A NOTE ON EXPONENTIAL MARTINGALES

NORIHIKO KAZAMAKI

(Received December 6, 1976)

1. Introduction. Let (Ω, F, P) be a probability space, given a nondecreasing right continuous family $(F_t)_{0 \le t < +\infty}$ of sub σ -fields of F such that F_0 contains all null sets. Let M be a local martingle adapted to (F_t) such that $M_0 = 0$ and $\Delta M_t = M_t - M_{t-} \ge -1$ for every $t \ge 0$. Throughout the paper, Z denotes the process defined by the formula

$$Z_{\iota} = \exp{(M_{\iota} - \langle M^{
m c}
angle_{\iota}/2)} \prod_{s \leq \iota} \left(1 + arDelta M_{s}
ight) \exp{(-arDelta M_{s})}$$

where M° is the continuous part of M and $\langle M^{\circ} \rangle$ is the continuous increasing process such that $(M^{\circ})^2 - \langle M^{\circ} \rangle$ is a local martingale. Then the process Z is a non-negative local martingale with $Z_0 = 1$ (see C. Doléans-Dade [1]).

Our aim is to give a sufficient condition for Z to be a martingale. Originally, this problem was raised by I. V. Girsanov in [4] to study the transformation of the measure of a Brownian motion.

The reader is assumed to be familiar with the martingale theory as given in [2].

2. On the L^{p} -integrability of the exponential martingale. In a previous paper [5] we dealt only with continuous local martingales M, and proved that if $\exp(M_t/2)$ is a submartingale, then the process Z is a martingale. We start with such an example of a continuous local martingale M that Z is a uniformly integrable martingale but $\exp(M_t/2) \notin L^1$ for some t. For that, let $B = (B_t, F_t)$ be a one dimensional Brownian motion with $B_0 = 0$, and introduce an F_t -stopping time:

$$au = \inf \left\{ t > 0; \left| B_t
ight| \geqq (t+1)^{1/2}
ight\}$$
 .

It is clear that $\tau < \infty$ and $|B_{\tau}| = (\tau + 1)^{1/2}$ with probability 1. If $\tau \in L^1$, then $E[B_{\tau}^2] = E[\tau]$, so that it is absurd to claim that τ is integrable. Thus $\exp(B_{\tau}/2)$ is not integrable. On the other hand, the process $\{\exp(B_{t\wedge\tau} - (t \wedge \tau)/2), F_t\}$ being a martingale, we get

$$1 = E[\exp(B_{n\wedge\tau} - (n \wedge \tau)/2)] \\ \leq E[\exp(B_{\tau} - \tau/2)] + E[\exp(B_n - n/2); n < \tau]$$

for every $n \ge 1$. As $|B_n| < (n+1)^{1/2}$ on $\{n < \tau\}$, the second term on

N. KAZAMAKI

the right hand side is dominated by $\exp((n+1)^{1/2} - n/2)$, which converges to 0 as $n \to \infty$. Therefore we find

(1)
$$E[\exp{(B_{ au}- au/2)}]=1$$
.

Now let $\alpha: [0, 1[\rightarrow [0, \infty [$ be an increasing homeomorphic function, and set

$$heta_t = egin{cases} lpha(t) \wedge au & ext{if} \quad 0 \leq t < 1 \ au & ext{if} \quad t \geq 1 \ . \end{cases}$$

Then each θ_t is an F_t -stopping time. Almost all sample functions of (θ_t) are non-decreasing and continuous, so that the process M defined by $M_t = B_{\theta_t}$ is a continuous local martingale. From (1) it follows that the process $Z = \exp(M - \langle M \rangle/2)$ is a uniformly integrable martingale over (F_{θ_t}) , but $\exp(M_1/2)$ is not integrable because $\theta_1 = \tau$.

