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Let A be a ring with involution (briefly, a *-ring), 6: A— A a
derivation of A, that is, d(x + ¥) = 6x + dy and do(xy) = (6x)y + x(0Y)
for all x,y in A. When A is a *-algebra (over the complex field) one
requires also that ¢ be a linear mapping. For each a € A we write 0, for
the inner derivation implemented by a:éd.x = [a, 2] = ax — za. For a
derivation 6 of A, the adjoint 6* of 0 is the derivation of A defined by
the formula 6*xr = —(6(z*))*; the purpose of the minus sign is to validate
the formula (6,)* = 6,.. Note also that ker (6*) = (ker d)*.

In the first part of the paper we explore the relationships between
several plausible definitions of normality for a derivation 6 of a x-ring,
with particular attention to C*-algebras and von Neumann algebras; in
the second part, we discuss derivations of certain algebras of “unbounded
operators” affiliated with A W*-algebras.

Here are some natural candidates for the definition of “normal deri-
vation” (there seems to be no compelling reason for making a definitive
choice):

(N, kero = ker (6*);

(N,) 6% = 66*;

(N,) there exist a x-ring B containing A as a =*-subring, and an
element b € B, such that b is normal (b*b = bb*) and 6 = ,| A (that is,
ox = [b, x] for all x e A);

(N,) there exist a *-ring B containing A as a *-subring, and an
element b€ B, such that 6 = 6,|4A and A N {b})’ is a *-subring of 4, where
{8} denotes the commutant of b in B;

(N,) there exist a *-ring B containing A as a *-subring, and an
element be B, such that 6 = 6,| A and {b}’ is a *-subring of B.

The most natural condition is (N,), which mimies the definition of
normality for an element of a *-ring. The remaining conditions are
motivated by the well-known theorem of B. Fuglede: if 6 = d,,ac A,
then (N,) means that xa = ax if and only if xa* = a*x; thus, when A
is a =x-algebra of operators in a Hilbert space, §, satisfies (N,) if and
only if @ is normal (Fuglede’s theorem [13, Prob. 152]). Here are some
elementary relations between these conditions:
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THEOREM 1. (N,) = (N,) = (N,) and (N;) = (N;) = (Ny).

PROOF. Let 6 be a derivation of the *-ring A. It is obvious that
(N,) implies (N,) and (N,). (N,) implies (N,) because kerd = AN {b}.

Assume (N,): Then (0,)*|A = 6*, therefore 6%6 — d0* = [(ds)*, 0]| A =
O] A = 0, whence (N,). (Incidentally, it suffices that b*b — bb* commute
with every element of A.) I

When A is a C*-algebra, we shall see that all but one of the impli-
cations in Theorem 1 can be reversed. A device in the proof is the
following result of C. R. Putnam (we offer an alternative proof, for
imitation in Theorem 7):

LEMMA [15, p. 5]. If x is an operator in a Hilbert space H, such
that x commutes with x*x — xx*, then x*x = xx*.

PROOF. Let z = x*x — xx* and let B = {2z}’ be the set of all operators
in H that commute with z; then B is a von Neumann algebra containing
x, and 2z is a self-adjoint element of the center of B. The assertion is
that 2 = 0. Assume to the contrary that z == 0; then there exists a
projection & in the center of B such that zh is invertible in Bk and such
that either zh = 0 or zh < 0. Interchanging x and xz* if necessary, we
can suppose that zh = 0; then zh = 7* with » in the center of B, r* =
r, r invertible in Bh. If s is the inverse of » in Bh, then h = 7’s* =
(zh)s* = (xs)*(xs) — (as)(xs)*; since xs belongs to the Banach algebra Bh,
this contradicts a theorem of A. Wintner (the unity element of a Banach
algebra is never a commutator [ef. 13, Prob. 182]). W

THEOREM 2. If A is a C*-algebra, then
(N,) = (Ny) = (N,) = (N,) = (N,) .

Proor. It will suffice to show that (N,) = (N,) and (N,) = (N,). Let
0 be a derivation of A.

View A as a C*-algebra of operators in a Hilbert space and let B
be the closure of A for the weak operator topology. By a theorem of
R. V. Kadison and S. Sakai [ef. 11, Ch. III, §9, n° 8, Cor. of Th. 1],
there exists be B such that 6,| 4 = 4.

Assume (N,): Then A N {b} = ker é is a *-ring by hypothesis, whence
(Ny).

