THE OUTRADIUS OF THE TEICHMÜLLER SPACE

Hisao Sekigawa

(Received June 22, 1977)

1. Let D be the complement of the closed unit disc in the Riemann sphere $\hat{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$. We set $k(z)=z /(1-z)^{2}$, which is the Koebe extremal function and plays an important role in the theory of conformal mappings. It is a schlicht meromorphic function in D and has the Schwarzian derivative $[k](z)=\left(k^{\prime \prime}(z) / k^{\prime}(z)\right)^{\prime}-(1 / 2)\left(k^{\prime \prime}(z) / k^{\prime}(z)\right)^{2}=-6 /\left(1-z^{2}\right)^{2}$.

Let ρ be the Poincaré metric of D. We denote by $B(D)$ the Banach space of holomorphic functions ϕ defined in D which satisfy the growth condition

$$
\begin{aligned}
\|\dot{\phi}\| & =\sup \left\{\rho(z)^{-2}|\phi(z)| ; z \in D\right\} \\
& =\sup \left\{\left(|z|^{2}-1\right)^{2}|\dot{\phi}(z)| ; z \in D\right\}<\infty
\end{aligned}
$$

Let Γ be a Fuchsian group acting on D. We denote by $B(D, \Gamma)$ the closed subspace of $B(D)$ consisting of those $\phi \in B(D)$ which satisfy the functional equation

$$
\phi(T(z))\left(T^{\prime}(z)\right)^{2}=\dot{\phi}(z), \quad T \in \Gamma .
$$

This space $B(D, \Gamma)$ is finite-dimensional if and only if Γ is a finitely generated Fuchsian group of the first kind.
2. First we prove the following.

Theorem 1. If [k] belongs to $B(D, \Gamma)$ for a Fuchsian group Γ acting on D, then the limit set $\Lambda(\Gamma)$ of Γ is empty or consists of two points.

Proof. We define Γ^{*} as the set of all Möbius transformations T leaving D invariant and satisfying the functional equation

$$
\begin{equation*}
[k \circ T]=([k] \circ T)\left(T^{\prime}\right)^{2}=[k] \tag{1}
\end{equation*}
$$

Since a Möbius transformation T leaving D invariant is of the form

$$
T(z)=\varepsilon \frac{z-\alpha}{1-\bar{\alpha} z}
$$

where $|\varepsilon|=1$ and $|\alpha|<1$, the equation (1) can be written as

$$
\begin{equation*}
\left[\frac{\varepsilon\left(1-|\alpha|^{2}\right)}{1-\varepsilon^{2} \alpha^{2}}\right]^{2}\left(1-\frac{\varepsilon+\bar{\alpha}}{1+\varepsilon \alpha} z\right)^{-2}\left(1+\frac{\varepsilon-\bar{\alpha}}{1-\varepsilon \alpha} z\right)^{-2}=\left(1-z^{2}\right)^{-2} \tag{2}
\end{equation*}
$$

If T is a transformation belonging to Γ^{*}, then (2) yields

$$
\left[\frac{\varepsilon\left(1-|\alpha|^{2}\right)}{1-\varepsilon^{2} \alpha^{2}}\right]^{2}=1
$$

and

$$
\frac{\varepsilon+\bar{\alpha}}{1+\varepsilon \alpha}=\frac{\varepsilon-\bar{\alpha}}{1-\varepsilon \alpha}= \pm 1
$$

Hence we have $\varepsilon= \pm 1$ and $\alpha=\bar{\alpha}$. Therefore Γ^{*} consists of transformations of the following two types:

$$
\begin{aligned}
& T_{1}(r)(z)=\frac{z-r}{1-r z},-1<r<1 \\
& T_{2}(s)(z)=-\frac{z-s}{1-s z},-1<s<1
\end{aligned}
$$

Here $T_{1}(r)$ is a hyperbolic transformation and $T_{2}(s)$ is an elliptic transformation of order two. It is easily seen that Γ^{*} is a group.