Now let M be any local martingale such that $M_0 = 0$. As is wellknown, it can be split into the continuous part M^c , and the purely discontinuous part M^d , orthogonal to all continuous local martingales. For simplicity, we use the following notations:

$$egin{aligned} &Y_t = \exp{(M^{\mathtt{c}}_t - \langle M^{\mathtt{c}}
angle_t/2)} \ &W_t = \exp{(M^{d}_t)} \prod_{s \leq t} \left(1 + arDelta M_s
ight) \exp{(-arDelta M_s)} \; . \end{aligned}$$

Y is a continuous local martingale, and W is a purely discontinuous local martingale. It is clear that Z = YW. By applying the differentiation formulas, C. Doléans-Dade showed in [1] that the process Z must satisfy the stochastic integral equation:

$${Z}_t = \mathbf{1} + \int_{\scriptscriptstyle 0}^t\!\! Z_{s-} dM_s \; .$$

We now give a sufficient condition for Z to be a martingale.

THEOREM 1. Let ε , δ be two numbers >0, and set $\gamma = (1 + 1/(2\delta))^2(1 + \varepsilon)/\{(1 + 1/(2\delta))^2(1 + \varepsilon) - \varepsilon\}$. Then we have

$$(2) \qquad ||Z_t||_{\gamma} \leq ||\exp\left((\delta + 1/2)M_t^{\epsilon}\right)||_1^{4\delta/(1+2\delta)^2} ||\exp\left(M_t^d\right)||_{(1+1/(2\delta))^2(1+\epsilon)}.$$

PROOF. Firstly, we show that the inequality

 $\| (\, 3 \,) \ \ \| Y_t \|_{p_\delta} \leq \| \exp \left((\delta \, + \, 1/2) M^{\mathfrak{c}}_t
ight) \|_1^{4\delta/(1+2\delta)^2} \, , \qquad p_\delta = (1 \, + \, 2\delta)^2/(1 \, + \, 4\delta) > 1$

is valid for every $\delta > 0$. For that, set $p = 1 + 4\delta$. Then the exponent conjugate to p is $q = (1 + 4\delta)/(4\delta)$, and so by the Hölder inequality we get

$$egin{aligned} E[\,Y^{p_\delta}_{\,\,i}] &= E[\exp{(\sqrt{\,p_\delta/p}\,M^{\mathfrak{c}}_{\,\,i}-\,p_\delta\langle M^{\mathfrak{c}}
angle_t/2)}\exp{((p_\delta-\sqrt{\,p_\delta/p})M^{\mathfrak{c}}_i)}] \ &\leq \{E[\exp(\sqrt{\,pp_\delta}M^{\mathfrak{c}}_{\,\,i}-\,pp_\delta\langle M^{\mathfrak{c}}
angle_t/2)]\}^{1/p}\{E[\exp{((p_\delta-\sqrt{\,p_\delta/p})qM^{\mathfrak{c}}_t)}]\}^{1/q}\;. \end{aligned}$$

368

As the process $\{\exp(\sqrt{pp_{\delta}}M_t^e - pp_{\delta}\langle M^e\rangle_t/2), F_t\}$ is a non-negative local martingale, the first term on the right hand side is bounded by 1. Moreover, by a simple calculation, $(p_{\delta} - \sqrt{p_{\delta}/p})q = \delta + 1/2$ and $qp_{\delta} = (1 + 2\delta)^2/(4\delta)$. Thus the inequality (3) is proved.

Secondly, let $1 . Noticing the inequality <math>W_t \leq \exp(M_t^d)$ and applying the Hölder inequality with the exponents p and q = p/(p-1), we have

$$E[Z_t^{\gamma}] \leq \{E[Y_t^{p\gamma}]\}^{1/p} \{E[\exp{(q\gamma M_t^d)}]\}^{1/q}$$
.

It is easy to see that $p_s > \gamma > 1$. Then, by setting $p = p_s/\gamma$, we find

$$egin{aligned} &||Z_t||_{_{7}} \leq ||Y_t||_{_{p_{\delta}}}||\exp{(M^d_t)}||_{_{4}} \ &\leq ||\exp{((\delta \,+\,1/2)M^c_t)}||_{^{_{1}/(1+2\delta)^2}}||\exp{(M^d_t)}||_{_{\mu}} \end{aligned}$$

where $\mu = q\gamma = (1 + 1/(2\delta))^2(1 + \varepsilon)$. Thus the theorem is established.

