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BMO-MARTINGALES AND INEQUALITIES
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1. Introduction and preliminaries. In this paper we shall extend
Davis's inequality to some class of semimartingales and characterize
BMO-martingales by some inequality, related to the weighted norm
inequality.

Let (Ω, F, P) be a complete probability space with an increasing
right continuous family (Ft)t>0 of sub-σ-fields of I*7 such that F — V\^oFt.
We use the same notations [X, Y], X* and so on as in Meyer [4]. We
point out that Fefferman's inequality is valid for semimartingales, that
is, we have

E\\ \d[x, γ].\\52VYE[[X,
l_J[0,oo[ J

for each semimartingale X and BMO-martingale Y.
Let us denote by c a positive constant and by cx a positive constant

depending only on the indicated parameter x. Both letters are not
necessarily the same in each occurrence.

2. Generalization of Davis's inequality. We consider a fixed BMO-
martingale M such that 1 + AM > ε for some positive constant ε and
put

M~ - -M + (M% Mc) + Σ (ΔM9)
%I<X + ΔM8) .

For each local martingale X we denote by φ(X) a semimartingale X +
[X, ikf"]. Now Davis's inequality is extended as in the following.

THEOREM 1. We have the inequalities:

and

(2) E[[φ{X), φ(Xm ^ cuE[φ(X)*]

for each local martingale X.

PROOF. By a simple calculation we get

(3)
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and

( 4 ) cM[X, X] ^ [φ{X\ φ{X)] ^ cM[X, X]

for each local martingale X. The equality (3) implies

E[φ(X)*] <: E[X*] + E\\ \d[φ(X), M]s\] .
LJ[0,oo[ J

By Davis's inequality the first term on the right hand side is smaller
than cE[[X, X]H2]. It follows from Fefferman's inequality that the second
term is dominated by cE[[φ(X), φ(X)]lί2]. Hence, we obtain (1) by (4).

To prove (2), it suffices to show the inequality

( 5 ) E[[φ{X\ φ(X)]Jφ(X)*] £ E[φ(X)Z] + cE[[φ(X), φ(X)]H2]

when φ(X)0 is a nonzero constant, as in the proof of Meyer [4, V. T30,
p. 350]. Moreover, we may assume E[[φ(X), Φ(X)]lί2] < °° and E[KZ] < oo,
where K = φ(X)2 - [φ(X), φ(X)] = 2φ{X)_ o φ(X) = 2(φ(X)_ o X - φ(X)_ o
[φ(X)9 M]). Indeed, a local martingale X belongs locally to H1 and hence
[φ(X), Φ(X)]ί/2 does locally to L1 by (4). This and Fefferman's inequality
imply that (φ(X)- o [φ(X), M])* is locally in L\ because φ(X)- is locally
bounded. Since φ{X)- ° X is a local martingale, (φ(X)- ° X)* is locally
in L\ Therefore, if* is locally in ZΛ

Now we put Ht = E[l/φ(X)*\Ft]. Then H is a bounded martingale
and we have \\φ{X)- ° H\\BM0 ^ V~§ because of \φ(X)t_Ht\ ̂  1 (see [4, V.
T6, p. 335]). By Ito's formula we have KH = K_ o H+ H_ o K+[K, H] =
K- o H + 2{H_φ{X)_) o X - 2(H_φ(X)_) o [^(X), ikf] + 2[^(X), ^(X)_ o H].
Since the first and second terms on the extreme right hand side are
local martingales, we have

\E[KT%HT%]\ ^ 2EΪ\ \d[φ(X), M].\\ + ZEΪ\ \d[Φ(X), Φ(X)-° H].\ 1
LJ[0,oo[ J l_J[0,oo[ J

for some sequence of stopping times Tn with Tn | oo as w ^ o o . Then
the right hand side is smaller than cME[[φ(X), φ(X)]lί2] by Fefferman's
inequality. Letting n —• ^ we obtain (5). q.e.d.

