) B, =< °>, where X: K,— 2, .
X,

The problem is to find X, such that:

(4.2) a) [[Bll=1

b) B,e (TP, U,)

¢) B.ellp?, o),

T, 0)
1) — 1
where TV = < Dy, 0)° X A
As in [9] or [3], we take X, = C,D,,, where C, is a “suitable” extension
of the contraction C;: Dy Uy(K,)” — =, defined by:

4.3) C!.DBO U, = -DT{O)BO .

Note that from (4.3) it is clear that CleI((pl)ng, (pé“”)pBopz(Kz)-). Using
that, we de§uce that there exists an extension of C, such that B, fulfills
(4.2) (take C, = Cl-PDBOU2(K2)_)°

LEMMA 4.1. A s (0, 0y Ty, To)-regular off
(4.4) O)zg & (0 25yvy -

PrROOF. The construction made in relations (3.6) and (3.7) can be
made for every factorization: let Z (resp. W) be the operators constructed
like Z in (3.6) for factorization T,-A (resp. B,-U,). Because U, is an
isometry, W can be identified with the unitary from =; ,, onto D, Uy(K;)™,
defined by:

(4.5) W(Ds,k,) = Dy, Usk,, (k€ K,) .
From (4.83) and (4.5) we infer that:
(4.6) C, = P%ZNW* .

Let igTI: 2, H, be the operator iQTl(hl) = hyy (h,€ 27,). Then:
~ ~. . 555 x e 2
D?]; = IQ'TI - P_QTIZW* WZ*%QTI = Ing - P_L]T1ZZ*7/9T1 = .DE;' = Dé .

Now lemma follows from Corollary 3.1.
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Next steps consist in repeating the construction with the new objects;
more precisely:

n~-times

(4.7) H» = H@® 2:,® -+ ® D, B.: K, H” by
B,
B, =<X ‘) , where X, K,—>2,, ®n=2),
such that
ja) I|B.ll =1
(4.8) b) B,e (T, U,)
(C) B, e I(o{", pi), where
T, 0 0---0
D, 0 0---0
™ =0 I 0---0}, ((m+1) X (n + 1)-matrix) .

0 0 010
We take X, = CA’,LDB”_l, (n = 2), where C‘n is a “suitable” extension of the
contraction C,: Dy, Uy (K;)” — 2, defined by
(4.9) C.Ds, U, = D,»-vB,_, (n=2).
The same argument as in the first step shows tgat suckb a “suitable”
extension always exists. Note also that Dym = ( C. 0 0) (n +1) x

0 0 I
(n + 1)-matrix), for every n = 1, therefore (4.9) implies that:

(4-10) C'nDB,,,_.,_Uz = Xn—l = 6n—1DBn_2 ’ ('I’b = 2) .

LEMMA 4.2. (1) g = Der for every n = 2.
(2) If C, = CnPDB,,_1U2<K2>—: then the representations
(058, vy 304 (05) 5,0, are equivalent, (n = 1).
PrROOF. (1) Define M,: Dy Uy(K,)™ +— Zy, , by

Mn(DBnUzkz) = Dy, _k,, (ke K,,m=1).

n—1

Then:
| Ds, Usdis|l = 1| Uskeo | — || B, Uik, || = 1| B[P — || Bues Ushs [ — || X Unhee||?
= ||l — [| Baes Uik |[* — [|Co D, Uskes||*
= ||| — ||Bur Uk ||* — ”CnDB,,_,Uzkzllz
= ||ka|* — || Baes Uskes|* — || Drgn-0 By ik, ||*
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= |[k|[* — || BaciUsko|* — || Buoshia|* + || T B, _ .k |*
= || Dp,_Je|I* — || Baey Ukt |} + || Bo—yUoks, ||* = || Dp,_ kK, 1"
(e Kyn=1).

Therefore M, is an isometry with dense range, that is, a unitary (» = 1).
Using (4.10), we infer that

(4.11) Co=CouM,,, (nz2),
therefore
Dy = I, — CiCt = L, —CouM, M:.Cii=D}, ~ (n22),
which implies that 2, = ¢, , (n = 2).
(2) Define Q,: Dy Dy, _(K,)" +— 25, by
(4.12) Q.(D3, Dy, k,) = Dy k, , (ke Kpym=1).