Assume (N,): Then the element b*b — bb* of B commutes with every
element of A, hence with every element of B, hence with b; therefore
b is normal by the lemma, and {b} is a *-ring by Fuglede’s theorem,
whence (N,). I}
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The unilateral implication in Theorem 2 cannot be reversed; a coun-
terexample is provided by the unilateral shift [cf. 2, p. 82]:

ExamMpPLE 1. Let H be the Hilbert space of square-integrable functions
on the unit circle that are analytic in the sense that their Fourier coef-
ficients with negative index vanish [9]. Let A be the C*-algebra of all
compact operators in H, B the algebra of all operators in H. Letue B
be the unilateral shift operator defined via the canonical orthonormal basis
of H and define a derivation ¢ in the ideal A of B by the formula dx =
ux — xu. One has kerd = AN {u}; but {u} is the set of all analytic
Toeplitz operators [9, Th. 7] and the only compact Toeplitz operator is
0 [9, Cor. of Th. 4]; thus keré = {0} and (N,) holds trivially. However,
(N,) does not hold, since it would imply that the operator w*u — uu*e
A’ = A" = B’ is a scalar multiple of the identity, which it is not. It
follows (see Theorem 2) that, even for a C*-algebra, (N,)= (N,), (N,) =
(N,), ete. For a von Neumann algebra, all five conditions coalesce:

THEOREM 3. If A is a C*-algebra all of whose derivations are inner,
then the conditions (N)-(N,) are equivalent.

Proor. It will suffice to show that (N,)= (N,). Say é = d,, ac A.
If 0 satisfies (N,), then from da = 0 we infer that d(a*) = 0, thus a is
normal, therefore the commutant of a in A4 is a *-subring of A (Fuglede’s
theorem); thus (N,) holds with B = A. i

Examples of C*-algebras all of whose derivations are inner: any von
Neumann algebra [11, Ch. III, §9, n° 3, Th. 1]; more generally, any
AW*-algebra [14]; any simple C*-algebra with unity [20, Th. 4.1.11].

C*-algebras are algebras of bounded operators in Hilbert space; one
avenue for further exploration is to move to algebras of unbounded
operators. The next results make a slight incursion into the problem.
If A is a finite AW*-algebra, we write C for the regular ring of A
([4], [8, Ch. 8]). {Theorems 4 and 6 appear to hold for A an arbitrary
AW*-algebra, with C the ring of “measurable operators” ([18], [19], [7]),
but I have not checked every detail. At any rate, C is regular if and
only if A is finite [18, Th. 6.2]; the special interest of the finite case is
that C is then the maximal ring of right quotients of A ([12, p. 158,
Th. 2 and p. 160, Th. 2], [16]).}

LEMMA. Let A be a finite AW*-algebra, C its regular ring. If o
1s a derivation of C such that 6|A = 0, then 6 = 0.

ProoF. Let zeC and let ¢, be a sequence of projections in 4, with
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supremum 1, such that ze,c€ A for all n [8, §48, Prop. 1]; then 0 =
o(xe,) = (dx)e, + x(de,) = (0x)e, for all n, therefore ox = 0.

THEOREM 4. Let A be a finite AW*-algebra, C its regular ring.
The derivations 6 of C such that 6(A)C A are the inner derivations
0 = 0, with ac A.

PRrROOF. Suppose ¢ is a derivation of C with 6(A) c A. Then 6|A is
a derivation of A, hence is inner by an element a € A [14]: 6x = ax — za
for all xe A. Then 6 — d, vanishes on A, hence is identically zero by
the Lemma. i

PROBLEM. Is every derivation of C inner? At any rate, it is easy
to exhibit inner derivations 6 of C such that 6(4) ¢ A:

ExaMPLE 2. With 4 and C as in Theorem 4, write Z(C) =CnC’
for the center of C. Suppose ce€C. In order that 6,(4) C 4, it is neces-
sary and sufficient that ¢ce A + Z(C). {Proof: If 6,(4A)c A then by
Theorem 4, 6, = d, for some ac A; thusd,_, = 0,¢ — ae€ Z(C).} One can
identify Z(C) with the regular ring of the center Z(A4) of A [4, Th. 9.2];
thus if A is factorial (i.e., has scalar center) then so is C, in which case
A + Z(C) = A. In particular, if A is a factor of type II,, then 4 +
Z(C) = A # C; thus for ¢ceC one has 6,(A)c A if and only if ce A.
Here is a characterization of the finite AW*-algebras A (necessarily of
type I) such that every inner derivation of C is implemented by an
element of A:

THEOREM 5. Let A be a finite AW *-algebra, C its regular ring, Z(C)
the center of C. The following conditions on A are equivalent:

(a) A is a Lie ideal of C (that 1s, [C, A] C A);

(b) A + Z(C) = C;

(¢) A= F®K with F finite-dimensional and K abelian.

ProoF. (a)=(b): LetceC. By (a), 0,(4) C A, thereforece A + Z(C)
as remarked in Example 2.

(b) == (a): Obvious.

