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1. Introduction. Let (Ω, F, P) be a probability space, given a non-
decreasing right continuous family (Ft)oύt<+O0 of sub σ-fields of F such
that FQ contains all null sets. Let M be a local martingle adapted to
(Ft) such that Mo = 0 and AMt = Mt - Mt- ^ - 1 for every t ^ 0.
Throughout the paper, Z denotes the process defined by the formula

Zt = exp (Mt - (MC)J2) Π (1 + AM8) exp ( - AM8)

where Mc is the continuous part of M and <Λfβ> is the continuous in-
creasing process such that (Mcf — (Mc) is a local martingale. Then the
process Z is a non-negative local martingale with Zo = 1 (see C. Doleans-
Dade [1]).

Our aim is to give a sufficient condition for Z to be a martingale.
Originally, this problem was raised by I. V. Girsanov in [4] to study
the transformation of the measure of a Brownian motion.

The reader is assumed to be familiar with the martingale theory as
given in [2],

2. On the ZAintegrability of the exponential martingale. In a
previous paper [5] we dealt only with continuous local martingales M,
and proved that if exp (MJ2) is a submartingale, then the process Z is
a martingale. We start with such an example of a continuous local
martingale M that Z is a uniformly integrable martingale but exp (Mt/2) ί L1

for some t. For that, let B = (Bu Ft) be a one dimensional Brownian
motion with Bo = 0, and introduce an ^-stopping time:

τ = inf {ί > 0 ; | B J ^ (ί + l)1/2} .

It is clear that τ < oo and \Bτ\ = (τ + 1)1/2 with probability 1. If τ eL\
then E[Bξ] = E[τ], so that it is absurd to claim that τ is integrable.
Thus exp (Bτ/2) is not integrable. On the other hand, the process
{exp (BtAT — (t A τ)/2), Ft} being a martingale, we get

l = E[exv(BnAτ-(nΛτ)/2)]
^ #[exp (Bτ - τ/2)] + #[exp (J5n - */2); n < τ]

for every ^ ^ 1. As |2?n| < (n + 1)1/2 on {n < τ}, the second term on
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the right hand side is dominated by exp ((n + 1)1/2 — n/2), which con-
verges to O a s ^ - ^ o o , Therefore we find

(1) E[exV(Bτ-τ/2)] = l.

Now let a: [0, 1[ —> [0, oo[ be an increasing homeomorphic function, and set

(a(t) A τ if 0 ̂  t < 1
θt ~ ' τ if

Then each θt is an ^-stopping time. Almost all sample functions of (θt)
are non-decreasing and continuous, so that the process M defined by
Mt = Bθt is a continuous local martingale. From (1) it follows that the
process Z = exp (M — <M>/2) is a uniformly integrable martingale over
(Fθt), but exp (MJ2) is not integrable because θx = τ.

Now let ikf be any local martingale such that MQ = 0. As is well-
known, it can be split into the continuous part M% and the purely dis-
continuous part Md, orthogonal to all continuous local martingales. For
simplicity, we use the following notations:

Yt = exv(Ml-(Mc)t/2)

Wt = exp (Mi) Π (1 + ΔMS) exp {-ΔM8) .

7 is a continuous local martingale, and W is a purely discontinuous local
martingale. It is clear that Z = YW. By applying the differentiation
formulas, C. Doleans-Dade showed in [1] that the process Z must satisfy
the stochastic integral equation:

We now give a sufficient condition for Z to be a martingale.

THEOREM 1. Let ε, δ be two numbers >0, and set Ύ = (1 + 1/(2<5))2(1 +
e)/{(l + l/(2δ))2(l + ε) - ε}. Then we have

( 2 ) \\Zt\\r ^ 11 exp ((S + l/2)M01Γ ( 1 + 2 δ ) Ί|exp(Mf) | | ( 1 + 1 / ( 2 δ ) ) 2 ( 1 + e ) .

PROOF. Firstly, we show that the inequality

(3) \\Yt\\Pδ ^ ||exp((« + l/2)M0||f/(1+2δ)2 , p, = (1 + 2δ)2/(l + 4δ) > 1

is valid for every δ > 0. For that, set p = 1 + 4<5. Then the exponent
conjugate to p is q = (1 + 4<5)/(4<5), and so by the Holder inequality we
get

E[Yp] = E[exv (VpJpMi - pδ<M°}t/2) exp ((pδ -
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As the process {exp (λ/ppδM
e

t — ppδ(Mc}t/2), Ft} is a non-negative local
martingale, the first term on the right hand side is bounded by 1.
Moreover, by a simple calculation, (pδ — Vpδ\p)q = 8 + 1/2 and qpδ =
(1 + 2δ)2/(4δ). Thus the inequality (3) is proved.

Secondly, let 1 < p < oo. Noticing the inequality Wt ^ exp (Jiff) and
applying the Holder inequality with the exponents p and q = p/(p — 1),
we have

E[Zl] £

It is easy to see that pδ > 7 > 1. Then, by setting p = pδ/y, we find

\\Zt\\r<ί\\Yt\\n\\exv{Mi)\\μ

^ ||exp((δ + l/2)ikf0lir/(1+2δ)2||exp(MOIU

where μ = qy = (1 + 1/(2<5))2(1 + ε). Thus the theorem is established.