Then:
| Dsko|l* = || el l® — || Bukea|* = [|Kal[* — || Ba-sleal*
— ICuDs,_Jeo|* = || Dy, _ke|* — 1|C D5, T |I
= HD?:,,DB,._lszZ ’ (k,eK;,,n=1).
Therefore Q,,Ais unitary.
Because C, = C,,PDB”_IUZ(Kz)—, we have that:
90,, = Z (B, Uz) @ DG”DBn_IUZ(Kz)"‘ .
Using this, we infer that:
(B, U,) = Zp, © Dy, Uy(K;)™ = Qu(Dt,(D3,_,(Ks)")
@ DB,,, Uz(Kz)_ = Qn(-@(Bn—f Uz)) @ Qn(Do,.DB,,_,_ Uz(Kz)—)
© Dy, U(K,)” = Qu(FE(B,-+U)), (nz=1).
It is easy to deduce from (4.12) that

Q. € I((05) 2803y (O5) 2Bp_yov) »
which proves the lemma.

5. Proof of Theorem 1.1. (1) Since B, satisfies (4.8), (» = 1), taking
B the strong limit of the sequence {B,} n =1, it is easy to prove that
B is a (p, pt; T, U,)-CID for A, so (using Lemma 3.1(a)) B is a (0, 0:;
T,, T,)-CID for A; moreover, every (o, 0,; T, T,)-CID for A arises in this
way.

(2) Let A be (o, 0y T, T,)-regular; using Lemma 4.1 we obtain
that (0o & (0)2ivy, Which means by (3.1) that (0f™)ssen,vmy~ &

((HPEN



INTERTWINING DILATIONS 435

The application of Theorem 2.1 with H, = &7, Hy= D;U(K,)",
T,=0C, p,= (pé“")a,;1 and p, = p,, shows that the only C, such that B,
satisfies (4.2) is C, = C,Pp3y,x,-- Therefore Dy = Doy and Lemma 4.2
implies that

(péw))ﬁBIGDBLUZ(Kg)— <5 (101).70.2-

Theorem 2.1 shows again that C’z is unique such that B, satisfies (4.8)
for n = 2. By induction, €, is unique such that B, satisfies (4.8) and
therefore A has a unique (p, p,; T, T,)-CID. R

Conversely, if A has a unique (0, 0;; T, T3)-CID, then C, = C,Pp;v,xp—>
therefore (by Theorem 2.1)

(P(zm))ajeDZUng)— J) (P1)gc; .

This condition implies (by Lemma 4.1) that A4 is (p,, 0,; T}, T.)-regular.
The theorem is completely proved.

COROLLARY 5.1. If p, and p, are two nmon-disjoint factorial repre-
sentations of a, then A has a unique (0, 0 T, T,)-CID iff one of the
factorizations T,-A or A-T, is regular.

ProoF. Use a similar argument as in the proof of Corollary 2.1.

COROLLARY 5.2. ([8]) A has a wunique (T, T,)-CID 4 one of the
factorizations T, A or A-T, is regular.

PrROOF. Take a = C and p;: Ca NNy, € £ (H;)J = 1, 2) and apply
Corollary 5.1.

6. We give now some applications to the case of a pair of commuting
contractions. Fix the following notations. Let T, T,c < (H) be a pair
of commuting contractions, a a C*-algebra, p: a— & (H) a representation
of a such that T;e[p(@)], (4 =1, 2). From Ando’s theorem [1], the pair
{T, T.} always has a minimal isometric dilation {U,, U,}, U;e ¥ (K),
(4 =1,2).

DEFINITION 6.1. A minimal isometric dilation of {7, T,} on K namely
{U, U,}, is called p-adequate if there exists a representation g: a+— ¥ (K)
such that H is an invariant subspace for @, (0)y = o and U;e[0(a)],
(G =12).

Note that, given {U,, U,}, if such a @ exists, then it is unique.

THEOREM 6.1. 1) The pair {T,, T,} always has a p-adequate minimal
1sometric dilation.

2) The pair {T, T.} has a unique (up to an isomorphism) o-adequate
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minimal isometric dilation iff (0D O)ww,ryp & (0 B O)wwyry-

3) If p is a factor representation, then the pair {T, T.} has a
unique p-adequate minimal isometric dilation iff one of the factorizations
T,-T, or T,-T, 1s regular.