For any finite AW*-algebra B, let us write C, for its regular ring;
it is easy to see that B = C; if and only if B is finite-dimensional. For
any ring B, write Z(B) for the center of B.

(¢) = (b): Suppose that the algebra A is a direct sum A = FP K
with F' a finite-dimensional algebra and K an abelian algebra. Then [6,
p. 177, Lemma] C, = C, @ Cx = F P Cx, where C, is abelian, therefore
Z(Cy) = Z(F)@D Cy; thus A+ Z(CY)=FDK)+ (ZF)PCy)=F D
Cy =0C,.
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(b) = (¢): For a finite AW*-algebra B, consider the condition
(%) B + Z(Cy) # C, .

REMARK 1. If e is a projection of A such that the “corner” ede of
A satisfies (), then A satisfies (x). For, writing C = C,, we have C,,, =
¢Ce [4, Th. 9.4] and Z(eCe) = eZ(C)e. {Proof: One has Z(eCe) = Z(C,,,) =
Crieney = Cozinre = €Cr0e = ¢Z(Ce by [4, Ths. 9.2 and 9.4] and [8, §6,
Cor. 2 of Prop. 4].} If one had A + Z(C) = C, it would follow that
¢Ae + e¢Z(C)e = ¢Ce, thus ede + Z(eCe) = ¢Ce, that is, ede + Z(C.,,) =
C..., contrary to supposition.

In particular, if some direct summand of A satisfies (x), then so
does A.

REMARK 2. If A is infinite-dimensional (in other words, if 4 = C)
and n is an integer = 2, then the algebra A, of » X n matrices over A
satisfies (x). For, writing C = C,, C, is the regular ring of A, (cf. [5,
p. 43, Remark 2], [4, Section 11], [8, §52, Prop. 3]); since the elements of
Z(C,) are diagonal matrices, 4, + Z(C,) consists of matrices whose off-
diagonal elements are in A, hence it cannot exhaust C,.

Suppose now that A + Z(C) = C. Write A as the sum of a type I
algebra and a type II algebra [8, §15, Th. 2]. The type II summand
must be zero; otherwise, it could be written as a 2 X 2 matrix algebra
over a type II algebra [8, §19, Cor. of Th. 1], it would satisfy (x) by
Remark 2, hence A would satisfy (*) by Remark 1, contrary to supposition.
Thus A is of type I. Decompose A into homogeneous summands, each
of which is a full matrix algebra over an abelian AW *-algebra:

A=K QK DKD:--,

where K is the algebra of n X » matrices over an abelian algebra K"
[8, §18, Th. 2]. Since A does not satisfy (x), no summand of A can
satisfy () (Remark 1); therefore K" is finite-dimensional for all n = 2
(Remark 2). It will suffice to show that the number of summands is
finite. Every nonzero summand for » = 2 contains a pair of nonzero,
orthogonal equivalent projections; if there were infinitely many nonzero
summands, there would exist in A a pair of orthogonal equivalent pro-
jections f, g with fAS infinite-dimensional; then, for the projection e =
f + g, the corner ede = (fAf), of A would satisfy (*) (Remark 2),
therefore A would satisfy (*) (Remark 1), contrary to supposition. i}

REMARK 1. One can regard C as an algebra of “unbounded operators”
affiliated with A [4, Section 2]. We remark that E. Christensen has
considered the derivations of a concretely represented C*-algebra that are
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implemented by unbounded operators “affiliated” with the C*-algebra
[10, Prop. 2.1].

REMARK 2. If B is a C*-algebra with unity and A is a C*-subalgebra
of B such that wAu* = A for every unitary element w of B, then A is
a Lie ideal of B, that is, ab — bac A for all ac A and be B (in other
words, A is invariant under every inner derivation of B) [1, Prop. 5.2].
The situation is quite different for a finite A W*-algebra A and its regular
overring C: every unitary element u of C belongs to A [4, Th. 5.2],
hence satisfies udAu* = A; but A is a Lie ideal of C only under the
conditions of Theorem 5.

To explore the conditions (N,)-(N,) for derivations of C, one wants
to know whether Fuglede’s theorem holds in C. Here is a fragmentary
result (an improvement on [6, Ths. 5 and 7]):

THEOREM 6. Let A be a finite AW*-algebra, C its regular ring. If
az = za, where z€C 1s normal and ac A, then az* = z*a.

