ON CONTACT METRIC MANIFOLDS

Zbigniew Olszak

(Received July 24, 1978)

1. Introduction. Blair has proven ([1]) that there are no contact metric manifolds of vanishing curvature and of dimension $\geqq 5$. Generalizing this result we prove in the present paper that any contact metric manifold of constant sectional curvature and of dimension $\geqq 5$ has the sectional curvature equal to 1 and is a Sasakian manifold. Moreover we give some restrictions on the scalar curvature in contact metric manifolds which are conformally flat or of constant ϕ-sectional curvature.
2. Preliminaries. Throughout this paper we use the notations and terminology of [1], [2].

Let M be a $(2 n+1)$-dimensional contact metric manifold and (ϕ, ξ, η, g) be its contact metric structure. Thus, we have

$$
\begin{aligned}
& \phi^{2}=-I+\eta \otimes \xi, \quad \phi \xi=0, \quad \eta \circ \phi=0, \quad \eta(\xi)=1 \\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad g(X, \xi)=\eta(X), \\
& \Phi(X, Y)=g(X, \phi Y)=d \eta(X, Y)
\end{aligned}
$$

Define an operator h by $h=(1 / 2) \mathscr{L}_{\epsilon} \dot{\phi}$, where \mathscr{L} denotes Lie differentiation. The vector field ξ is Killing if and only if h vanishes. Blair has shown ([1], [2]) that h and ϕh are symmetric operators, h anti-commutes with ϕ (i.e., $\phi h+h \phi=0$), $h \xi=0$ and $\eta \circ h=0$. Using a ϕ-basis, i.e., an orthonormal frame $\left\{E_{\imath}, E_{\imath+n}=\phi E_{i}, E_{2 n+1}=\xi\right\}(i=1, \cdots, n)$, one can easily verify that $\operatorname{tr} h=0$ and $\operatorname{tr} \phi h=0$. In [1], [2] the following general formulas for a contact metric manifold were obtained

$$
\begin{gather*}
\nabla_{x} \xi=-\dot{\phi} X-\phi h X \tag{2.1}\\
(1 / 2)\left(R_{\xi x} \xi-\phi R_{\xi \phi x} \xi\right)=h^{2} X+\dot{\phi}^{2} X \tag{2.2}\\
g(Q \xi, \xi)=2 n-\operatorname{tr} h^{2} \tag{2.3}
\end{gather*}
$$

where $R_{X Y}=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$ is the curvature transformation and Q is the Ricci curvature operator. Finally, we note that $d \Phi=d^{2} \eta=0$ implies

$$
\begin{equation*}
\left(\nabla_{X} \Phi\right)(Y, Z)+\left(\nabla_{Y} \Phi\right)(Z, X)+\left(\nabla_{Z} \Phi\right)(X, Y)=0 \tag{2.4}
\end{equation*}
$$

3. Auxiliary results. First of all, using (2.1) we can easily obtain the following relations

$$
\begin{align*}
\left(\nabla_{X} \Phi\right)(\phi Y, Z)-\left(\nabla_{X} \Phi\right)(Y, \phi Z)= & -\eta(Y) g(X+h X, \phi Z) \tag{3.1}\\
- & -\eta(Z) g(X+h X, \phi Y) \\
\left(\nabla_{X} \Phi\right)(\phi Y, \phi Z)+\left(\nabla_{X} \Phi\right)(Y, Z)= & \eta(Y) g(X+h X, Z) \tag{3.2}\\
& -\eta(Z) g(X+h X, Y) .
\end{align*}
$$

Lemma 3.1. Any contact metric manifold satisfies the conditions

$$
\begin{equation*}
\left(\nabla_{\phi X} \dot{\phi}\right) \dot{\phi} Y+\left(\nabla_{X} \dot{\phi}\right) Y=2 g(X, Y) \xi-\eta(Y)(X+h X+\eta(X) \xi), \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{2 n+1}\left(\nabla_{E_{i}} \phi\right) E_{i}=2 n \xi, \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{2 n+1}\left(\nabla_{E_{\imath}} \phi\right) \phi E_{\imath}=0, \tag{3.4}
\end{equation*}
$$

where $\left\{E_{1}, \cdots, E_{2 n+1}\right\}$ is an orthonormal frame.
Proof. Making use of the identity (2.4) we can write

