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1. Introduction. Let M be a continuous local martingale with Mo =
0, and let us denote by <M> the continuous increasing process such that
M2 — (M) is also a local martingale. Then the solution Z of the stochastic
integral equation:

Zt = l + \tZsdMs
Jo

is given by the formula Zt = exp(Mt — (M)J2), so that it is a positive
local martingale with Zo = 1. However, it is not always a martingale.
The problem of finding sufficient conditions for the process Z to be a
martingale, which is proposed by I. V. Girsanov, is important in certain
questions concerning the absolute continuity of probability measures of
diffusion processes. In Section 3, we shall give a new sufficient condition
for the problem of Girsanov. Namely, it will be proved that if M is a
BMO-martingale, then Z is an Lp-bounded martingale for some p > 1.
The theory of Hp and BMO martingales was developed in [3] and [4],
and it is well-known nowadays that (H1)* = BMO, that is, the dual space
of H1 is isomorphic to BMO. In Section 4, Z is assumed to be a uniformly
integrable martingale. Then we can define a change of the underlying
probability measure dP by the formula dP — ZjdP. If £ίf is a class of
continuous local martingales, with respect to dP we denote by S^ the
class corresponding to £ίf. Our interest here lies in investigating the
relations between Sif and £ίf. In the section we shall prove that if M
is a BMO-martingale, then BMO = BMO^ and H1 = H\ In addition, it
is shown that H2 = H2 holds in general. In Section 5 we shall give a
generalization of the classical inequalities of J. L. Doob.

Let us denote by C a positive constant and by Cx a positive constant
depending only on the indicated parameter x. Both letters are not
necessarily the same in each occurrence.

2. Preliminaries.

1) Definitions and notations. Let (Ω, F, P) be a complete probability
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space, and let (Ft){Q^t<0O) be a non-decreasing right continuous family of
sub-σ-fields of F with F = Vt̂ o Ft such that Fo contains all null sets.
Throughout the paper we shall deal only with continuous local martingales.
The reader is assumed to be familiar with the martingale theory as given
in [3] and [10]. See Getoor and Sharpe [4] for the theory of conformal
martingales.

For any process X = (Xt, Ft), we denote by X* the quantity supe \Xt\.
If T is a stopping time, Xτ is the process (XίΛΓ) stopped at T. Let Sf
be the class of all continuous local martingales X over (Ft) with Xo = 0.
For X and Y in £f, we define (X, Y) = « X + Y) - (X) - <Γ»/2. Then,
as is well-known, XY — <X, Y) belongs to £?. For Xe^f and a locally
bounded previsible process H, HoX is the unique element of ^ such that
for all F e JS^ (HOX, Y)t = [Hsd(X, Y)8. The process HoX is called the

Jo fί

stochastic integral of H relative to X. We also write (HoX)t = \ HsdXs.
Jo

DEFINITION 1. For any I e ^ and 0 < p < co, let

We denote by Hp the class of all Xe^f such that | | X | U < °°. If 1 ^
p < oof H

p is a real Banach space with norm || \\HP.

Recall now the inequality of B. Davis:

(l/4ι/T)#[X*] ^ E[(X)lί2] ^ 2£/[X*] , l e Sf.

For the proof, see [4]. This implies that if XeH\X is uniformly
integrable. This inequality of Davis is of fundamental importance in
the martingale theory.

DEFINITION 2. For any Xe£f, let

O - sup

Let BMO consist of those Xe Sf which satisfy ||X||BMO < °°. The energy
inequalities (see [10]) give

E[(X)l]^n\ \\X\\2

B\o, n = l,2, ••• .

Therefore, BMO c Hp for every p. The space BMO, which can be identified
with the dual space of H1, is complete with norm || ||BMO- The following
is an example of BMO-martingales.

EXAMPLE 1. Let B = (BtJ Ft, Px)XeR be a one dimensional Brownian
motion and let Ta = inf (t; \Bt\ = α), (α > 0). It is easy to see that Ta

is a stopping time. Then the BMO-norm of the martingale BTa with
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respect to the measure Po is equal to a. In fact, if \x\ < a, Ex[Ta] =
a2 - x2 because \BTa\ = a and Ex{B\a - Ta] = x2. Now let θt be the shift
operators of the process B = (Bt). Then Ta - t = Taoθt on (ί < Γα) by
the definition of Γα. It is also clear that (BTa)t = ί Λ Γα, P0-a.s., so
that using the Markovian character, we have

EQ[Ta -tΛTa\Ft] = E0[Taoθt\Ft]Iu<Ta)

= EBt[Ta]Iu<Ta) = (α2 - Bf)I{t<Ta) .

Therefore we have ||2?r«||BM0 = a-

Now for Me S^y let us consider the process Z defined by the formula

Zjt — e £ ι/ , t ^ u .

