# LOCALLY SYMMETRIC EINSTEIN KAEHLER MANIFOLDS AND SPECTRAL GEOMETRY 

Kazumi Tsukada

(Received July 27, 1978, revised October 19, 1978)

1. Introduction. Let $(M, g)$ be a compact connected Riemannian manifold with the metric tensor $g$, and $\Delta$ be the Laplacian acting on differentiable functions of $M$, that is,

$$
\Delta f=-\sum g^{j i} \nabla_{j} \nabla_{i} f,
$$

where $\nabla_{j}$ denotes the covariant differentiation $\nabla_{\partial / \partial x^{j}}$ with respect to the Riemannian connection. Let $\operatorname{Spec}(M, g)=\left\{0=\lambda_{0}<\lambda_{1} \leqq \lambda_{2} \leqq \cdots\right\}$ be the set of eigenvalues of $\Delta$, where each eigenvalue is repeated as many times as its multiplicity. It is an interesting problem to investigate relations between $\operatorname{Spec}(M, g)$ and Riemannian structures.

A useful tool is a formula of Minakshisundaram:

$$
\sum_{k=0}^{\infty} e^{-\lambda_{k} t} \underset{t \rightarrow+0}{\sim}(4 \pi t)^{-n / 2} \sum_{i=0}^{\infty} a_{\imath} t^{2},
$$

where $n=\operatorname{dim} M$.
Berger [1] has calculated the coefficients $a_{0}, a_{1}$ and $a_{2}$,

$$
\begin{aligned}
& a_{0}=\text { volume } M=\int_{M} d V \\
& a_{1}=(1 / 6) \int_{M} \tau d V \\
& a_{2}=(1 / 360) \int_{M} 5 \tau^{2}-2|\rho|^{2}+2|R|^{2} d V,
\end{aligned}
$$

where the notations $\tau, \rho, R$ denote the scalar curvature, the Ricci tensor and the curvature tensor, respectively. By difficult calculations, Sakai [4] derived a formula for $a_{3}$.

In this paper we prove the following result, making essential use of Sakai's formula.

Theorem. Let ( $M, g, J$ ) and ( $M^{\prime}, g^{\prime}, J^{\prime}$ ) be compact connected Einstein Kaehler manifolds with $\operatorname{dim}_{c} M=n(\geqq 3)$ which have nonzero scalar curvatures $\tau$, $\tau^{\prime}$, respectively. Assume that $\operatorname{Spec}(M, g, J)=$ $\operatorname{Spec}\left(M^{\prime}, g^{\prime}, J^{\prime}\right)$ (which implies $\operatorname{dim}_{c} M=\operatorname{dim}_{c} M^{\prime}$ ) and that $c_{1}^{n-3} c_{3}[M]=$
$c_{1}^{\prime n-3} c_{3}^{\prime}\left[M^{\prime}\right]$. Then $(M, g, J)$ is locally symmetric if and only if $\left(M^{\prime}, g^{\prime}, J^{\prime}\right)$ is locally symmetric.

In this theorem $c_{\imath} \in H^{2 i}(M, Z)$ is the $i$-th Chern class of $M$ and $c_{1}^{n-3} c_{3}[M]$ is a Chern number of $M$. (Hirzebruch [3])

Remark 1. The integer $c_{1}^{n-3} c_{3}[M]$ depends only on the complex structure of $M$.

Remark 2. Let ( $M, g$ ) and ( $M^{\prime}, g^{\prime}$ ) be compact connected Einstein manifolds and assume that $\operatorname{Spec}(M, g)=\operatorname{Spec}\left(M^{\prime}, g^{\prime}\right)$. The following results are known.
(1) For $\operatorname{dim} M=6$, assume that $\chi(M)=\chi\left(M^{\prime}\right)$. Then $(M, g)$ is locally symmetric if and only if ( $M^{\prime}, g^{\prime}$ ) is locally symmetric. (Sakai [4])
(2) For $\operatorname{dim} M \leqq 5,(M, g)$ is locally symmetric if and only if $\left(M^{\prime}, g^{\prime}\right)$ is locally symmetric. (Donnelly [2])