$$
\begin{aligned}
& \left(\nabla_{X} \Phi\right)(Y, Z)+\left(\nabla_{Y} \Phi\right)(Z, X)+\left(\nabla_{Z} \Phi\right)(X, Y) \\
+ & \left(\nabla_{\phi X} \Phi\right)(\phi Y, Z)+\left(\nabla_{\phi Y} \Phi\right)(Z, \phi X)+\left(\nabla_{Z} \Phi\right)(\phi X, \phi Y) \\
+ & \left(\nabla_{\phi X} \Phi\right)(Y, \phi Z)+\left(\nabla_{Y} \Phi\right)(\phi Z, \phi X)+\left(\nabla_{\phi Z} \Phi\right)(\phi X, Y) \\
- & \left(\nabla_{X} \Phi\right)(\phi Y, \phi Z)-\left(\nabla_{\phi Y} \Phi\right)(\phi Z, X)-\left(\nabla_{\phi Z} \Phi\right)(X, \phi Y)=0 .
\end{aligned}
$$

Hence in virtue of (3.1) and (3.2) we obtain

$$
\begin{array}{r}
\left(\nabla_{\phi X} \Phi\right)(Z, \phi Y)+\left(\nabla_{X} \Phi\right)(Z, Y)=2 \eta(Z) g(X, Y) \\
\quad-\eta(Y) g(X+h X, Z)-\eta(X) \eta(Y) \eta(Z),
\end{array}
$$

which is equivalent to (3.3). Choose a $\dot{\phi}$-basis. As from (3.3) follows $\nabla_{\xi} \dot{\phi}=0$, we can find (3.4) (a), (b) by using (3.3).

Lemma 3.2. The curvature tensor of a contact metric manifold satisfies the relations

$$
\begin{align*}
& \left.g\left(R_{\xi X} Y, Z\right)=-\left(\nabla_{X} \Phi\right)(Y, Z)-g\left(X,\left(\nabla_{Y} \phi h\right) Z\right)+g\left(X, \nabla_{Z} \phi h\right) Y\right) \tag{3.5}\\
& g\left(R_{\xi X} Y, Z\right)-g\left(R_{\xi X} \phi Y, \phi Z\right)+g\left(R_{\xi_{\phi} X} Y, \phi Z\right)+g\left(R_{\xi \phi X} \phi Y, Z\right) \\
& \quad=2\left(\nabla_{h X} \Phi\right)(Y, Z)-2 \eta(Y) g(X+h X, Z)+2 \eta(Z) g(X+h X, Y) .
\end{align*}
$$

Proof. Let X, Y, Z be tangent vectors at a point $m \in M$. By the same letters we denote their extensions to local vector fields. From (2.1) we have

$$
R_{\Gamma Z} \xi=-\left(\nabla_{Y} \phi\right) Z+\left(\nabla_{Z} \dot{\phi}\right) Y-\left(\nabla_{Y} \phi h\right) Z+\left(\nabla_{Z} \dot{\phi} h\right) Y .
$$

This yields (3.5) in virtue of (2.4). Denote

$$
\begin{aligned}
A(X, Y, Z)= & -\left(\nabla_{X} \Phi\right)(Y, Z)+\left(\nabla_{X} \Phi\right)(\phi Y, \phi Z)-\left(\nabla_{\phi X} \Phi\right)(Y, \phi Z) \\
& -\left(\nabla_{\phi_{X}} \Phi\right)(\phi Y, Z), \\
B(X, Y, Z)= & -g\left(X,\left(\nabla_{Y} \phi h\right) Z\right)+g\left(X,\left(\nabla_{\phi_{Y}} \phi h\right) \phi Z\right)-g\left(\phi X,\left(\nabla_{Y} \phi h\right) \phi Z\right) \\
& -g\left(\phi X,\left(\nabla_{\phi_{Y}} \phi h\right) Z\right) .
\end{aligned}
$$

In view of (3.5) the left hand side of (3.6) equals $A(X, Y, Z)+$ $B(X, Y, Z)-B(X, Z, Y)$. By (3.2) and (3.3) we obtain

$$
A(X, Y, Z)=2 g(X, Y) \eta(Z)-2 g(X, Z) \eta(Y)
$$

Rewrite B in the following form

$$
\begin{aligned}
B(X, Y, Z)= & -g\left(X,\left(\nabla_{Y} \phi\right) h Z\right)+g\left(X, h\left(\nabla_{Y} \phi\right) Z\right)+g\left(X, h \phi\left(\nabla_{\phi Y} \phi\right) Z\right) \\
& +g\left(X, \phi\left(\nabla_{\phi_{Y}} \phi\right) h Z\right)+\eta(X) \eta\left(\left(\nabla_{\phi_{Y}} h\right) Z\right) .
\end{aligned}
$$

We have
(3.7) $\quad \phi\left(\nabla_{\phi X} \phi\right) Y=2 \eta(Y) X-g(X+h X, Y) \xi-\eta(X) \eta(Y) \xi+\left(\nabla_{X} \phi\right) Y$.