It is a positive supermartingale such that Z — 16 ^ As Zo = 1, E[Zt] ^ 1
for every t. Thus ^ is a martingale if and only if J?[^f] = 1 for every
t. Let Zoo = lim ^ . The existence of this limit is guaranteed by the
martingale convergence theorem due to Doob. Fatou's lemma shows that
it is finite with probability 1. Similarly, for each real number α, the
process Z{a) defined by Z[a) — exp (aMt — a2(M)J2) is also a positive local
martingale. As ZίZί

("1) = exp ( — (M)t)f Zoo = 0 implies {M}^ = oo. Con-
versely, if (M)^ = oo, then Z^ = 0, for Zt = (Zί

(1/ϊ))ίexp(-<Af>ί/4). We
now remark that Z{~1) is not necessarily a martingale even if Z is bounded.
Here is an example.

EXAMPLE 2. Let B = (Bt, Ft) be a one dimensional Brownian motion
starting at 0, defined on a probability space (Ω, F, P). We set T =
inf (t; Bt^tl), which is a stopping time such that 0 < T < oo. Now let
g: [0, 1[—> [0, co[ be an increasing homeomorphism, and set

_ ίflr(ί) AT if 0 ^ ί < 1
Γ ί " ( T if 1 ^ ί < oo .

Then these τt are stopping times with τ0 = 0 and τί = T such that for
a.e. ft)efi the sample functions r.(α>) are non-decreasing and continuous.
Thus, the process M defined by Mt = BTt is a continuous local martingale
over (Frt). As τt ^ Γ, we have Mt ^ 1, so that Zt is bounded by β. On
the other hand, as M1 = Bτ = 1, we have ElZ^] ^ E[exp ( — M,)] < 1.
This implies that Z{~1] is not a martingale.

In what follows, given Me J5f, Z denotes the process (expCMj — <ikf)ί/2)),
unless otherwise stated.

DEFINITION 3. Let 1 < p < oo. We say that Z satisfies the (Ap)
condition if
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sup \\E[(ZJZJ«»-»\Ft]\l< - .
t

If Z satisfies (Ap), then Z^ > 0 a.s., so that (M)^ < co a.s.. If 1<
p < r, (Ap) implies (Ar) by Holder's inequality. For simplicity, let us
say that (AJ) holds, if Z satisfies (Ap) for some p > 1. By Lemma 5, if
Z satisfies (AJ), then the process Z{a\ defined as before, also satisfies
the condition. The (Ap) condition has already appeared many times in
the literature in connection with several different questions (for example,
see [12]).

2) Preliminary lemmas. Here we collect several lemmas which are
of use in subsequent sections. The following inequality is called Feffer-
man's inequality.

LEMMA 1. // XeH1 and ΓeBMO, then

PROOF. It is proved in [4], but for the reader's convenience we shall
recall briefly the proof.

By using the usual stopping argument, we may assume X in H2.
Then we have

The first term on the right hand side is smaller that 2||X||#i. On the
other hand, by integration by parts, the second term is

which is dominated by | |F | | | M O| |-3L|UI. Thus the lemma is proved.

Fefferman's inequality implies that BMO c: (if1)*. The following
result is also proved in [4].

LEMMA 2. Let Xe^Sf. Then we have

\\X\\Hi £ sup{£7[<X, Γ>J; ΓeBMO, || Y||BM0 ^ 1} .

PROOF. Let (ΓΛ) be a non-decreasing sequence of stopping times
with limu Tn — co a.s., such that XTneHί for each n. In addition, it
is easy to see that (Xτ-, Y) = (X,]YT-), \\YT*\\BMO ^ \\Y\\BMO and

\\XTn\\Hi = ||-XΊIjyi. Therefore we may assume that Xe H1. Let now
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rt

ε be an arbitrary positive real number, and define Yt = \ Ds_dXs, where
Jo

Dt = E[(ε + (X)CΛ)~1/2\Ft]. Then, by an elementary calculation, we get
||¥Ί|BMO — •"•• Furthermore, (X) being continuous, we have

E[(X, Γ>J =

= E[(ε + <X> J-1/2<X> J ,

which increases to ||X|Ui as ε— > 0. This completes the proof.

P. A. Meyer proved in [11] the following inequality.

LEMMA 3. Let I e ^ . Then

]|X||BMO ^ sup{#[<X, X)J; YeH\ \\Y\\Hl £ 1} .

PROOF. We prove it, following the idea of Meyer. Let us denote
by d its right hand side, and T be any stopping time. It is sufficient
to show that

- (X)τ; A] ̂  d2P(A) for A e Fτ .

For simplicity, set U = (X)^ — (X)τ- The stopping argument enables
us to assume that XeBMO, and so E[UIA] < o°. The process H given
by Ht — IAmτ<t) is a previsible process such that H2 = H. Then we have

= UIA, so that

E[UIA] £ d\\HoX\\Hί = dE[iyUIA] .

By Schwarz' inequality the right hand side is smaller than

dP(A)i/2E[UIA]
1/2 .

Consequently we get E[UIA] ^ d2P(A).

The next inequality, which was established by A. M. Garsia for
discrete martingales in [3], plays an important role in our investigation.

LEMMA 4. // ||X||BMO < 1, then

PROOF. For simplicity, let us denote by d the right hand side of
this inequality. It suffices to show that for every A e Ft

E[e

<z>^-<^; A] ^ dP(A) .