The author wishes to thank Professor K. Ogiue for his many valuable comments.
2. Preliminaries. Let $(M, g, J)$ be an $n$-dimensional Kaehler manifold, and $e_{1}, e_{2}, \cdots, e_{n}, J e_{1}, J e_{2}, \cdots, J e_{n}$ be local orthonormal frames. We set

$$
\begin{aligned}
Z_{\alpha} & =\left\{e_{\alpha}-\sqrt{-1} J e_{\alpha}\right\} / 2 \\
\bar{Z}_{\alpha} & =\left\{e_{\alpha}+\sqrt{-1} J e_{\alpha}\right\} / 2
\end{aligned}
$$

and we denote dual frames by $\theta^{1}, \theta^{2}, \cdots, \theta^{n}, \bar{\theta}^{1}, \bar{\theta}^{2}, \cdots, \bar{\theta}^{n}$. With respect to these frames, local components of $g$ are given by

$$
g_{\alpha \bar{\beta}}=(1 / 2) \delta_{\alpha \beta} .
$$

Then the fundamental 2 -form $\Phi$ is given by

$$
\Phi=(\sqrt{-1} / 2) \sum \theta^{\alpha} \wedge \bar{\theta}^{\alpha}
$$

Let $\Omega_{\beta}^{\alpha}=\sum R_{\beta \gamma}^{\alpha} \theta^{r} \wedge \bar{\theta}^{\delta}$ be the curvature form of $M$. Then the curvature tensor of $M$ is the tensor field with local components $R_{\beta r \bar{o}}^{\alpha}$, which will be denoted by $R$. The Ricci tensor $\rho$ and the scalar curvature $\tau$ are given by

$$
\begin{aligned}
& \rho=\sum \rho_{\alpha \bar{\beta}} \theta^{\alpha} \otimes \bar{\theta}^{\beta}+\bar{\rho}_{\alpha \bar{\beta}} \bar{\theta}^{\alpha} \otimes \theta^{\beta} \\
& \tau=4 \sum \rho_{\alpha \bar{\alpha}},
\end{aligned}
$$

where $\rho_{\alpha \bar{\beta}}=\sum R_{\alpha \gamma \bar{\beta}}^{\gamma}$.
If we define a closed $2 k$-form $\gamma_{k}$ by

$$
\gamma_{k}=\left((-1)^{k / 2} /(2 \pi)^{k} k!\right) \sum \delta_{\beta_{1} \cdots \beta_{k}}^{\alpha_{1} \cdots \alpha_{k}} \Omega_{\alpha_{1}}^{\beta_{1}} \wedge \Omega_{\alpha_{2}}^{\beta_{2}} \cdots \wedge \Omega_{\alpha_{k}}^{\beta_{k}}
$$

then the $k$-th Chern class $c_{k}$ of $M$ is represented by $\gamma_{k}$. By (,) we denote a local inner product in the space of $p$-forms. The inner product of $\theta^{\alpha}$ and $\bar{\theta}^{\beta}$ is $2 \delta_{\alpha \beta}$.

Lemma 1.

$$
\begin{aligned}
\left(\Phi^{3}, \gamma_{3}\right)= & \left(1 / 64 \pi^{3}\right)\left\{\tau^{3}-12 \tau|\rho|^{2}+3 \tau|R|^{2}+256 \sum \rho_{\alpha \bar{\beta}} \rho_{\beta \bar{\eta}} \rho_{r \bar{\alpha}}\right. \\
& +384 \sum \rho_{\alpha \bar{\beta}} \rho_{\bar{\gamma}} R_{\beta \bar{\beta}}^{\alpha}-768 \sum \rho_{\alpha \bar{\beta}} R_{\beta \bar{\beta} \bar{\alpha}}^{\gamma} R_{r i \bar{\delta}}^{\alpha} \\
& \left.+128 \sum R_{r \delta \bar{\alpha}}^{\alpha} R_{\alpha\langle\bar{\mu}}^{\beta} R_{\beta \mu \bar{\alpha}}^{\gamma}+128 \sum R_{\beta \bar{\lambda}}^{\alpha} R_{r \lambda \bar{\mu}}^{\beta} R_{\alpha \mu \bar{\delta}}^{\gamma}\right\},
\end{aligned}
$$