PrOOF. The proof is inspired by an argument of M. Rosenblum [17].
Write z = <{z,, ¢,y with z,, e, lying in a commutative AW*-subalgebra
of A, (e,) being a sequence of projections with ¢, 11 and z,e, = z,¢, for
m < n [4, Cor. 4.1]. {For the case of an arbitrary AW*-algebra, see
[18, Th. 5.2].} Replacing z, by z.e,, we can suppose that z,¢, = z,. Then
ze, = 2z, [8, §48, Prop. 1], therefore

(eq0e,)z, = e(az)e, = e,(za)e, = z,(e,ae,) ;

by Fuglede’s theorem (in A), (e,ae,)zf = zk(e,ae,), thus e,(az*)e, = e,(2*a)e,
for all n, whence az* = z*a. |}

COROLLARY. Let A be a finite AW*-algebra, C its regular ring. If
2, 2, are normal elements of C and if be A satisfies bz, = z,b, then
bz} = z¥b.

PROOF. The algebra C, of 2 X 2 matrices over C is the regular ring
of A, [5]; apply Theorem 6 to the elements a€ A, z€C, given by the

matrices
<0 0) ‘2, O>
b 0/, (0 2,

PROBLEM. In Theorem 6, need one assume that a € A? {In other
words, in the jargon of [6], is C an F'T-ring (hence a PT-ring)? It would

[cf. 6, Th. 2]. W
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suffice, by the argument in the proof of Theorem 6, to show that zz =
zx implies xz* = z*x when z€ A is normal and xe€C.} A possibly more
tractable special case: if ¥ and z are normal elements of C such that
yz = zy, does it follow that yz* = z*y?

Our final theorem pertains to the normality of inner derivations of C.

LEMMA. Let A be a finite AW*-algebra, C its regular ring. The
equation x*x — xx* = 1 has mo solution in C.

PROOF. Assume to the contrary that z e C satisfies x*x — xx* = 1.
Then x*x = 1 + xx* shows that the right projection of = is 1, therefore
x is invertible in C. Write & = wr with u € A unitary and » = 0 [4, Cor.
7.4]. Then 7* = 1 + wr*u*, thus wru* = r* — 1; transforming again by
u, one has w*r’(u?* = uwr*u* — 1 = 2 — 2. Inductively, u*r*(u*)* = +*—mn,
therefore #* + n is unitarily equivalent to 7%, therefore (#* + n)™* is
unitarily equivalent to (+*)7*; but 2 + n = n, whence (* + n)™"' < 1/n
[6, Th. 6]; thus (#* + n)™ and (»*)™* are in A [4, Lemma 5.1] and
(@) = || + n)7!|| £ 1/n for all n, which is absurd. i

ProBLEM. Is the equation yx — xy = 1 solvable in C? {If A is a
finite AW*-algebra of type I, then C has a center-valued trace [6, Th. 5]
and the answer is obviously negative. The equation yx — 2y = 1 is not
solvable in a Banach algebra (Wintner’s theorem [13, Prob. 182]).}

Analogous to Putnam’s theorem (lemma to Theorem 2), we haVe:

THEOREM 7. Let A be a finite AW *-algebra, C its regular ring,
xeC. If x commutes with x*x — xx*, then x is normal.

PrOOF. Write z = x*x — 2¢* and let D = {2}’ be the commutant of
z in C; then D is a x-subalgebra of C containing x, D = D", and z is a
self-adjoint element of the center of D. Let B = DN A; then B is an
AW*-subalgebra of A, whose regular ring may be identified with D [4,
Th. 9.3]. Thus, dropping down to B, D and changing notation, we can
suppose that the element z = «*x — xx* belongs to the center of C.

One then has z = {z,, ¢,> for suitable elements z,, e, in the center
of A, the ¢, being projections such that ¢, 11 and z.e, = 2, [4, Th. 4.2].
It will suffice to show that z, =0 for all n. Assume to the contrary
that z,#0 for some n. Then (xe,)*(xe,)—(xe,)(xe,)* = ze, = 2,#0. Let h
be a central projection such that z,h is invertible in A% and such that
either z,h = 0 or z,h < 0. Interchanging x and x* if necessary, we can
suppose z,h = 0. Since z,e, = z,, necessarily h <e,. Then (xh)*(xh) —
(xh)(xh)* = z,h; dropping down to Ak and changing notation, we can
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suppose that z€ A and that z is positive, central and invertible. Write
2z = r? with 7 self-adjoint, central and invertible and let s be the inverse
of r; then (xs)*(xs) — (xs)(xs)* = zs* = r*s* = 1, contradicting the lemma. i

COROLLARY. Let A be a finite AW*-algebra, C its regular ring,
xe€C, and 0 = 0, the inner derivation of C tmplemented by x. Then
0*0 = 00* if and only if x 18 normal.

Proor. If x is normal, then 6*6 — 00* = dp,s,,; = 0. Conversely, if
0*6 — 00* = 0, that is, if 6(,., = 0, then [x*, x] belongs to the center of
C, therefore x is normal by Theorem 7. i
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