We may assume that P(A) > 0. To show this, let us set dPf = (IJP(A))dP
and F's = Ft+8. Then it is not difficult to see that for Xe BMO the process
X' defined by X[ = Xt+S — Xt is also a BMO-martingale over (F't) with
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respect to dPf and that <X'>S = (X)t+S - (X)t. Therefore we have

E[e<z>">-<x>t; A] = E'[e<χt>~]P(A) ,

where Er[ ] denotes the expectation over Ω with respect to dP''. An
elementary calculation shows that the BMO-norm of X' is smaller than
H-XΊIBMO Then, by the energy inequalities, we have

E'[e<*'>~] = ±±E'[(X')i) ^ ΣII^ΊPBMO ^ ΣI|X|!IMMO = d ,
n — Q Ύl I n — 0 n — 0

completing the proof.

This estimate is the best possible, as the following example shows.

EXAMPLE 3. Firstly, let G° be the class of all topological Borel sets
in R+ = [0, oo[ 9 and S be the identity mapping of R+ onto R+. We
define a probability measure dμ on R+ such that μ(S>t)=e~\ Let G be
the completion of G° with respect to dμ, and similarly Gt the completion
of the Borel field generated by S A t. It is clear that S is a stopping
time over (Gf). We now construct in the usual way a probability system
(Ω, F, P; (Ft)) by taking the product of the system (R+, G, dμ; (Gt)) with
another system (Ω', Ff, P'; (F[)) which carries a one dimensional Brownian
motion B — (Bt) starting at 0. Then S is also a stopping time over (Ft)
so that X — Bs is a continuous martingale. As (X}t = S A t, we get

- (X)t\Ft] = eι \ (x - t)e xdxlu<s) = Iu<s) ,

from which | |X | | B MO = 1. Let now 0 < ε < 1. Then by Lemma 4

But the left hand side is

ί e{1~ε)Sdμ = [°e-εxdx = e~ι .
Jiϋ-t- JO

Thus the inequality given in Lemma 4 cannot be improved.

We finish this section with the following result obtained by Kazamaki
[6]. Quite recently, the extension to right continuous local martingales
was given by C. Doleans-Dade and P. A. Meyer [1] and by Kazamaki [8].

LEMMA 5. Let Mej^f. Then M is a BMO-martingale if and only
if Z satisties (AJ).

PROOF. Suppose firstly that | | M | | B M O < ^^ and choose p > 1 such
that ||M||BMO < 2("i/p — I) 2. Now we are going to show that Z satisfies
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(Ap). Indeed, set p0 = Vp + 1. The exponent conjugate q0 is
(VV+ DlW, so that l/?o(l/p~- I)2 - Po/iP - I)2 - 1/(P - 1). By Holder's
inequality

«>-» I Ft] = #[exp(-(JkL - ΛΓf)/(p-l) -Po(<Λf >- - <Λf>4)/2(p - D2)

- (M)t)/2(p -

By the supermartingale inequality, the first term on the right hand side
is smaller than 1. In addition, according to Lemma 4, the second term
is dominated by (1 - ||Λf|||Mo/2(v/jΓ-- I)')"1-

Conversely, let us assume that Z satisfies the (Ap^) condition for
some p > 2. Let (Tn) be a non-decreasing sequence of stopping times
with limw Tn—oo such that each process MTn is a uniformly integrable
martingale. We now claim that each ZTn satisfies (Ap). To see this,
we apply Holder's inequality with exponents (p — l)/(p — 2) and p — 1:

Tjz^-v(zjzTny^ \ FtATj
£ E[(ZtATJZJ«>-*> I FtATnY>-™>-»

The first term on the right hand side is dominated by some constant Cp

because Z satisfies (AJ)_1). In addition, as Z is a positive supermartingale,
the second term is smaller than 1. Consequently, for every n, ZTn satisfies
the (Ap) condition. Then by Jensen's inequality

^ exp (E[-MTn + MtATn + «ikf>^ - (M)tATn)/2\FtATJ/(p - 1))

= exv(E[(M)Tn - (M)tATn\FtATJ/2(p - 1)) ,

from which ||ilfΓ»||lMo ^ 2{p — l)logCp for every n. Letting n—> ©o, we
get Me BMO. Thus the lemma is completely established.

By this lemma it is immediate to see that even if Z is bounded, it
does not always satisfy (A*). See Example 2.

3. On the problem of Girsanov. If Me JZf, when can one assert
that Zt — exp (Mt — (M)J2) is a martingale? In 1960 this problem was
posed by I. V. Girsanov. A. A. Novikov [13] gave an answer to the
effect that if exp«ilf>ί/2) e L1 for every t, then the process Z is a mar-
tingale. Recently, by making a partial modification of Novikov's proof,
Kazamaki [7] showed that if (exp(Λft/2)) is a submartingale, then Z is a
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martingale. Note that Kazamaki's condition is weaker than Novikov's,
because E[exv(Mt/2)] ^ £r[exp«lί>ί/2)]1/2 by Sehwarz' inequality. Further-
more, there exists a BMO-martingale M, which does not satisfy Novikov's
condition, although exp(Λff/2) is a submartingale, as the following
example shows.