where $|R|$ and $|\rho|$ denote the lengths of the curvature tensor and the Ricci tensor, respectively, so that

$$
|R|^{2}=16 \sum R_{\beta \gamma \bar{\delta}}^{\alpha} R_{\alpha \alpha \bar{\gamma}}^{\beta}, \quad|\rho|^{2}=8 \sum \rho_{\alpha \bar{\beta}} \rho_{\beta \bar{\alpha}} .
$$

Proof. By definition,

$$
\begin{aligned}
\gamma_{3}= & \left(-\sqrt{-1} / 48 \pi^{3}\right) \sum\left\{\Omega_{\alpha}^{\alpha} \wedge \Omega_{\beta}^{\beta} \wedge \Omega_{r}^{r}+\Omega_{\alpha}^{\beta} \wedge \Omega_{\beta}^{r} \wedge \Omega_{r}^{\alpha}+\Omega_{\alpha}^{r} \wedge \Omega_{\beta}^{\alpha} \wedge \Omega_{\gamma}^{\beta}\right. \\
& \left.-\Omega_{\alpha}^{\beta} \wedge \Omega_{\beta}^{\alpha} \wedge \Omega_{r}^{r}-\Omega_{\alpha}^{r} \wedge \Omega_{\beta}^{\beta} \wedge \Omega_{\beta}^{\alpha}-\Omega_{r}^{\alpha} \wedge \Omega_{\beta}^{r} \wedge \Omega_{r}^{\beta}\right\} \\
\Phi^{3}= & (-\sqrt{-1} / 8) \sum \theta^{\alpha} \wedge \bar{\theta}^{\alpha} \wedge \theta^{\beta} \wedge \bar{\theta}^{\beta} \wedge \theta^{r} \wedge \bar{\theta}^{r}
\end{aligned}
$$

After calculations we get the result.
Lemma 2. Let $(M, g, J)$ be an $n$-dimensional ( $n \geqq 3$ ) compact connected Einstein Kaehler manifold with a nonzero scalar curvature $\tau$. Then

$$
\int_{M}\left(\Phi^{3}, \gamma_{3}\right) d V=(4 n \pi / \tau)^{n-3}(3!/(n-3)!) c_{1}^{n-3} c_{3}[M]
$$

Proof. $c_{1}$ is represented by

$$
\gamma_{1}=(\sqrt{-1} / 2 \pi) \sum \Omega_{\alpha}^{\alpha}=(\sqrt{-1} / 2 \pi) \sum \rho_{\alpha \bar{\beta}} \theta^{\alpha} \wedge \bar{\theta}^{\beta}
$$

Since $M$ is an Einstein manifold, we have $\rho_{\alpha \bar{\beta}}=(\tau / 2 n) g_{\alpha \bar{\beta}}=(\tau / 4 n) \delta_{\alpha \beta}$ and hence

$$
\gamma_{1}=(\sqrt{-1} \tau / 8 n \pi) \sum \theta^{\alpha} \wedge \bar{\theta}^{\alpha}=(\tau / 4 n \pi) \Phi
$$

Therefore

$$
\begin{aligned}
& \left(\Phi^{3}, \gamma_{3}\right) d V=\gamma_{3} \wedge * \Phi^{3}=\gamma_{3} \wedge(3!/(n-3)!) \Phi^{n-3} \\
& \quad=(3!/(n-3)!)(4 n \pi / \tau)^{n-3} \gamma_{3} \wedge \gamma_{1}^{n-3}
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\int_{M}\left(\Phi^{3}, \gamma_{3}\right) d V & =(3!/(n-3)!)(4 n \pi / \tau)^{n-3} \int_{M} \gamma_{3} \wedge \gamma_{1}^{n-3} \\
& =(3!/(n-3)!)(4 n \pi / \tau)^{n-3} c_{1}^{n-3} c_{3}[M]
\end{aligned}
$$