In fact

$$
\begin{aligned}
\phi\left(\nabla_{\phi X} \phi\right) Y & =\left(\nabla_{\phi X} \dot{\phi}^{2}\right) Y-\left(\nabla_{\phi X} \phi\right) \phi Y \\
& =\left(\nabla_{\phi X} \eta\right)(Y) \xi+\eta(Y) \nabla_{\phi X} \xi-\left(\nabla_{\phi X} \phi\right) \phi Y,
\end{aligned}
$$

from which, by (2.1) and (3.3), we find (3.7). Moreover, remembering (2.1), we get

$$
\eta\left(\left(\nabla_{\phi Y} h\right) Z\right)=-\left(\nabla_{\phi Y} \eta\right)(h Z)=g(-Y+h Y, h Z) .
$$

Thus, we obtain in virtue of (3.7)

$$
B(X, Y, Z)=2 g\left(h X,\left(\nabla_{Y} \phi\right) Z\right)+2 \eta(Z) g(h X, Y)-2 \eta(X) g(Y, h Z) .
$$

Therefore

$$
\begin{aligned}
& A(X, Y, Z)+B(X, Y, Z)-B(X, Z, Y) \\
& \quad=-2\left(\nabla_{Y} \Phi\right)(Z, h X)-2\left(\nabla_{Z} \Phi\right)(h X, Y)-2 \eta(Y) g(X+h X, Z) \\
& \quad+2 \eta(Z) g(X+h X, Y)
\end{aligned}
$$

which in view of (2.4) equals the right hand side of (3.6). Thus the proof is complete.

Denote by S the scalar curvature of M and define $S^{*}=\sum_{i, j=1}^{2 n+1} g\left(R_{E_{i} E_{j}} \phi E_{j}\right.$, ϕE_{\imath}), where $\left\{E_{\imath}\right\}$ is an orthonormal frame.

Lemma 3.3. For any contact metric manifold M we have

$$
\begin{equation*}
S^{*}-S+4 n^{2}=\operatorname{tr} h^{2}+(1 / 2)\left\{\|\nabla \phi\|^{2}-4 n\right\} \geqq 0 \tag{3.8}
\end{equation*}
$$

Moreover M is Sasakian if and only if $\|\nabla \phi\|^{2}=4 n$ or equivalently $S^{*}-S+4 n^{2}=0$.

Proof. Let $\left\{E_{1}, \cdots, E_{2 n+1}\right\}$ be a frame in M_{m}. By the same letters we denote local extension vector fields of this frame which are orthonormal and covariant constant at $m \in M$. Now (3.4) (a) and (2.1) become

$$
\begin{equation*}
\sum_{i, j=1}^{2 n+1} g\left(\left(\nabla_{E_{j}} \nabla_{E_{2}} \dot{\phi}\right) E_{i}, \phi E_{j}\right)=-4 n^{2} \tag{3.9}
\end{equation*}
$$

because $\operatorname{tr} h=0$. On the other hand, by (3.4)(b), we obtain

$$
\begin{equation*}
-\sum_{i, j=1}^{2 n+1} g\left(\left(\nabla_{E_{\imath}} \nabla_{E_{j}}, \phi\right) E_{i}, \phi E_{j}\right)=\sum_{i, j=1}^{2 n+1} g\left(\left(\nabla_{E_{i}} \phi\right) E_{j},\left(\nabla_{E_{j}} \phi\right) E_{\imath}\right) . \tag{3.10}
\end{equation*}
$$

But the right hand side of (3.10) can be transformed as follows

$$
\begin{array}{rl}
\sum_{i, j, k=1}^{2 n+1} & g\left(\left(\nabla_{E_{i}} \phi\right) E_{j}, E_{k}\right) g\left(\left(\nabla_{E_{j}} \phi\right) E_{i}, E_{k}\right) \\
& =(1 / 2){ }_{i, \sum_{j, k=1}^{2 n+1}}^{2 n}\left\{g\left(\left(\nabla_{E_{i}} \phi\right) E_{j}, E_{k}\right)\right\}^{2}=(1 / 2) \sum_{i, j=1}^{2 n+1}\left\|\left(\nabla_{E_{i}} \phi\right) E_{j}\right\|^{2}=(1 / 2)\|\nabla \phi\|^{2}
\end{array}
$$

in virtue of (2.4). Considering (3.9), (3.10) and the last relation we get

$$
\sum_{i, y=1}^{2 n+1} g\left(\left(R_{E j E_{i}} \phi\right) E_{\imath}, \phi E_{j}\right)=(1 / 2)\|\nabla \dot{\phi}\|^{2}-4 n^{2}
$$

Hence $S^{*}-S+g(Q \xi, \xi)=(1 / 2)\|\nabla \dot{\phi}\|^{2}-4 n^{2}$, which with the help of (2.3) proves the equality part of (3.8).