EXAMPLE 4L Let S, B = (Bty Ft) and (Ω, F, P) be as in Example 3.
Then Xt — V2BSAt is a BMO-martingale over (Ft). By the result of
Novikov

" - u/A)dPf = 1

for every u ^ 0, and so by Fubini's theorem we have

E[exp(XJ2)] = E[exp(Bs/V2)] = Γexp (u/4)dμ \
JO JΩ'

S oo

exp(

Let now (rt) be a continuous change of time such that τ0 = 0 and τλ — S,
and consider the martingale Mt = XH. It is a BMO-martingale over (FVt)f

and the process exp(Mt/2) is a submartingale. But, exp«M>1/2) is not
integrable because (M)1 = 2S.

We now give a new sufficient condition for the problem of Girsanov
as follows.

LEMMA 6. If M is a ΉMO-mar ting ale, then Z is a uniformly
integrable martingale.

PROOF. We may assume that 0 < ||Λf||BMo < °° Firstly we show
that if ||Λf ||BMO < l/ 2, then Z is uniformly integrable. Let c be a positive
number. Then applying Schwarz' inequality we have E[exj)(cMt)] ^

JB[exp(2_c2<ikf>ί)]
1/2. Now let 0 < δ < 1/T/"2"||M||BMO - 1/2 and c = 1/2 + δ.

As ||τ/2αΛf||BMo < 1> it follows from Lemma 4 that

£7[exp((l/2 + δ)Mt)] ̂  E[exv(2c2(M)t)]1/z ^ (1 - 2c2||M|||Mo)~1/2 .

Namely, supt J5[exp((l/2 + δ)Mt)] < oo. Set now p = 1 + 4δ > 1. So the
exponent conjugate to p is q = (1 + 4δ)/4δ. Then by Holder's inequality
we get

E[Zϊ] = E[exvθ/φMt - r(M}t/2) exp((r - l/φ)Mt)]

^ E'texpCT/^rM, - pr(M)J2)]1/pE[exv((r - VrJp)qMt)]1/q , r > 0 .

The first term on right hand side is bounded by 1, because the process
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exp {V~prMt — pr(M)J2) is nothing but the positive local martingale Z{spr).
If r = (1 + 2<ϊ)7(l + 4<?) > 1, by a simple calculation we have (r — Vrjp)q =
1/2 + 5, so that supί #[,£[] < oo. Therefore Z is a uniformly integrable
martingale if | |M| | B MO< Ί / 2 . NOW we are going to deal with the general
case. Let us choose a number a such that 0<α<Min(l, 2/||Λf|||Mo). Then,
as WCLMWBUO<Λ/~2, the process Z{a) is a uniformly integrable martingale.
Therefore, for any stopping time T

1 = E[Z{^/Z{

τ

a)\Fτ]

Applying Holder's inequality with exponents I/a and 1/(1 — a) to the
right hand side we can obtain:

1 ^ E[ZJZτ\Fτ]E[exv(a((M)«, - {M\)l2)\FτY~a)/a .

By Lemma 4 t h e second t e r m on t h e r i g h t hand side is smaller t h a n

(1 - α||M||2BMo/2r ( 1"α ) / α = {(1 - α||ikf||2BMo/2r2/αl|Λfll2BMo}(1"α)11"ί|i2BMθ/2 ,

which converges to exp(||Λf||BMo/2) as a —> 0. Consequently, we have

This implies that Z is a uniformly integrable martingale.

Our aim in this section is to prove the following:

THEOREM 1. If M is a BMO-martingale, then the "reverse Holder
inequality"

E[Zl+ε\Ft] ^CεZ]+ε

holds for every t, with positive constants Cε and ε.

REMARK. Quite recently, C. Doleans-Dade and P. A. Meyer [2] proved,
assuming the uniform integrability of the process Z, that the reverse
Holder inequality holds if Z satisfies (AJ). In [2] they make a systematic
study of the subject about the (Ap) condition from a more general point
of view.

PROOF. Our proof is an adaptation of the proof given in [2]. Now
let ikfeBMO. Then, by Lemmas 5 and 6, Z is a uniformly integrable
martingale which satisfies (Ap) for some p > 1. We denote by dP the
weighted probability measure ZjdP and by E[ ] the expectation over

Ω with respect to dP. Clearly, if A 6 Ft, P(A) = ( ZtdP so that for

every P-integrable random variable V we have

= E[Z&iV\Ft]IZt a.s., under dP and dP.
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We shall use this formula many times in the sequel. Let K be a constant
2̂ 1 depending only on p such that

-1 £ K,

which follows from the definition of (Ap). Now we set a = 1/2PK and
bε = 2ε/(l + ε)α1+ε and let us choose ε > 0 such that bε < 1. Then we
claim that #[#;+• |*Y1 ^ C£Zfc