3. Proof of Theorem. Let $R, \rho, \tau$ (resp. $\left.R^{\prime}, \rho^{\prime}, \tau^{\prime}\right)$ be the curvature tensor, the Ricci tensor and the scalar curvature of $M$ (resp. $M^{\prime}$ ), respectively. It follows directly from the formulas for the coefficients $a_{0}, a_{1}$ and $a_{2}$, that $\tau=\tau^{\prime}$ and that

$$
\int_{M}|R|^{2} d V=\int_{M^{\prime}}\left|R^{\prime}\right|^{2} d V^{\prime}
$$

Moreover since scalar curvatures are constant, we have

$$
\begin{equation*}
\int_{M} \tau^{3} d V=\int_{M^{\prime}} \tau^{\prime 3} d V^{\prime} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{M} \tau|R|^{2} d V=\int_{M^{\prime}} \tau^{\prime}\left|R^{\prime}\right|^{2} d V^{\prime} \tag{2}
\end{equation*}
$$

Next we notice the following:

$$
\begin{aligned}
& \sum R_{i j k l}^{*} R_{i j u v}^{*} R_{k l u v}^{*}=64 \sum R_{\beta \bar{\alpha}}^{\alpha} R_{r \lambda \bar{\mu}}^{\beta} R_{\alpha \mu \overline{\bar{o}}}^{\gamma}, \\
& \sum R_{i j k l}^{*} R_{i u k v}^{*} R_{j u l v}^{*}=16 \sum\left(R_{\beta \bar{\delta} \bar{\lambda}}^{\alpha} R_{r \lambda \bar{\mu}}^{\beta} R_{\alpha \mu \overline{\bar{j}}}^{\gamma}-R_{i \bar{i} \bar{\lambda}}^{\alpha} R_{\alpha \backslash \bar{\mu}}^{\beta} R_{\beta \mu \overline{\bar{\sigma}}}^{\gamma}\right),
\end{aligned}
$$

where $R_{i j k l}^{*}$ denote the components of $R$ with respect to the real local orthonormal frames. Since $M$ and $M^{\prime}$ are Einstein, our assumption $a_{3}=a_{3}^{\prime}$, together with Sakai's formula in [4], implies

$$
\begin{align*}
& \int_{M}\left\{\tau^{3}\left(5 / 9-1 / 3 n-4 / 63 n^{2}\right)+\tau|R|^{2}(2 / 3+68 / 105 n)\right.  \tag{3}\\
& +(3 / 5)|\nabla R|^{2}+(14336 / 315) \sum R_{\gamma \overline{\bar{\alpha}}}^{\alpha} R_{\alpha \lambda \bar{\mu}}^{\beta} R_{\beta / \bar{\delta}}^{\gamma} \\
& \text { - (20992/315) } \left.\sum R_{\beta \overline{\bar{\alpha}}}^{\alpha} R_{r 2 \bar{\mu}}^{\beta} R_{\alpha \mu \bar{\sigma}}^{\gamma}\right\} d V \\
& =\int_{M^{\prime}}\left\{\tau^{\prime 3}\left(5 / 9-1 / 3 n-4 / 63 n^{2}\right)+\tau^{\prime}\left|R^{\prime}\right|^{2}(2 / 3+68 / 105 n)\right. \\
& +(3 / 5)\left|\nabla R^{\prime}\right|^{2}+(14336 / 315) \sum R_{\gamma \overline{\hat{\alpha}}}^{\prime \alpha} R_{\alpha \lambda \lambda \bar{\prime}}^{\prime \beta} R_{\beta \mu \bar{\delta}}^{\prime \gamma}
\end{align*}
$$

Since $c_{1}^{n-3} c_{3}[M]=c_{1}^{\prime n-3} c_{3}^{\prime}\left[M^{\prime}\right]$ and $M, M^{\prime}$ have the same nonzero constant scalar curvatures, Lemma 2 implies

$$
\int_{M}\left(\Phi^{3}, \gamma_{3}\right) d V=\int_{M^{\prime}}\left(\Phi^{\prime 3}, \gamma_{3}^{\prime}\right) d V^{\prime}
$$