Recall that M is Sasakian if and only if $\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi-\eta(Y) X$. Consequently, we always have, for a contact metric manifold M,

$$
\sum_{i, j=1}^{2 n+1}\left\|\left(\nabla_{E_{\imath}} \phi\right) E_{j}-g\left(E_{\imath}, E_{j}\right) \xi+\eta\left(E_{j}\right) E_{i}\right\|^{2} \geqq 0,
$$

where equality holds if and only if M is Sasakian. By using (3.4) (a) it can be easily shown that the last condition is equivalent to $\|\nabla \phi\|^{2}-$ $4 n \geqq 0$, where equality holds only in the Sasakian case. Note that from the symmetry of the operator h it follows that $\operatorname{tr} h^{2} \geqq 0$ and $\operatorname{tr} h^{2}=0$ if and only if $h=0$. Recall also that on a Sasakian manifold the vector field ξ is Killing. Therefore, if M is Sasakian, then h vanishes. The above remarks complete the proof of our lemma.

4. Main results.

Theorem 4.1. If a contact metric manifold M is of constant sectional curvature and $\operatorname{dim} M \geqq 5$, then the sectional curvature of M is equal to 1 and M is Sasakian.

Proof. Let c be the constant sectional curvature of M, i.e., $R_{X Y} Z=$ $c\{g(Y, Z) X-g(X, Z) Y\}$. Under this assumption, from (2.2) we obtain $h^{2} X=(c-1) \dot{\phi}^{2} X$, hence $\operatorname{tr} h^{2}=2 n(1-c)$. Moreover, (3.6) yields

$$
\begin{align*}
\left(\nabla_{h X} \Phi\right)(Y, Z)= & (1-c)\{\eta(Y) g(X, Z)-\eta(Z) g(X, Y)\} \tag{4.1}\\
& +\eta(Y) g(h X, Z)-\eta(Z) g(h X, Y)
\end{align*}
$$

Now let us suppose that $c \neq 1$. Taking in (4.1) $h X$ instead of X, we have

$$
\left(\nabla_{x} \phi\right) Y=g(X+h X, Y) \xi-\eta(Y)(X+h X)
$$

as $\nabla_{\epsilon} \phi=0$. From this we find $\|\nabla \phi\|^{2}=4 n(2-c)$. The last relation and equalities $S=2 n(2 n+1) c, S^{*}=2 n c$ applied to (3.8) give $n=1$, a contradiction. Therefore $c=1$. But in this case, by Lemma 3.3, the manifold M is Sasakian.

Theorem 4.2. Let M be a conformally flat contact metric manifold with $\operatorname{dim} M \geqq 5$. Then the scalar curvature S of M satisfies $S \leqq 2 n(2 n+1)$. Moreover, M is Sasakian if and only if $S=2 n(2 n+1)$.

Proof. Conformal flatness yields

$$
\begin{align*}
R_{X Y} Z= & (1 /(2 n-1))\left\{g\left(Q Y-\frac{S}{2 n} Y, Z\right) X-g\left(Q X-\frac{S}{2 n} X, Z\right) Y\right. \tag{4.2}\\
& +g(Y, Z) Q X-g(X, Z) Q Y\}
\end{align*}
$$

Using the relations (2.3) and (4.2) we compute $S^{*}=(1 /(2 n-1))\{S-$ $\left.2\left(2 n-\operatorname{tr} h^{2}\right)\right\}$. Then, from (3.8) one can obtain
(4.3) $(2 n-1)\left\{\|\nabla \phi\|^{2}-4 n\right\}+2(2 n-3) \operatorname{tr} h^{2}=2(2 n-2)\{2 n(2 n+1)-S\}$, which completes the proof.

Remark 4.1. Any 3-dimensional contact metric manifold M satisfies the condition (4.2) and therefore (4.3), i.e., $\|\nabla \phi\|^{2}-4 n=2 \operatorname{tr} h^{2}$. This shows that M is Sasakian if and only if the vector field ξ is Killing (cf. [6], [3]).