Now Γ is a subgroup of Γ^{*}. If Γ contains only elliptic transformations, Γ is an elliptic cyclic group of order two. Indeed, we have

$$
T_{2}\left(s_{1}\right) \circ T_{2}\left(s_{2}\right)=T_{1}\left(\left(s_{2}-s_{1}\right) /\left(1-s_{1} s_{2}\right)\right) .
$$

Hence $\Lambda(\Gamma)$ is empty. If Γ contains a hyperbolic transformation, $\Lambda(\Gamma)$ is the closure of the set of the fixed points of hyperbolic transformations in Γ. Hence $\Lambda(\Gamma)$ consists of two points, for the fixed points of $T_{1}(r)$ are 1 and -1 for any r.
3. In this section we state an application of Theorem 1.

The universal Teichmüller space $T(1)$ may be defined as the set of functions $\phi \in B(D)$ which are Schwarzian derivatives of schlicht meromorphic functions in D admitting quasiconformal extensions to $\hat{\boldsymbol{C}}$. It is well known that $T(1)$ is a bounded domain in $B(D)$.

Let Γ be a Fuchsian group acting on D. The Teichmüller space of $\Gamma, T(\Gamma)$, may be defined as the connected component of $T(1) \cap B(D, \Gamma)$ which contains the origin of $B(D, \Gamma)$. For a Fuchsian group Γ with $\operatorname{dim} T(\Gamma)>0$, we define the outradius $o(\Gamma)$ of $T(\Gamma)$ by

$$
o(\Gamma)=\sup \{\|\phi\| ; \phi \in T(\Gamma)\}
$$

It follows from well-known results of Nehari, Earle, and Hille that

$$
2<o(\Gamma) \leqq 6 \text { and } o(1)=6 .
$$

By using Theorem 1 we can obtain the following, which we shall prove in §5.

Theorem 2. If Γ is a finitely generated Fuchsian group of the first kind, then $o(\Gamma)$ is strictly less than 6.

According to a result of Chu [3], the value 6 in the above theorem cannot be replaced by a smaller constant.
4. In this section we prove two lemmas necessary in $\S 5$.

Lemma 1 (Bers [2], Proposition 8). The set of Schwarzian derivatives of schlicht meromorphic functions in D is closed in $B(D)$.

Lemma 2. Let f be a schlicht meromorphic function defined in D and $[f]$ its Schwarzian derivative. Assume that

$$
\|[f]\|=\rho\left(z_{0}\right)^{-2}\left|[f]\left(z_{0}\right)\right|=6
$$

for some point $z_{0} \in D$. Then there exists a Möbius transformation S leaving D invariant such that $[f]=[k \circ S]$.

Proof. We follow carefully an argument of Nehari [6]. First we set $U(z)=\left(1-\bar{z}_{0} z\right) /\left(z-z_{0}\right)$ if $\left|z_{0}\right|<\infty$ and $U(z)=z$ if $z_{0}=\infty$. For a suitably chosen Möbius transformation $\eta, F=\eta \circ f \circ U^{-1}$ is expanded in D as follows:

$$
F(z)=z+b_{0}+\frac{b_{1}}{z}+\frac{b_{2}}{z^{2}}+\cdots
$$

Using the formula $[f]=[\eta \circ f]=[F \circ U]=([F] \circ U)\left(U^{\prime}\right)^{2}$, we have $\rho\left(z_{0}\right)^{-2}\left|[f]\left(z_{0}\right)\right|=6\left|b_{1}\right|$. Then our assumption means $\left|b_{1}\right|=1$. Hence it follows from the classical Bieberbach's area theorem that $b_{n}=0(n=2$, $3, \cdots)$. Therefore we have $[F](z)=-6 b_{1} /\left(z^{2}-b_{1}\right)^{2}$. If we set $T(z)=$ $\varepsilon z\left(b_{1}=\varepsilon^{-2}\right)$, then $S=T \circ U$ is a required transformation.
5. Proof of Theorem 2. Suppose that $o(\Gamma)=6$. Then there exists a sequence $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ in $T(\Gamma)$ such that $\lim _{n \rightarrow \infty}\left\|\phi_{n}\right\|=6$. Since $\operatorname{dim} T(\Gamma)=\operatorname{dim} B(D, \Gamma)<\infty$, we may assume that $\lim _{n \rightarrow \infty} \phi_{n}=\phi$ for some $\phi \in B(D, \Gamma)$ with $\|\phi\|=6$. We see from Lemma 1 that ϕ is the Schwarzian derivative of a schlicht meromorphic function defined in D.

