BMO-MARTINGALES AND INEQUALITIES

TAKESHI SEKIGUCHI

(Received October 14, 1978, revised March 31, 1979)

1. Introduction and preliminaries. In this paper we shall extend Davis's inequality to some class of semimartingales and characterize BMO-martingales by some inequality, related to the weighted norm inequality.

Let (Ω, F, P) be a complete probability space with an increasing right continuous family $(F_t)_{t\geq 0}$ of sub- σ -fields of F such that $F = \bigvee_{t\geq 0} F_t$. We use the same notations [X, Y], X^* and so on as in Meyer [4]. We point out that Fefferman's inequality is valid for semimartingales, that is, we have

$$E\left[\int_{[0,\infty[} |d[X, Y]_s|
ight] \le \sqrt{2} E[[X, X]_{\infty}^{1/2}]||Y||_{\text{BMO}}$$

for each semimartingale X and BMO-martingale Y.

Let us denote by c a positive constant and by c_x a positive constant depending only on the indicated parameter x. Both letters are not necessarily the same in each occurrence.

2. Generalization of Davis's inequality. We consider a fixed BMOmartingale M such that $1 + \Delta M > \varepsilon$ for some positive constant ε and put

$$\mathrm{M}^{\widehat{}}=-M+\langle M^{\circ},\,M^{\circ}
angle+\sum\limits_{\scriptscriptstyle 0\leq s\leq \cdot}(arDelta M_{s})^{2}/(1+arDelta M_{s})\;.$$

For each local martingale X we denote by $\phi(X)$ a semimartingale $X + [X, M^{2}]$. Now Davis's inequality is extended as in the following.

THEOREM 1. We have the inequalities:

(1)
$$E[\phi(X)_{\infty}^{*}] \leq c_{M} E[[\phi(X), \phi(X)]_{\infty}^{1/2}]$$

and

(2)
$$E[[\phi(X), \phi(X)]_{\infty}^{1/2}] \leq c_M E[\phi(X)_{\infty}^*]$$

for each local martingale X.

PROOF. By a simple calculation we get

(3)
$$\phi(X) = X - [\phi(X), M]$$

and

$$(4) c_{\scriptscriptstyle M}[X, X] \leq [\phi(X), \phi(X)] \leq c_{\scriptscriptstyle M}[X, X]$$

for each local martingale X. The equality (3) implies

$$E[\phi(X)^*_\infty] \leq E[X^*_\infty] + Eiggl[\int_{[0,\infty[} |d[\phi(X), M]_s|iggr] \, .$$

By Davis's inequality the first term on the right hand side is smaller than $cE[[X, X]_{\infty}^{1/2}]$. It follows from Fefferman's inequality that the second term is dominated by $cE[[\phi(X), \phi(X)]_{\infty}^{1/2}]$. Hence, we obtain (1) by (4).

To prove (2), it suffices to show the inequality

$$(5) E[[\phi(X), \phi(X)]_{\infty}/\phi(X)_{\infty}^*] \leq E[\phi(X)_{\infty}^*] + cE[[\phi(X), \phi(X)]_{\infty}^{1/2}]$$

when $\phi(X)_0$ is a nonzero constant, as in the proof of Meyer [4, V. T30, p. 350]. Moreover, we may assume $E[[\phi(X), \phi(X)]_{\infty}^{1/2}] < \infty$ and $E[K_{\infty}^*] < \infty$, where $K = \phi(X)^2 - [\phi(X), \phi(X)] = 2\phi(X)_- \circ \phi(X) = 2(\phi(X)_- \circ X - \phi(X)_- \circ [\phi(X), M])$. Indeed, a local martingale X belongs locally to H^1 and hence $[\phi(X), \phi(X)]^{1/2}$ does locally to L^1 by (4). This and Fefferman's inequality imply that $(\phi(X)_- \circ [\phi(X), M])^*$ is locally in L^1 , because $\phi(X)_-$ is locally bounded. Since $\phi(X)_- \circ X$ is a local martingale, $(\phi(X)_- \circ X)^*$ is locally in L^1 . Therefore, K^* is locally in L^1 .