For example, by setting $\varepsilon = 1$ and $\delta = 1/2$, we get

 $||Z_t||_{_{8/7}} \leq ||\exp{(M_t^c)}||_{^{1/2}}^{_{1/2}}||\exp{(M_t^d)}||_{_8}$.

COROLLARY. If there exist two numbers ε , $\delta > 0$ such that the processes $\{\exp((\delta+1/2)M_i^c)\}$ and $\{\exp((1+1/(2\delta))^2(1+\varepsilon)M_t^d)\}$ are submartingales, then Z is a martingale.

PROOF. By (3) there exists a constant $\gamma > 1$ such that sup $\{E[Z_s^{\gamma}]; 0 \leq s \leq t\} < \infty$ for each t, and so the family $(Z_s)_{0 \leq s \leq t}$ is uniformly integrable. This completes the proof.

In particular, if M_t^d is bounded from above, then for every ε and $\delta > 0 \exp\left((1 + 1/(2\delta))^2(1 + \varepsilon)M_t^d\right)$ is a submartingale. So we get:

THEOREM 2. Suppose that there exists a positive constant K such that $\sup \{M_s^d; 0 \leq s \leq t\} \leq K$.

If $\exp(M_i^{\epsilon}/2)$ is a submartingale, then Z is a martingale. Here the constant K may depend on t.

PROOF. As $\Delta M_t \ge -1$ for every t, Z is a non-negative supermartingale, so that $E[Z_t] \le 1$ for every t. Therefore, it is a martingale if and only if $E[Z_t] = 1$ for every t. By the definition of a local martingale there exists a non-decreasing sequence (T_n) of F_t -stopping times with $\lim_n T_n = \infty$ such that for every n the process $(Z_{t \land T_n}, F_t)$ is a uniformly integrable martingale. Namely, for each $n, E[Z_{T_n}] = 1$. As Z is non-negative, we have

$$1 = E[Z_{t \wedge T_n}] \leq E[Z_t] + E[Z_{t \wedge T_n}; t > T_n].$$

Therefore, to prove $E[Z_i] = 1$, it suffices to show that the second term

N. KAZAMAKI

on the right hand side converges to 0 as $n \to \infty$. From the assumption it follows that $\sup \{W_s; 0 \le s \le t\}$ is dominated by some constant C which may depend on t. On the other hand, it is proved in [5] that the process Y is a martingale if $\exp(M_t^{\circ}/2)$ is a submartingale. That is, $E[Y_t|F_{t\wedge T_n}] =$ $Y_{t\wedge T_n}$ for every n. As $\{t > T_n\}$ belongs to $F_{t\wedge T_n}$, we get

$$E[Z_{t \wedge T_n}; t > T_n] \leq CE[Y_t; t > T_n].$$

and the right hand side converges to 0 as $n \to \infty$. This completes the proof.

Let now M be a locally square integrable martingale and $\langle M \rangle$ be the predictable increasing process such that $M^2 - \langle M \rangle$ is a local martingale. It should be noted that if $\exp(\langle M \rangle_t/2) \in L^1$, then $\exp(M_t^c/2) \in L^1$. Indeed, as $\langle M^c \rangle \leq \langle M \rangle$, the Schwarz inequality implies that

$$\begin{split} E[\exp\left(M_{t}^{c}/2\right)] &\leq E[\exp\left(M_{t}^{c}/2 - \langle M^{c} \rangle_{t}/4\right) \exp\left(\langle M \rangle_{t}/4\right)] \\ &\leq \{E[Y_{t}]\}^{1/2} \{E[\exp\left(\langle M \rangle_{t}/2\right)]\}^{1/2} \\ &\leq \{E[\exp\left(\langle M \rangle_{t}/2\right)]\}^{1/2} \;. \end{split}$$

However, the converse is not true. For such an example, see [5].