Now let N be a normal polygon for Γ relative to D, \bar{N} its closure in \hat{C} and ∂D the unit circle in C. Since Γ is a finitely generated Fuchsian group of the first kind, $\partial D \cap \bar{N}$ consists of at most finitely many points, say $\zeta_{1}, \zeta_{2}, \cdots, \zeta_{m}$, which are so-called parabolic cusps of Γ. As
 $m)$. Hence we see $\lim _{\bar{N} \cap D \ni z, z \rightarrow \zeta_{i}} \rho(z)^{-2}|\phi(z)|=0(i=1,2, \cdots, m)$. On the other hand, we have $\|\phi\|=\sup \left\{\rho(z)^{-2}|\phi(z)| ; z \in \bar{N} \cap D\right\}$. Therefore it follows that $\|\phi\|=\rho\left(z_{0}\right)^{-2}\left|\phi\left(z_{0}\right)\right|$ for some point $z_{0} \in \bar{N} \cap D$. We conclude by Lemma 2 that there is a Möbius transformation S leaving D invariant such that $\phi=[k \circ S]$. It can be seen easily that $[k \circ S]$ belongs to $B(D, \Gamma)$ if and only if [k] belongs to $B\left(D, S \Gamma S^{-1}\right)$. Therefore Theorem 1 implies that $\Lambda\left(S \Gamma S^{-1}\right)$ (and hence $\Lambda(\Gamma)$ also) is empty or consists of two points. This contradicts our assumption that $\Lambda(\Gamma)$ coincides with ∂D, and the theorem is proved.
6. Let K be the one-dimensional subspace of $B(D)$ which is spanned by [k]. The fact that $o(1)=6$ is proved by considering the intersection of K and $T(1)$ (see Chu [3]).

First we state a result of Hille [4]. We set

$$
f(z)=\left(\frac{z-1}{z+1}\right)^{\delta}, \quad \delta=(1-\alpha)^{1 / 2}
$$

where $f(\infty)=1$ and the square root is 1 for $\alpha=0$. Then

$$
[f](z)=\frac{2 \alpha}{\left(1-z^{2}\right)^{2}}=-\frac{\alpha}{3}[k](z)
$$

and f is schlicht in D if and only if α lies in the interior or on the boundary of the cardioid

$$
\begin{equation*}
\alpha=-2 e^{\sqrt{ }-1 \theta}-e^{2 \sqrt{-1} \theta}, \quad-\pi<\theta \leqq \pi \tag{3}
\end{equation*}
$$

Let V be the interior of the cardioid (3) and R the right half-plane $\{z=x+\sqrt{-1} y \in C ; x>0\}$ of the complex plane C. We set $\zeta=(z-1) /$ $(z+1)$ and $w=g(\zeta)=f(z)=\zeta^{\circ}$.

Kalme [5] showed the following theorem by proving that $f(z)=\zeta^{\circ}$ is quasiconformally extendable to $\hat{\boldsymbol{C}}$ for $\alpha \in V$.

Theorem 3. The set $\{\alpha \in \boldsymbol{C} ;-(\alpha / 3)[k] \in T(1)\}$ coincides with the interior of the cardioid (3).

Here we shall give an alternative proof of this theorem.
The universal Teichmüller space $T(1)$ can be defined as the set of functions $\phi \in B(D)$ which are Schwarzian derivatives of schlicht meromorphic functions in D whose images of D are bordered by quasi-circles. Furthermore, Ahlfors [1] gave geometric characterization of quasi-circles. Therefore, we have only to show that the boundary of the domain $f(D)=g(R)$ is a quasi-circle for any $\alpha \in V$.