Now we put $H_t = E[1/\phi(X)_{\infty}^*|F_t]$. Then H is a bounded martingale and we have $||\phi(X)_- \circ H||_{BMO} \leq \sqrt{6}$ because of $|\phi(X)_{t-}H_t| \leq 1$ (see [4, V. T6, p. 335]). By Ito's formula we have $KH = K_- \circ H + H_- \circ K + [K, H] = K_- \circ H + 2(H_-\phi(X)_-) \circ X - 2(H_-\phi(X)_-) \circ [\phi(X), M] + 2[\phi(X), \phi(X)_- \circ H]$. Since the first and second terms on the extreme right hand side are local martingales, we have

$$|E[K_{{\scriptscriptstyle T}_n}H_{{\scriptscriptstyle T}_n}]| \leq 2Eiggl[\int_{\scriptscriptstyle [0,\infty[} |d[\phi(X),\,M]_s|iggr] + 2Eiggl[\int_{\scriptscriptstyle [0,\infty[} |d[\phi(X),\,\phi(X)_{-}\circ\,H]_s|iggr]$$

for some sequence of stopping times T_n with $T_n \uparrow \infty$ as $n \to \infty$. Then the right hand side is smaller than $c_M E[[\phi(X), \phi(X)]_{\infty}^{1/2}]$ by Fefferman's inequality. Letting $n \to \infty$ we obtain (5). q.e.d.

By applying Garsia's lemma (see [4, V. 24, p. 347]) to the above theorem we have the following:

COROLLARY. Let f be a continuous increasing convex function on $[0, \infty[$ satisfying f(0) = 0 and the growth condition $f(2t) \leq cf(t), t \geq 0$. Then we have

$$(6) c_{M,f}E[f(\phi(X)_{\infty}^{*})] \leq E[f([\phi(X), \phi(X)]_{\infty}^{1/2})] \leq c_{M,f}E[f(\phi(X)_{\infty}^{*})]$$

for each local martingale X.

356

3. Characterization of BMO-martingales. Let M be a fixed local martingale such that $1/\varepsilon > 1 + \Delta M > \varepsilon$ for some positive constant ε . In the case M^{\uparrow} and $\phi(X)$ in §2 are well-defined. Moreover, the equality (3) and the inequality (4) are still valid. Now we shall characterize BMO-martingales as follows:

THEOREM 2. In order that M is a BMO-martingale, it is necessary and sufficient that the inequality

$$(7) E[\phi(X)_{\infty}^*] \leq c E[X_{\infty}^*]$$

is valid for all local martingales X.

PROOF. Suppose that M is a BMO-martingale. Then Theorem 1 and (4) imply $E[\phi(X)_{\infty}^*] \leq c E[[X, X]_{\infty}^{1/2}]$. We apply Davis's inequality to the right hand side and obtain (7). We next show the converse. By the equality (3) $[X, M] = [\phi(X), M] + \sum_{0 \leq s \leq \cdot} \Delta \phi(X)_s \Delta M_s \Delta M_s$. Since ΔM is bounded, we have

$$egin{aligned} &\int_{[0,\infty[} |d[X,\,M]_s| \leq \int_{[0,\infty[} |d[\phi(X),\,M]_s| \,+\, c\,\sum_{0\leq s<\infty} |arphi\phi(X)_s arphi M_s| \ &\leq c \int_{[0,\infty[} |d[\phi(X),\,M]_s| \;. \end{aligned}$$

Hence, for the proof of the converse it suffices to show the following inequality:

(8)
$$E\left[\int_{[0,\infty[} |d[\phi(X), M]_{s}|\right] \leq cE[X_{\infty}^{*}]$$

for each X in H^1 . Indeed, we have $E\left[\int_{[0,\infty[} |d[X, M]_s|\right] \leq cE[X_{\infty}^*]$ for each X in H^1 and hence M is a BMO-martingale by the duality theorem, i.e., $(H^1)^* = BMO$. Now we set $D = |d[\phi(X), M]|/d[\phi(X), M]$, which is an optional process with $D^2 = 1$. Let X be in H^1 and consider the stochastic integral $D \circ X$. By the properties of the stochastic integral of optional processes (see [4, V. T19 and 20, pp. 343-345]) and the equality (3) we have

$$egin{aligned} & Eiggl[\int_{[0,\infty [} |d[\phi(X),\,M]_s]iggr] &= Eiggl[\int_{[0,\infty [} D_s d[\phi(X),\,M]_siggr] &+ Eiggl[\sum_{0\leq s<\infty} D_s \Delta X_s \Delta M_s^{\wedge} \Delta M_siggr] \ &= Eiggl[\int_{[0,\infty [} d[D\circ X,\,M]_siggr] &+ Eiggl[\sum_{0\leq s<\infty} \Delta (D\circ X)_s \Delta M_s^{\wedge} \Delta M_siggr] \ &= Eiggl[[\phi(D\circ X),\,M]_\inftyiggr] &\leq E[\phi(D\circ X)_\infty^{st}] + Eiggl[(D\circ X)_\infty^{st}] \ \end{aligned}$$

which by (7) is not more than $cE[(D \circ X)_{\infty}^*] \leq cE[X_{\infty}^*]$, and obtain (8). q.e.d.

4. Weighted norm inequality. Let Z be a P-uniformly integrable martingale with $Z_0 = 1$ and $Z_{\infty} > 0$ a.s.. We put $Q = Z_{\infty} \cdot P$ and denote by $E_Q[\cdot]$ the expectation with respect to Q. Moreover, we denote by M the P-local martingale $(1/Z_{-}) \circ Z$ and use the same notation M^{\uparrow} and $\phi(X)$ as in §2. Then M^{\uparrow} and $\phi(X)$ are Q-local martingales and $M^{\uparrow} = Z_{-} \circ (1/Z)$. Now we define the conditions (A_{∞}) and (S) as in Izumisawa, Sekiguchi and Shiota [2]. Combining the results in the above literature with Gehring's lemma in Doléans-Dade and Meyer [3], we see that Z satisfies the conditions (A_{∞}) and (S) if and only if M^{\uparrow} is a BMO-martingale with respect to Q and $1 + \Delta M^{\uparrow} > \varepsilon$ for some positive constant ε . Thus we can rewrite the results in §§2 and 3 as in the following.

THEOREM 1'. Let f be a continuous increasing convex function on $[0, \infty[$ satisfying f(0) = 0 and the growth condition. If Z satisfies the conditions (A_{∞}) and (S), then we have

$$c_{Z,f}E_{Q}[f(X_{\infty}^{*})] \leq E_{Q}[f([X, X]_{\infty}^{1/2})] \leq c_{Z,f}E_{Q}[f(X_{\infty}^{*})]$$

for each P-local martingale X.

The above theorem is an improvement of the result obtained by Izumisawa and the author in [1].

THEOREM 2'. Suppose that Z is quasi-left-continuous and satisfies the condition (S). Then Z satisfies (A_{∞}) if and only if the inequality

$$E_{arrho}[X^*_\infty] \leq c E_{arrho}[[X,\,X]^{1/2}_\infty]$$

is valid for all P-local martingales X.

References

- M. IZUMISAWA AND T. SEKIGUCHI, Weighted norm inequalities for martingales, Séminaire de Probabilités XIII, Université de Strasbourg, Lecture Notes in Math., Springer-Verlag, (to appear).
- [2] M. IZUMISAWA, T. SEKIGUCHI AND Y. SHIOTA, Remark on a characterization of BMOmartingales, Tôhoku Math. J., 31 (1979), 281-284.
- [3] C. DOLÉANS-DADE AND P. A. MEYER, Inégalités de normes avec poids, Séminaire de Probabilités XIII, Université de Strasbourg, Lecture Notes in Math., Springer-Verlag, (to appear).
- [4] P. A. MEYER, Un cours sur les intégrales stochastiques, Séminaire de Probabilités X, Université de Strasbourg, Lecture Notes in Math., 511 (1976), Springer-Verlag, 246-400.

Mathematical Institute Tôhoku University Sendai, 980 Japan

358