1+£ where C. = (3 - 6ε)/(l - δβ).
Firstly, we show that the basic inequality

E\Z^\ Z^ > λ] ^ 2λP(Zoo > αλ)

is valid for every λ > 0. Indeed, let T = inf(t; Zt>X), which is a stopping
time with ^ Γ ^ λ a . s . . In addition, Zτ — \ on ( Γ < ©o) because Z is
continuous. Let us consider the martingale X defined by Xt — P^Z^ <.
aZτ\Ft). As Xτ = ZTEIXJZ^FT], we apply Holder's inequality with
exponents p and q — p/(p — 1) to the right hand side:

XI ^ ZlE{Z~J\Fτγ-γE\X^\Fτ\

But ZJίl ^ aZτ by the definition of X. Thus Z Γ ̂  (aK)1/p = 1/2 and so
P(ZTO > αλ) ̂  P(Γ < oo)/2 because 1/2 ^ 1 - Xτ = P(ZTO > αZΓ | JPV) and
( Γ < CO)GJPΓ. Consequently we get

TΓTΓ Λ^ . Λ^ * \ ~\ "I <-— TPX ΠΓ . I 1 ^ ^ 1 _ _ ~CPT Γ7 « ΛΠ ^^* 1 Λ ~D( ΠP ^ \
Hi\ZjQQ, £J co -r ^ J ^ = -*-Ί_ OOJ •' " ^ co j — J2J\ZJJIJ JL < ^ oo j =ir ΛJIΓ ( JL " \ CXD l

^ 2λP(Zoo > αλ) .

Now let Un = Min(2r

oo, w) for ^ ^ 1. It is clear that Un-> Z^ as n —> co.
It is also immediate to see that for each w the inequality

E[Un;Un > λ] ^ 2λP(?7w > αλ)

is valid. Then, multiplying both sides of this inequality by ελε-1 and
integrating on the interval [1, oo[, we find that

[ ( m + ε - un)dp ^ bε \ m+εdp ^ bε f i7,;+εώp + &£.

As E[Un] ^ .£7[^J ^ 1 and E[m+°] < oo, we have

K+ εώP ^ 6ε + 1 ^ 2 .d - 6 ε ) S |

That is, E[Ui+β] ^ 1 + 2/(1 - 6β) = C.. From Fatou's lemma it follows
that E[Zι+9] ^ Cε.

Secondly, let S be a stopping time, and let A be an arbitrary element
of Fs such that P(A) > 0. As in the proof of Lemma 4, we set dP' =
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IAdP/P(A) and F\ — Fs+t. E'[ ] denotes the expectation over Ω with
respect to dP'. Consider now the process Zr defined by Z't = Zs+t/Zs.
Clearly 0<Z't and E'[Z'OO] = 1. Furthermore, it is a uniformly integrable
martingale over (F't) relative to dP' such that for the same constant K
as before

ZIE'KZL)-1"*-" I F't]*-1 ̂  K , P'-a.s. .

Therefore, by the same argument as above we obtain E'[(Ziy+ε]<LCε, that
is, E[(ZJZsγ

+ε; A] ^ C.P(A). This is valid for any AeFs, so that we
have the desired inequality. Hence the theorem is established.

In the proof of Proposition 3, we shall show that, if Z is a uniformly
integrable martingale satisfying the reverse Holder inequality, then M
is a BMO-martingale.

COROLLARY. Let a be a real number. If M is a BMO-mαrtingale,
then Z{a) is an Lv-bounded martingale for some p > 1.

PROOF. If M is a BMO-martingale, so is aM. Then the conclusion
follows immediately from Theorem 1.

Let Me^f. Obviously, if it is bounded from above, then the process
exp(JkΓt/2) is a submartingale. But there exists a continuous martingale
M, bounded from above, which is not a BMO-martingale. See Example
2. We now remark that, even if Λf is a BMO-martingale, exp(ikfί/2) is
not necessarily a submartingale. We end this section with such examples.

EXAMPLE 5. Let S, B = (Btf Ft), (fl, F, P) be as in Example 3, and
let (τf) be a continuous change of time such that τ0 = 0 and τ1 = S. Then
2V2BSAt is a BMO-martingale over (Ft), and so Mt = 2V2BSAτt is a BMO-
martingale over (jPΓί). But it follows from Fubini's theorem that
exp(Jlίi/2) = exp(i/2.B,s) is not integrable. Namely, exj)(Mt/2) is not a
submartingale.

EXAMPLE 6. Let B = (Bt, Ft) be a complex Brownian motion starting
at 0 and let T= inf(ί; \Bt\ = 1 ) . Then log(l - Bτ) is a conformal mar-
tingale on [0, T[, because log(l — z) is analytic in the unit disc \z\ < 1.
Its imaginary part is bounded, so that by the main theorem of R. K.
Getoor and M. J. Sharpe [4] the real part logjl — Bτ\ is a BMO-martingale.
Now let X = —log 11 — Bτ|. As is well-known, Bτ is uniformly distributed
on the unit circle \z\ = 1. Therefore we get

- Bτ\)]

= (27Γ)"1 (2;Γ{2(1 - cosθ)}~1/2dθ =
Jo
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Let us define a change of time (τt) with τ0 = 0 and τ1 = T as in Example
2. Then Mt == XΓί is a desired BMO-martingale.