By applying Garsia's lemma (see [4, V. 24, p. 347]) to the above
theorem we have the following:

COROLLARY. Let f be a continuous increasing convex function on
[0, oo[ satisfying /(0) = 0 and the growth condition f(2t) ^ c/(ί), t ^ 0.

e have

( 6 ) (

for each local martingale X.
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3. Characterization of BMO-martingales. Let M be a fixed local
martingale such that 1/ε > 1 + AM > ε for some positive constant ε. In
the case M~ and φ{X) in §2 are well-defined. Moreover, the equality
(3) and the inequality (4) are still valid. Now we shall characterize
BMO-martingales as follows:

THEOREM 2. In order that M is a BMO-martίngale, it is necessary
and sufficient that the inequality

( 7 ) E[φ{X)Z] <L cE[X*]

is valid for all local martingales X.

PROOF. Suppose that M is a BMO-martingale. Then Theorem 1 and
(4) imply E[φ(X)*] ^ cE[[X, X]\L2]. We apply Da vis's inequality to the
right hand side and obtain (7). We next show the converse. By the
equality (3) [X, M] = [φ(X), M] + Σn*.*. Δφ(X)sΔMsΔMs. Since ΔM is
bounded, we have

\d[X, M]s\ £ \ \d[φ(X), M]s\ + c Σ \Δφ{X)sΔMs\
[0,oo[ JΓθ,oo[ 0^S<oo

Hence, for the proof of the converse it suffices to show the following
inequality:

8 ) i?[ j [ o ^ \d[φ{X), M}8\\

for each X in JEP. Indeed, we have E\\ \d[X, M]s\] ^ cE[XZ] for each
LJ[0,oo[ J

X in H1 and hence M is a BMO-martingale by the duality theorem, i.e.,
(if1)* = BMO. Now we set D = \d[φ(X), M]\/d[φ(X), M], which is an
optional process with D2 = 1. Let Xbe in H1 and consider the stochastic
integral D © X. By the properties of the stochastic integral of optional
processes (see [4, V. T19 and 20, pp. 343-345]) and the equality (3) we
have

EΪ\ \d[φ{X), Λf].|Ί = E\\ Dβ[φ(X), Ml]
LJΓθ,oo[ J LJ[0,oo[ J

= E\\ D,d[X, Mil + EΪ Σ
LJ[0,co[ J l_0Ss<»

= E\\ d[D o X, Mil + E\ Σ
LJCO.OOΓ J Lθ^S<

= E[[φ(DoX), M]J ^ E[φ(DoX)i]



358 T. SEKIGUCHI

which by (7) is not more than cE[(D o X)*] ^ cE[X*], and obtain (8).
q.e.d.

4. Weighted norm inequality. Let Z be a P-uniformly integrable
martingale with Zo = 1 and Z^ > 0 a.s.. We put Q = Z^ - Pand denote
by EQ[ ] the expectation with respect to Q. Moreover, we denote by M
the P-local martingale (1/Z_) o Z and use the same notation M^ and φ(X)
as in §2. Then M~ and ^(X) are Q-local martingales and ikΓ = Z_ ° (1/Z).
Now we define the conditions (AJ) and (S) as in Izumisawa, Sekiguchi
and Shiota [2]. Combining the results in the above literature with
Gehring's lemma in Doleans-Dade and Meyer [3], we see that Z satisfies
the conditions (iM) and (S) if and only if M~ is a BMO-martingale
with respect to Q and 1 + ΔMΓ > ε for some positive constant ε. Thus
we can rewrite the results in §§2 and 3 as in the following.

THEOREM 1'. Let f be a continuous increasing convex function on
[0, oo[ satisfying /(0) = 0 and the growth condition. If Z satisfies the
conditions (4M) and (S), then we have

cZtfEQ[f(X*)] £ EQ[f([X, Xγj?)} £ cZlfEQ[f(X*)]

for each P-local martingale X.

The above theorem is an improvement of the result obtained by
Izumisawa and the author in [1].

THEOREM 2'. Suppose that Z is quasi-left-continuous and satisfies
the condition (S). Then Z satisfies (AJ) if and only if the inequality

EQ[X*] £ cEQ[[X, XfJ?]

is valid for all P-local martingales X.
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