For example, by setting ε = 1 and δ = 1/2, we get

COROLLARY. // there exist two numbers ε, 3 > 0 such that the pro-
cesses {exp((δ + l/2)Jkf?)} and {exp((l + l/(2δ))2(l + ε)Jkίί

ίZ)} are submartingales,
then Z is a martingale.

PROOF. By (3) there exists a constant 7 > 1 such that sup [E[Zl];
0 ^ s ^ t) < °o for each t, and so the family (Z8)0^8^t is uniformly in-
tegrable. This completes the proof.

In particular, if M* is bounded from above, then for every ε and
δ > 0 exp ((1 + l/(2δ))2(l + ε)Mί) is a submartingale. So we get:

THEOREM 2. Suppose that there exists a positive constant K such
that sup {Mϊ; 0 ^ s ^ t} ^ K.

If exp (Mc

t/2) is a submartingale, then Z is a martingale. Here
the constant K may depend on t.

PROOF. AS AMt ^ — 1 for every t, Z is a non-negative super-
martingale, so that E[Zt] ^ 1 for every t. Therefore, it is a martingale
if and only if E[Zt] = 1 for every t. By the definition of a local
martingale there exists a non-decreasing sequence (Tn) of ^-stopping
times with limw Tn = ^ such that for every n the process (ZtATn, Ft) is
a uniformly integrable martingale. Namely, for each n, E[ZTn] = 1. As
Z is non-negative, we have

1 = E[ZtATJ ^ E[Zt] + E[ZtATn; ί > ΓJ .

Therefore, to prove £7[#t] = 1, it suffices to show that the second term
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on the right hand side converges to 0 as n —> °°. From the assumption
it follows that sup {W8; 0 ^ s <* t} is dominated by some constant C which
may depend on t. On the other hand, it is proved in [5] that the process
Y is a martingale if exp (Mc

t/2) is a submartingale. That is, E[Yt\FtATJ =
YtAτn for every n. As {t > Tn} belongs to FtATn, we get

E[ZtATn; t>Tn]S CE[Yt; t > Tn] .

and the right hand side converges to 0 as n —> oo. This completes the
proof.

Let now M be a locally square integrable martingale and (M) be
the predictable increasing process such that M2 — (M) is a local mar-
tingale. It should be noted that if exp «ikf >t/2) 6 L\ then exp (M?/2) e L1.
Indeed, as (Mc) 5j <ikf>, the Schwarz inequality implies that

#[exp (Mi/2)] ^ #[exp (Mi/2 - <Mc}t/A) exp «AT>4/4)]

However, the converse is not true. For such an example, see [5].

3. Application. In this section, for simplicity, we deal only with
continuous local martingales. The extension to the general case is not
difficult. Let M be a continuous local martingale with Mo = 0, and as-
sume that the process Z defined as before is a uniformly integrable
martingale. Then we can consider a change of the underlying probability
measure dP by the formula dP = Z^dP. As is proved in [6], for any
P-continuous local martingale X, X — X — (X, M) is a P-continuous local
martingale such that (X) = (X) under either probability measure. Here
(X, M) = ((X + M) - <X> - <AΓ»/2.Λ We now apply Theorem 1 to give
a sufficient condition for the process I to be a P-martingale.

THEOREM 3. Let M be a continuous local martingale, and assume
that the exponential local martingale Z is uniformly integrable. Let
δ be a number > 0. Then the inequality

( 4 ) E[Xt] ^ C δ | | e x p ( ( δ + l/2)ΛΓβ)||i i/<ι+1J>1 II-XT.llci+i/c.«i« , 0 ^ t < -

is valid for every continuous local martingale X. Here X* = sup{|X8|;
0 ^ s 5̂  t) and Cδ is a positive constant depending only on δ.

PROOF. By the Davis theorem (see [3]) we have

E[X?] ^ 4α/T£[<X>J/2] .

From the definition of dP it follows that the expectation on the right
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hand side is E[Zt(X}]12]. Set now p = (1 + 2<5)2/(l + 4δ). Then the ex-
ponent conjugate is q — (1 + l/(2δ))2. We apply the Holder inequality
with the exponents p and q to this term:

(5)

According to Theorem 1, the first term on the right hand side of (5) is
smaller than ]|exp((δ + l/2)AΓt)|\?ι«+*»\ Furthermore, by a result of
D. L. Burkholder and R. F. Gundy (see [3]), the second term is also
smaller than Cq\\Xt\\q, where Cq is a positive constant depending only
on q. Thus the theorem is proved.

Consequently, if for some δ > 0 the process exp ((<5 + l/2)Mt) is a
submartingale, then for every L(1+1/(2δ))2-integrable continuous martingale
X relative to dP, X is a martingale relative to dP.

More generally, we can show that the inequality

E[(Xm ^ C,,,||exp((ί + l/2)Mί)||f/(1+25)2||Xf||f1+1/(25))2?, , 0 < p< «,

is valid for every P-continuous local martingale X.
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