4. Transformation of the spaces BMO and H1 by a change of law.
Let Me S^ and consider the process Zt = exp(Mt— (M)J2) as usual. In this
section, Z is assumed to be a uniformly integrable martingale with Z^> 0.
dP denotes always the weighted probability measure ZjdP. It is obvious
that the measures dP and dP are mutually absolutely continuous. We
shall consider the process ΫF defined by Wt = 1/Zt. It is a uniformly inte-
grable martingale with respect to dP, for ElWJF^ElZ^W^lFtl/Z^ Wt.
Clearly, 0 < Wt, Wo = 1 and W^dP = dP. If ^ T is a subclass of ^ ^
denotes the class of continuous local martingales relative to dP, which
corresponds to ^f. So ^ is the class of all P-continuous local martingales
Xf over (Ft) with X'o = 0. Our interest here lies in investigating the
relations between Jg^ and £%?. The following lemma plays a very im-
portant role in our discussion.

LEMMA 7. For any Xe £?, X = X - <X, Λί> belongs to &> and (X) =
under either probability measure. Furthermore, the mapping

i:X~>X is linear and bijective.

PROOF. TO see l e i ; it is enough to check that ZXe^f. X is
zτid(xf zys

S o
Z71dZs. Then, by Ito's formula we have

0

= zoxo + \Xdz. + [zsdxs + (z, xyt
Jo Jo

= [XdZ. + [z.dX.,
Jo Jo

which belongs to £f. Similarly, we can check the equality (X) = (X).
From these facts follows the linearity and the injectivity of the mapping
i. So it remains to show the surjectivity. As M = M — (M) and (M) =

we have

so that for any Γ e i , X = X' + <X, M) belongs to £f. On the other
hand, X = X - <X, M) is in £?. Therefore X' - X = <X, Λί> - <Z', M>
is also a P-continuous local martingale with finite variation on each finite
interval. This implies that X' == X. Thus the lemma is proved.

J. H. Van Schuppen and E. Wong [14] tried to extend this trans-
formation to right continuous local martingales, and the generalization
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was completely established by E. Lenglart [9]. Note that "the stochastic
integral H°X relative to dP" coincides with "the stochastic integral of
H with respect to the semi-martingale X relative to dP".

PROPOSITION 1. If Z* e L\ then for any

PROOF. Let XeBMO and choose a non-decreasing sequence (Γn) of
stopping times with lim% Tn = co such that XTneH2 for every n >̂ 1.
Then for each n we have

J = E[zTn(X)τj = #[[Xd<x> s ] = E[(Zoχ, χyTn\

which follows from Lemma 1. The expectation on the right hand side
is smaller than

11/2

= E[Z*]ί/2E[(X)τJ
/2 .

Therefore, as E[(X)TJ < - , we have £[<!> Γ J 1 / 2 ^ V~2E[Zψ2\\X\\mιo,
for n ^ 1. Letting w—> ©o and using Fatou's lemma, we are done.

Proposition 1 shows that if Z* 6 L\ then the mapping ί: BMO —> H2

is continuous.

PROPOSITION 2. Z* eL 1 if and only if Me H2.

PROOF. We define log+x, as usual, as 0 if x < 1 and logo; if x ^ 1.
We begin with the proof of the "if" part. From the definition of dP
it follows that

log+ ZJi = ^[log+ ZJ = E[M^ - <Λf >ββ/2; Z^^l].

By Lemma 7 the right hand side is

E[M^ + (M)J2; Z^ ^ 1] ^ ^[<iif>J1/2 + ^[<M>J/2 .

Therefore, if Me Jϊ2, we have Z* e L1 by the classical inequality of Doob.
To see the "only if" part, we need the inequality:

E[Z» log ZJi ^ 4]/Ύπ(E[Z*] + 1) ,

which follows from a result given by S. Watanabe [15]. Following his
idea, we show this inequality. Firstly, let us choose Y in ^f in such
a way that Ut = Zt + iYt is a conformal martingale; that is, <iΓ> = <Y)
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and (Z, Y) = 0. Then Vt = UtlogUt is also a conformal martingale, for
f(z) ^zlogz is analytic in D = {z; Re z>0}. Therefore, ReF t = Zt log | Ut -
Yt B,rgUt is a continuous local martingale. By using the stopping argument
we may assume that Zt log |Ut| and Yt are in H\ Then E{Z^log \UJ\-
j&fΓ^argZ/J. In addition, U^eD, hence largί/J <̂  ττ/2. We now apply
Davis' inequality:

E[Z^ log ZJ <ί E[Z^ log IUM |] ^ (π/2)S[| Γ^ |]

^ 2v/Tττ#[<Z>1j2] ̂  4V~2πE[(Z-l)*] ^ 4V~2π(E[Z*] +1) .

Therefore, if Z*eL 1 , then EiZ^log ZJ < oo.
Now we are going to show that MeH2. The stopping argument

enables us to assume that M is P-uniformly integrable. Then, as
0, we have

E[(M)J - 2E[M«, + (M)J2] = 2 [̂Z0O(ikΓTO - <Λf>ββ/2)] =

and we are done.