Now, for any $\alpha \in V$, the boundary of the domain $g(R)$ is a Jordan
curve given by

$$
\begin{align*}
w & =g(y)=\exp \left[\left(\mu \log |y|-\frac{\nu \pi}{2} \operatorname{sign}(y)\right)\right. \tag{4}\\
& \left.+\sqrt{-1}\left(\nu \log |y|+\frac{\mu \pi}{2} \operatorname{sign}(y)\right)\right],-\infty<y<\infty,
\end{align*}
$$

where $\operatorname{sign}(y)$ is the sign of y and $\delta=\mu+\sqrt{-1} \nu(\mu>0)$. Hence, by Ahlfors's result [1], we have to show that there exists a constant M satisfying

$$
\begin{equation*}
\left|\frac{g\left(y_{1}\right)-g\left(y_{2}\right)}{g\left(y_{1}\right)-g\left(y_{3}\right)}\right| \leqq M \tag{5}
\end{equation*}
$$

for any $y_{1}, y_{2}, y_{3}\left(y_{1}<y_{2}<y_{3}\right)$. There occur seven cases according as $y_{i}(i=1,2,3)$ is positive, zero or negative. Here we show (5) only in the case $0<y_{1}<y_{2}<y_{3}$ and omit the details for the other cases. If $0<y_{1}<y_{2}<y_{3}$, then (4) gives

$$
\begin{equation*}
\left|\frac{g\left(y_{1}\right)-g\left(y_{2}\right)}{g\left(y_{1}\right)-g\left(y_{3}\right)}\right|^{2}=\frac{h\left(y_{2} / y_{1}\right)}{h\left(y_{3} / y_{1}\right)}, \tag{6}
\end{equation*}
$$

where

$$
h(x)=1+x^{2 \mu}-2 x^{\mu} \cos (\nu \log x), \quad x>1
$$

It can be seen easily that $h(x)$ has the following properties: (i) $h(x)>$ 0 for $x>1$ (which follows from the fact that a curve given by (4) is a Jordan curve) and (ii) $h(x)$ is monotone increasing on both intervals $(1,1+\varepsilon)$ and (N, ∞) for a sufficiently small $\varepsilon>0$ and a sufficiently large $N>0$. Therefore, by (6), (5) holds for some constant M.
7. Remarks. 1. The proof of Theorem 3, mainly due to Hille [4], contains the proof of the fact that $o(1)=6$ (see Chu [3]).
2. Theorem 3 and the proof of Theorem 1 imply that $o(\Gamma)=6$ for a Fuchsian group Γ which is a subgroup of the group Γ^{*} introduced in the proof of Theorem 1.
3. According to Theorem 1 , no points of $K \cap T(1)$ except the origin of $B(1)$ belong to any Teichmüller space $T(\Gamma)$ with $\operatorname{dim} T(\Gamma)<\infty$.
4. Let Γ be a Fuchsian group acting on D and A a Möbius transformation leaving D invariant. Then the mapping χ which takes $\phi \in$ $B(D, \Gamma)$ to $(\phi \circ A)\left(A^{\prime}\right)^{2} \in B\left(D, A \Gamma A^{-1}\right)$ is a norm-preserving linear isomorphism and the image $\chi(T(\Gamma))$ of $T(\Gamma)$ under χ coincides with $T\left(A \Gamma A^{-1}\right)$. In particular, we have $o\left(A \Gamma A^{-1}\right)=o(\Gamma)$.
5. By setting $\Gamma=1$ in Remark 4, we see that Theorem 3 also
holds if we substitute $[k \circ A]$ for [k], where A is a Möbius transformation leaving D invariant.

References

[1] L. V. Ahlfors, Quasiconformal reflections, Acta. Math., 109 (1963), 291-301.
[2] L. Bers, On boundaries of Teichmüller spaces and kleinian groups: I, Ann. of Math., 91 (1970), 570-600.
[3] T. CHU, On the outradius of finite-dimensional Teichmüller spaces, Discontinuous groups and Riemann surfaces, Ann. of Math. Studies, 79 (1974), 75-79.
[4] E. Hille, Remarks on a paper by Zeev Nehari, Bull. Amer. Math. Soc., 55 (1949), 552-553.
[5] C. I. Kalme, Remarks on a paper by Lipman Bers, Ann. of Math., 91 (1970), 601-606.
[6] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc., 55 (1949), 545-551.

Mathematical Institute
Tôhoku University
Sendai, 980 Japan

