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Let (Ω, F, P) be a complete probability space, given an increasing
sequence (Fn) of sub <τ-fields of F such that F = V^o Fn. If / = (fn, Fn)
is a martingale with difference sequence d = (dn)n^19 we shall set /* =
sup^ol/.l, S(f) = (ΣS-idl)1** and s(f) = (p=1 E{dl\Fn^\ Let us
assume that f0 = 0. The operator s(f), which is not of matrix type, is
called the conditioned square function. It was studied by Burkholder
and Gundy [3]. Let sn(f) = ( Σ L i « I *WI)1/2. Clearly, sJJ) is i m -
measurable. Throughout the paper, we fix a BMO-martingale Λfn = ΣJUi w&*>
Mo = 0 such that — 1 + δ < m*, (fc ^ 1) for some constant δ with 0 < δ ^ 1,
and consider the process Z given by the formula Zn = ΠLi (1 + m,k),
Zo = 1. Z is a positive uniformly integrable martingale which satisfies
the condition

p-1} I i^n]9"1 ^ Cp , w ^ 0
for some p > 1; see [6], As Z^ > 0 a.s., the weighted probability
measure dP = ZJLP is equivalent to dP. Note that for every P-integra-
ble random variable Y

E[Y\Fn] = E[ZooY\Fn\IZn a.s., under dP and dP ,

where E denotes the expectation over Ω with respect to dP.
Our aim is to prove the following:

THEOREM. Let 0 < p <; 2. Then the inequality

(l) £[(/*)'] ̂  <v£κ/y]
is wxZΐcϊ /or all martingales f = (/J.

Furthermore, if 2 <̂  p < °o α̂ icZ Z satisfies the (Ap) condition, then
we have

(2) £[«(/)'] £ C , sup J£[|/. | ']

Here, the choice of cp and Cp depends only on p.

This result is well-known for the case where Z = 1; see Theorem
5.3 of [3]. To prove the theorem, we need several lemmas, which will
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be stated without proof in the following. The letter Cp denotes a posi-
tive constant, not neccessarily the same number from line to line.

LEMMA 1. // {an} is a sequence of non-negative random variables,

then for p ^ l

See Theorem 3.2 of [2].

LEMMA 2. Let 1 < p < <χ>. If Z satisfies (Ap), then the inequality

is valid for all martingales f = (/Λ).

In our case, (Ap) implies (Ap_ε) for some ε > 0, and so this inequality
follows from Theorem 2 of [5]. It is proved in [5] that the converse
to Lemma 2 is true.

LEMMA 3. Let 1 <L p < oo. If f = (/j is a martingale, then

cpE[S(fY] ^ E[(f*Y] <, CpE[S(fY]

For the proof, see [4]. The inequality corresponding to the continu-
ous parameter case was obtained by Bonami and Lepingle [1] and Seki-
guchi [8] independently.

LEMMA 4. Let 0 < e ig 1. Then we have

This is Lemma 1 of [7]. It is easy to see that for a martingale
/ = (/j w i t h difference sequence d = (dn), the process / = (/J defined
by fn = Σ?=i dkj{l + mk) is a martingale with respect to dP. The follow-
ing lemma is proved in [7].

LEMMA 5. Let 1 <̂  p < oo, and set dk = dk/(l + mk). Then we have

PROOF OP THEOREM. Let s{f) denote the conditioned square function
(ΣΓ=iEldllF^])1'* relative to dP. Since 8 < ZJZh^ = l + mk^ \\M\\Bmo

and E[dl I F,_J = E[dl/(1 + mk) \ F»_J, we have (1 + 11 Af |IBMOΓ'M/) ^ s(/) ^
r ^ s ( / ) and E[dl\Fk^] ^ (1 + I I M I I B M O ) ^ ^ ! ^ ^ ] .

We strat with the case 0 < p <Ξ 2. From Lemma 3 it follows that
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E[(f*y] ^ CE[S(fY] =

Thus (1) is proved for p — 2. Now, let us consider the case 0 < p < 2.
Following the idea of Garsia, we define a martingale transform g by
the formula gn = Σfc=iSfe(/Γ~2)/2dfc. Then by the definition of s(g)

s(g)2 = ±sn(f)p-2E[dl\F«-i] = Σ * (/)p"2{β (/)2 ~ s*-i(/)2}
% = 1 w = l

But, if 0 < a ^ b, then δ"-2(δ2 - α2) ^ 2(6* - α»)/p. This gives s(fif)2 ^
2β(/)'/p. Therefore, £[(0*)2] ^ CS[s(^)2] ^ Cp^[«(/)»]. On the other
hand,

/. = Σ sk{fTp>\gk - ΰu-d = 9A(fγ-"^ - Σ o&JLf?-** - skMf-pn}
k=ι fc=i

and so /* ^ 2^*θ(/)1~?)/2. Then we apply Holder's inequality with
exponents 2/p and 2/(2 — p):

E[(f*)p] ^ 2pE[(g*)ps(f)nl-p/2)] ^ 2pE[(g*)2]p/2E[s{f)pY-p/2

^ CpE[s(fy]p/2E[s(f)pf-p/2 ^ CpE[s(f)p] .

Thus the desired inequality (1) is obtained.
Next we deal with the case 2 ^ p < oo. Let us assume that Z

satisfies (Ap); namely, the weighted norm inequality stated in Lemma 2
holds. As s(f) ^ cs(f), we have E[s(f)p] rg CpE[s(f)p] ^ G,£[(?*)*]; the
right hand side inequality is well-known. See Theorem 5.3 (i) of [3].
By Lemmas 4 and 5 we have

\P/2Ί

and by Lemma 1 the expectation on the right hand side is smaller than
E[(Σ£=iZ~vdΐ)p/2] = E[(Σin=ιdi)p/2]. Then this combined with Lemmas 2
and 3 yields (2) as desired. Thus the theorem is established.
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