Now let .^T = Γ\P>OHP. As is well-known, if 1 < p < oo, .ίp coin-
cides with the class of all ZAbounded continuous martingales.

PROPOSITION 3. Assume that MeBMO. Then J e y Γ if and only
if Xe^k

PROOF. By the corollary to Theorem 1, Z is an LPo-bounded martingale
for some p0 > 1. It follows from Holder's inequality that for each X

where l/pQ + l/qQ = 1. This implies that if l e j ^ then
To see the converse, it is enough to show that iίfeBMO. As Me

BMO, according to Theorem 1, it satisfies the reverse Holder inequality,
that is, E[Zl+ε\Ft] ^ CεZ\+ε for some ε > 0. This can be rewritten as
follows:

Namely, W satisfies the (Ap) condition relative to dP for each p > 1
with l/(p — 1) < ε. Consequently, using again Lemma 5, we obtain the
fact that Me BMO". This completes the proof.

It should be noted that Proposition 3 does not hold without the
condition "ikfeBMO". In the following we give such an example.

EXAMPLE 7. Consider a one dimensional Brownian motion B=(Bt, Ft)
starting at 0 and defined on a probability space (Ω, F, dμ). Let T =
inf(£; Bt ^ 1). Then the process Bτ stopped at T is a continuous martingale,
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which is not uniformly integrable with respect to dμ. Clearly, the process
Y given by Yt = exp(Z?ίΛr — (t Λ Γ)/2) is a bounded martingale. So
dP' = Yoodμ is a probability measure on Ω. Now let M— — Bτ + (Bτ)
and Z* = exp(ikff — <Af>t/2). The process ^ is a P-uniformly integrable
martingale with Zt = 1/Yt, and the weighted probability measure dP =
Z^dlP equals eZμ. By Lemma 7, M is a P-local martingale with <ikf> =
(Bτ). Let us consider the P-local martingale X = M/Λ/2. Then from
the fact Bτ = 1 follows

£?[exp«X>J] - \ exp«Λf>oβ/2)exp(BΓ - (B)τ/2)dμ

= I exv(Bτ)dμ = e .

That is, Xe.xK However, X = M / τ / ϊ = - F / / 2 " is not uniformly
integrable with respect to dμ. It follows from Proposition 3 that M is
not a BMO-martingale.

PROPOSITION 4. <p: X-+Z~1/2 o X is an isometric isomorphism of H2

onto H2.

PROOF. Let XeH2. Lemma 7 says that X is in ^ Let Tn f oo
be stopping times such that Xr» e ̂ 2 for every w. Since Wt = 1/Zt is
a uniformly integrable martingale with respect to dP, we have

for ^ ^ 1 .

Letting n —» oo and using the monotone convergence theorem, we obtain
< oo, so that Z~1/2oXeH2. This implies that

the mapping 0: H2-^H2 given by ̂ (X) = Z~ί/2oX is well-defined. Clearly
it is linear and injective. From the above calculation it follows that
||0(X)||£2 = ||-3Πlff2 Thus, it remains to prove the surgectivity. To see
this, let Xr e H2. By Lemma 7, U = Xr and <£/> = <X'> for some Ue &.
We now set X = Z1/2 o Ϊ7 and choose stopping times Γw f oo such that
jjτn e j£2 fQΐ e v e r y n% Then we have

E[(X)TJ - ^[j^.d<ϋ->.] = E[ZTn(U\J

= E[(X')τj £ EKX'yj .

From Fatou's lemma it follows that XeH2. Moreover, we have

φ{X) = Z'1/2 o (Z1/2 o U) = U = X' .

Consequently, the mapping φ is surjective.
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Let 1 <; p < oo. In particular, if Z^ is bounded, then /: X—> X is a
continuous linear mapping of Hp into Hp. Therefore, it is evident that
if 0 <c ^ Z^ ^ C, then the mapping ί is an isomorphism of Hp onto 1/*.

THEOREM 2. 7/ l i e BMO, ίfcew ί: X—>X is cm isomorphism o/BMO
BMO".

PROOF. Let ikf e BMO. By Lemma 5, Z satisfies (Ap) for some p> 1.
We now need the following inequality due to Kazamaki [8]:

O* , for

To show this, let us assume that 0 < | | X | | B M O - < ° ° , and set a = (2p\\X\\2

Bmo*)~1.
As \\λ/ap X\\2

BM0* = 1/2, Lemma 4 yields

>t)) | Ft] £ 2 .

By using a simple inequality x ^ eα7α and Holder's inequality, we have

- <X)t\Ft] ^

with 1/p + 1/g = 1. Clearly, I/a = 2p| |X| | | M o- Since Z satisfies (Ap),
the first expectation on the right hand side is smaller than some constant
Kp. The second one can be written as J?[exp(α^«X>oo — (X)t))\Ft], which
is bounded by 2. Thus, ||X||2BMO ^ C J | 1 | | W .