Then, using Lemma 1 in the Einstein case, we get the following equation.

$$
\begin{align*}
\int_{M}\left\{\tau^{3}(1\right. & \left.-6 / n+10 / n^{2}\right)+(3-12 / n) \tau|R|^{2}  \tag{4}\\
& \left.+128 \sum R_{r \overline{\bar{\lambda}}}^{\alpha} R_{\alpha \lambda \bar{\mu}}^{\beta} R_{\beta \mu \bar{\delta}}^{r}+128 \sum R_{\beta \overline{\bar{\alpha}}}^{\alpha} R_{r \lambda \bar{\mu}}^{\beta} R_{\alpha \mu \overline{0} \overline{\bar{c}}}^{\gamma}\right\} d V
\end{align*}
$$

$$
\begin{aligned}
= & \int_{M^{\prime}}\left\{\tau^{\prime 3}\left(1-6 / n+10 / n^{2}\right)+(3-12 / n) \tau^{\prime}\left|R^{\prime}\right|^{2}\right. \\
& \left.+128 \sum R_{r \delta \bar{\lambda}}^{\prime \alpha} R_{\alpha<\bar{\mu}}^{\prime \beta} R_{\beta \mu \overline{\bar{j}}}^{\prime \gamma}+128 \sum R_{\beta \overline{\mathrm{j}}}^{\prime \alpha} R_{r \lambda \bar{\mu}}^{\prime \beta} R_{\alpha \mu \bar{\delta}}^{\prime \gamma}\right\} d V^{\prime} .
\end{aligned}
$$

By computing $\Delta|R|^{2}$ and applying Green's theorem, we obtain

$$
\begin{align*}
\int_{M}\left\{(\tau / 4 n)|R|^{2}+(1 / 4)|\nabla R|^{2}\right. & +16 \sum R_{r \delta \bar{\lambda}}^{\alpha} R_{\alpha \alpha \bar{\mu}}^{\beta} R_{\beta \mu \bar{\delta}}^{\gamma}  \tag{5}\\
& \left.-32 \sum R_{\beta \sigma \bar{\lambda}}^{\alpha} R_{\gamma \lambda \bar{\mu}}^{\beta} R_{\alpha \mu \bar{\gamma} \overline{\bar{\gamma}}}^{\gamma}\right\} d V=0 .
\end{align*}
$$

Similarly we have

$$
\begin{align*}
\int_{M^{\prime}}\left\{\left(\tau^{\prime} / 4 n\right)\left|R^{\prime}\right|^{2}+(1 / 4)\left|\nabla R^{\prime}\right|^{2}\right. & +16 \sum R_{\gamma \delta \bar{\lambda}}^{\prime \alpha} R_{\alpha \lambda \bar{\mu}}^{\prime \beta} R_{\beta \mu \bar{\delta}}^{\prime \gamma}  \tag{6}\\
& \left.-32 \sum R_{\beta \bar{\lambda}}^{\prime \alpha} R_{\gamma \lambda \bar{\mu}}^{\beta} R_{\alpha \mu \bar{\delta}}^{\prime \gamma}\right\} d V^{\prime}=0 .
\end{align*}
$$

By (1), (2), (3), (4), (5) and (6) we have

$$
\int_{M}|\nabla R|^{2} d V=\int_{M^{\prime}}\left|\nabla R^{\prime}\right|^{2} d V^{\prime}
$$

from which Theorem follows.

## References

[1] M. Berger, Le spectre des variétés riemanniennes, Rev. Roum. Math. Pure et Appl., XIII (1968), 915-931.
[2] H. Donnelly, Symmetric Einstein spaces and spectral geometry, Indiana Univ. Math. J., 24 (1974), 603-606.
[3] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, 1966.
[4] T. SAKAI, On eigenvalues of Laplacian and curvature of Riemannian manifold, Tôhoku Math. J., 23 (1971), 589-603.

Department of Mathematics
Toryo Metropolitan University
Setagaya, Tokyo, 158 Japan