3. Application. In this section, for simplicity, we deal only with continuous local martingales. The extension to the general case is not difficult. Let M be a continuous local martingale with $M_0 = 0$, and assume that the process Z defined as before is a uniformly integrable martingale. Then we can consider a change of the underlying probability measure dP by the formula $d\hat{P} = Z_{\infty}dP$. As is proved in [6], for any P-continuous local martingale $X, \hat{X} = X - \langle X, M \rangle$ is a \hat{P} -continuous local martingale $X, \hat{X} = X - \langle X, M \rangle$ is a \hat{P} -continuous local martingale $X, \hat{X} = \langle X \rangle$ under either probability measure. Here $\langle X, M \rangle = (\langle X + M \rangle - \langle X \rangle - \langle M \rangle)/2$. We now apply Theorem 1 to give a sufficient condition for the process \hat{X} to be a \hat{P} -martingale.

THEOREM 3. Let M be a continuous local martingale, and assume that the exponential local martingale Z is uniformly integrable. Let δ be a number > 0. Then the inequality

$$(4) \qquad \widehat{E}[\widehat{X}_{t}^{*}] \leq C_{\delta} \|\exp\left((\delta + 1/2)M_{t}\right)\|_{1}^{4\delta/(1+2\delta)^{2}} \|X_{t}\|_{(1+1/(2\delta))^{2}}, \quad 0 \leq t < \infty$$

is valid for every continuous local martingale X. Here $\hat{X}_{i}^{*} = \sup\{|\hat{X}_{s}|; 0 \leq s \leq t\}$ and C_{δ} is a positive constant depending only on δ .

PROOF. By the Davis theorem (see [3]) we have

$$\hat{E}[\hat{X}^*_t] \leq 4\sqrt{2} \, \hat{E}[\langle \hat{X}
angle^{1/2}_t]$$
 .

From the definition of $d\hat{P}$ it follows that the expectation on the right

370

hand side is $E[Z_t \langle X \rangle_t^{1/2}]$. Set now $p = (1 + 2\delta)^2/(1 + 4\delta)$. Then the exponent conjugate is $q = (1 + 1/(2\delta))^2$. We apply the Hölder inequality with the exponents p and q to this term:

$$(5) \qquad \qquad \widehat{E}[\langle \widehat{X} \rangle_t^{1/2}] \leq ||Z_t||_p ||\langle X \rangle_t^{1/2}||_q.$$

According to Theorem 1, the first term on the right hand side of (5) is smaller than $||\exp((\delta + 1/2)M_t)||_1^{4\delta/(1+2\delta)^2}$. Furthermore, by a result of D. L. Burkholder and R. F. Gundy (see [3]), the second term is also smaller than $C_q||X_t||_q$, where C_q is a positive constant depending only on q. Thus the theorem is proved.

Consequently, if for some $\delta > 0$ the process $\exp\left((\delta + 1/2)M_t\right)$ is a submartingale, then for every $L^{(1+1/(2\delta))^2}$ -integrable continuous martingale X relative to dP, \hat{X} is a martingale relative to $d\hat{P}$.

More generally, we can show that the inequality

$$\hat{E}[(\hat{X}^*_t)^p] \leq C_{p,\delta} ||\exp{((\delta + 1/2)M_t)}||_1^{4\delta/(1+2\delta)^2}||X^*_t||_{(1+1/(2\delta))^{2p}}^p$$
 , 0

is valid for every P-continuous local martingale X.

References

- C. DOLÉANS-DADE, Quelques applications de la formule de changement de variables pour les semi-martingales, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 16 (1970), 181-194.
- [2] C. DOLÉANS-DADE AND P. A. MEYER, Intégrales stochastiques par rapport aux martingales locales, Séminaire de Probabilités IV, Université de Strasbourg, Lecture Notes in Math. 124, Springer-Verlag, (1970), 77-107.
- [3] R. K. GETOOR AND M. J. SHARPE, Conformal martingales, Inventiones Math. 16 (1972), 271-308.
- [4] I. V. GIRSANOV, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures, Teor. Veroyatnost i. Primen 5 (1960), 314-330.
- [5] N. KAZAMAKI, On a problem of Girsanov, Tôhoku Math. J. 29 (1977), 597-600.
- [6] J. H. VAN SCHUPPEN AND E. WONG, Transformation of local martingales under a change of law, Ann. Prob. 2 (1974), 879-888.

DEPARTMENT OF MATHEMATICS TOYAMA UNIVERSITY TOYAMA, 930 JAPAN