As mentioned in the proof of Proposition 3, if ΛfeBMO, then Me
BMO .̂ Therefore we get c||X||BMo ^ ||X||BMO* ^ C||X||BMo for I e ^ .
Here, the positive constants c and C do not depend on X. Then, com-
bining this inequality with Lemma 7, we see that the spaces BMO and
BMO" are isomorphic via the mapping i.

We remark that, without the condition "Me BMO", the conclusion
of Theorem 2 no longer follows. In the next theorem, let 1 <: p ^ oo
and H°° = BMO. We denote by q the exponent conjugate to p; namely,
q = oo if p = 1 and q = 1 if p = c>o.

THEOREM 3. j : X —> X is a continuous mapping of Hp into Hp if
and only if ψ: X—• Z^ojt is a continuous mapping of Hq into Hg.

PROOF. We deal only with the case p = oo the proof for the other
cases is similar. Firstly, let us assume that the mapping j is continuous,
that is, || ΓHBMO ^ \\j\\ \\Ϋ\Uo- for every ΫeBMO^. Let XeH1 and Ϋe
BMO". Since Wt = 1/Zt is a uniformly integrable martingale with respect
to dP, we have
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By Lemma 1 this is smaller than i/"2"||-XΊ|ffi|| 3Γ||BMO Therefore, from
Lemma 2 follows the inequality

WZ-'OXW^^I/YWJW \\χ\\Hl

for every XeH1.
Conversely, suppose that ψ:X-*Z~ιoX is a continuous mapping of

H1 into H1. Let XeH1 and Ϋe BM(Γ. By using the stopping argument
we may assume that YeBMO. Then, by the same calculation as above,
we have

E[(x, y>j

In addition, by Lemma 3,

Thus our claim is established.

The mapping j defined above is nothing else but the inverse of the
mapping i. Combining Theorems 2 and 3, we get:

COROLLARY. If Me BM.O, then the spaces H1 and H1 are isomorphic
via the mapping ψ.

We remark that it is impossible to remove the condition "ilίe BMO".
In other words, Z^oX^H1 for some XeH1. Here is an example.

EXAMPLE 8. Let S, B=(Bt, Ft) and (Ω, F, P) be as in Example 3, except
that we use here the distribution dμ — /[1>oo](u)^~2du of S instead. Let
M = Bs. Then it is immediate to see that Zt = exj)(Mt — (M)t/2) is a

uniformly integrable martingale. As E[(Myj>2] = I u~3/2du = 2, we have

MeH\ But it does not belong to H\ for E[{M}^\=- Γw'du = oo. By

Proposition 3, M$ H2 if and only if W* is not integrable with respect
to dP. In addition, W = I - W°M, and so W<>M = ^

Finally, we point out the fact that i: X^ X is not always a continuous
mapping of H2 onto Jϊ2, even if M is a BMO-martingale. Indeed, if the
mapping i were continuous, then by Theorem 3 H2BX-^ ZoXe H2 must
be continuous. This would imply that if Xe H2, then ZoXe H2. However,
for the BMO-martingale M = Bs considered in Example 3, Z<>M$H2.
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5. A generalization of Doob's inequalities. In this section, let us
assume that ΛfeBMO. Then by Theorem 1 the process Z satisfies the
reverse Holder inequality: E\Z^\Fλ ^ CeZl+ε for some ε > 0. By
combining this result with Lemma 7, we can give a generalization of
the classical inequalities due to J. L. Doob. The inequality (1) given in
the following theorem was essentially proved by M. Izumisawa and N.
Kazamaki [5].

THEOREM 4. (1) Let p > 1 + 1/ε. Then the inequality

Xt - <X, M)t I'] ^ Cp,ε sup E[\ Xt - <X, M)t |']

is valid for all X e £f.
(2) In particular, if ZJZt ^ C, then there exists a constant c > 0

such that the inequality

cE\sγv\Xt-(X,M)t\]

^ e/(e - 1) + (e/(e - 1)) sup E[\ Xt - <X, M)t \ log+ | Xt - <X, M)t |]

is valid for all

PROOF. We begin with the proof of (1). Let I e ^ and 0 < δ <
p - (1 + 1/ε). Then 1< p0 = (P - δ)/(p - δ - 1)< 1 + ε and q0 = po/(po - 1) =
P - < 5 > 1 . It follows from the assumption that E[Zvj\Ft] £ CP)£Zf°.
Lemma 7 says that X = X — (X, M) e Jp*. By using the stopping argu-
ment we may assume that XeHp. Then X t = E [X^ \ Ft] = ElZ^XJZt
and so by Holder's inequality with exponents p0 and q0 we obtain:

We now apply the classical theorem of Doob to the martingale
E[\XJp-δ\Ft] to obtain

Finally, we show (2). For simplicity, we may assume that 1 is a
uniformly integrable martingale relative to dP. Then from the assump-
tion it follows that \Xt\ = {EIXJF^ ^ EIZJXJ/ZAF,] ^CE[\XJ \Ft],
and so by applying the theorem of Doob to the martingale J5[|-XΌβ| \Ft],
we obtain (2).

If ZJZt ^ C, then the inequality (1) is valid for any p > 1 and M
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belongs to the class BMO. The classical inequalities of Doob correspond
to the case M = 0.
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