REMARK 4.2. As is known, any conformally flat contact metric manifold with Killing structure vector field ξ is of constant curvature (cf. [5], [4]). Then by Theorem 4.2 any conformally flat contact metric manifold M with $\operatorname{dim} M \geqq 5$ and the scalar curvature $S=2 n(2 n+1)$ is of constant sectional curvature.

In the next theorem we consider a contact metric manifold of constant ϕ-sectional curvature, that is, a manifold M such that at any point $m \in M$ the sectional curvature $K(X, \phi X)$ (denote it by H_{m}) is independent of the choice of the tangent vector $X \in M_{m}, 0 \neq X \perp \xi$. By H we denote the ϕ-sectional curvature of M, i.e., $H: M \rightarrow \boldsymbol{R}, H(m)=H_{m}$.

ThEOREM 4.3. Let M be a contact metric manifold of constant ϕ sectional curvature. Then the scalar curvature S and the ϕ-sectional curvature H satisfy the inequality $n(n+1) H+3 n^{2}+n \geqq S$. Equality holds if and only if M is Sasakian.

Proof. By our assumption we have $g\left(R_{X^{\phi} X} X, \phi X\right)+H_{m}\|X\|^{4}=0$ at any point $m \in M$ and for any $X \in M_{m}, X \perp \xi$. It is clear that this condition implies

$$
\begin{equation*}
g\left(R_{\phi X \phi^{2} X} \phi X, \dot{\phi}^{2} X\right)+H_{m}\|\phi X\|^{4}=0 \tag{4.4}
\end{equation*}
$$

at any point $m \in M$ and for any $X \in M_{m}$. Set

$$
P(X, Y, Z, W)=g\left(R_{\phi X^{\phi}{ }^{2} Y} \phi Z, \phi^{2} W\right)+H_{m} g(\phi X, \phi Z) g(\phi Y, \phi W)
$$

The tensor P satisfies $P(X, Y, Z, W)=P(Z, W, X, Y)$. Therefore (4.4) is equivalent to

$$
\begin{align*}
& P(X, Y, Z, W)+P(X, Y, W, Z)+P(Y, X, Z, W)+P(Y, X, W, Z) \tag{4.5}\\
+ & P(X, W, Y, Z)+P(X, W, Z, Y)+P(W, X, Y, Z)+P(W, X, Z, Y) \\
+ & P(X, Z, Y, W)+P(X, Z, W, Y)+P(Z, X, Y, W) \\
+ & P(Z, X, W, Y)=0
\end{align*}
$$

Choosing a ϕ-basis, taking $X=W=E_{\imath}, Y=Z=E_{j}$ into (4.5) and summing over i and j we obtain

$$
\sum_{\imath, j=1}^{2 n+1}\left\{P\left(E_{i}, E_{j}, E_{j}, E_{\imath}\right)+P\left(E_{\imath}, E_{j}, E_{\imath}, E_{j}\right)+P\left(E_{i}, E_{\imath}, E_{j}, E_{j}\right)\right\}=0,
$$

which by the definition of P, the first Bianchi identity and (2.3) gives

$$
4 n(n+1) H-3 S^{*}-S+2\left(2 n-\operatorname{tr} h^{2}\right)=0
$$

Comparing the last identity with (3.8) we obtain

$$
n(n+1) H+3 n^{2}+n-S=(5 / 4) \operatorname{tr} h^{2}+(3 / 8)\left\{\|\nabla \phi\|^{2}-4 n\right\}
$$

which completes the proof.

References

[1] D. E. Blair, On the non-existence of flat contact metric structures, Tôhoku Math. J., 28 (1976), 373-379.
[2] D. E. Blair, Two remarks on contact metric structures, Tôhoku Math. J., 29 (1977), 319-324.
[3] S. Tanno, Harmonic forms and Betti numbers of certain contact Riemannian manifolds, J. Math. Soc. Japan, 19 (1967), 308-316.
[4] S. Tanno, Locally symmetric K-contact Riemannian manifolds, Proc. Japan Acad., 43 (1967), 581-583.
[5] S. Tanno, Some transformations on manifolds with almost contact and contact metric structures, II, Tôhoku Math. J., 15 (1963), 322-331.
[6] S. Tanno, Sur une variété de K-contact métrique de dimension 3, C. R. Acad. Sci. Paris, 263 (1966), 317-319.

Mathematical Institute
Technical University of Wroczaw
Poland