Proor. (1) Because T,e I(T, T, N I(o, p) we can apply Theorem 1.1
(1) to find a (o, p; T, T))-CID for T,. This means that if U,e ¥ (K,) is
the minimal isometric dilation of T,, then there exists a contraction
T,e £ (K,) such that T,U,=U,T,, PyTy=T.Py and T, e[p(a)], where o
is defined by (1.1). Now U, e I(T, T) N I(p*, o) and we apply again
Theorem 1.1 (1) to find a (0=, p*; T, T,)-CID for U,. This means that
if U,e &#(K,) is the minimal isometric dilation of 7%, then there exists
an unique isometry U, e (K, such that Py, U, =U,Px, U,0,=0,0, and
U, e[(0=)=(a)], (see [8], Proposition 10.8). The pair {T,, T,}, which is an
isometric dilation for {Tl, T,}, contains a minimal isometric dilation {171, [72}
on the space K = V,. OU" Ur(H). Itisclear that Py e [(0*=) = ()], therefore,

taking 0 = ((p‘“))“"”)K, we see that {U, U,} is o-adequate.

(2) Let {U, U,} be a p-adequate minimal isometric dilation (on K)
for {T, T,} and let K, = VYV ,UXH). The minimality of {U, U,} implies
that H is invariant for Uy and therefore K, is reducing for U,. Denote
V,=U,|x, and V, = Pg U,|x,;; then V, is a minimal isometric dilation for
T, and, up to an isomorphism of dilations (see [9], ch. I, section 4.1 for
definition), we can consider that V, e & (K)) is the “standard” minimal iso-
metric dilation described in section 1. Let 0 be the representation which
appears in the definition of the fact that {U, U,} is p-adequate. Then
K, is invariant for 0 and because V,e[(0)f,(a)] we have (up to an iso-
morphism) that (0),, = 0 (see 1.1). This implies that V, is a (0, 0; T\, T})-
CID for T,, and, by Theorem 1.1 (1), that {U,, U,, 0} is unitary equivalent
to the o*-adequate minimal isometric dilation obtained from {V,, V,, o'}
(see the second part of (1)). Because the factorization V,-V, is always
regular (see [9], ch. VII, Proposition 3.2 (b)), the uniqueness problem for
a p-adequate minimal isometric dilation of {T), T,} is solved by the u-
niqueness of V,. So we can apply Theorem 1.1 (2) in order to get the
conclusion.

(3) is a consequence of (2).

The theorem is completely proved.

COROLLARY 6.1. A pair {T, T,} of commuting contractions has a
unique minimal unitary dilation iff one of the factorizations T,-T,
or T,-T, s regular.

Proor. Apply theorem 6.1 (3) for a = C and p: C3> N+ N € F(H).
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REMARK 6.1. This corollary was communicated to us by Professor
C. Foiag in connection to [3].

T. Ando proved in [2] that if T,, T,, T, are contractions on H such
that T, doubly commutes with 7, and T, and T, commutes with T, then
the system (T, T, T,} has a unitary dilation. Using the techniques of
[2], one can prove the following more general result, which we present
here as a consequence of technique involved in Theorem 6.1.

COROLLARY 6.2. Let {T, T, {S.}oco} be contractions on H such that
S, doubly commutes with T, and T,, for every we 2, T, commutes with
T, and the system {S,}uco has regular unitary dilation (see [9], ch. I,
§89). Then the system {T,, T, {S.}uco} has a unitary dilation.

PrOOF. Let a be the C*-algebra generated by {S,}.., and p the
identical representation of a on H. Making the same construction as in
the proof of Theorem 6.1 (1), we obtain the system {U,, T\, {S.}oco} on
K,, where U, e &2(K,) is the minimal isometric dilation of T, T, is a
dilation of T, which commutes with U, and doubly commutes with

gm:Sw®Sw|1/T1@Swl9T1@"'; (we Q).
It is easy to see (using for example the condition (9.12) from [9], ch. I)

that the system {S,},co has a regular unitary dilation. The Proposition
9.2, ch. I of [9] finishes the proof.

Added in proof. Recently, Z. Ceausescu and C. Foias proved in “On
intertwining dilations. V”’ (Acta Sci. Math. 40 (1978), 9-32) that there exists
an explicit bijection between the intertwining dilations of a contraction
A and the sequences of “choice operators” for A (that means the sequences
of contractions {I',}, with I";: FZ(T,-A)— H(A-T,) and I',: Zr,_, — D _|
for n = 2).

Using the methods of this paper and the preceding result, one can
prove the following (in the conditions of Theorem 1.1 above) “There exists
an explicit bijection between the (o, 0,; T, T,)-CID for A and the choice
sequences for A which fulfil the conditions:

( 1 ) F1 € I((P1 @ 402)2’(2‘1-11): (Pél)).w<A.T2))

(2) T.el(o® P, , (O).r ), (022,
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