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Let X be a compact complex manifold of dimension n = 2. An open
subset N of X is called a spherical shell, if N is biholomorphic to

S.={zeC:1—ec<|z|]| <1+ ¢}

for some ¢, 0 < ¢ < 1, where ||z]|| denotes the standard complex Euclidean
norm of a vector z = (2;) in the n-dimensional complex vector space C",
ie., ||2]* = 2. |2;*. N is called a global spherical shell (abbrev., GSS),
if X — N is connected. In [4], we have proved that a compact complex
manifold containing a GSS is biholomorphic to a deformation of a
modification of a primary Hopf manifold at finitely many points. In
this paper we restrict ourselves to the case of surfaces, i.e., n = 2, and
consider compact complex surfaces containing (real analytie) global strongly
pseudoconvex hypersurfaces (GSPH) which bound Stein domains possibly
with finitely many isolated singular points. Then we can determine all
such surfaces (Theorem).

Here we shall use the definitions and some results in Rossi [5, 6].
Let Y be a compact real analytic CR-hypersurface with dim,Y =38. It
is known that 3 admits a realization as a real hypersurface in a com-
plex manifold of (complex) dimension 2. Namely, there exist a complex
manifold M of dimension 2 and a CR-injection j:3Y — M such that the
CR-structure on 3 coincides with the CR-structure induced from M.
Moreover, if j,: X — M, (¢ = 1, 2) are two realizations of 3, then 7,0
extends to a biholomorphic mapping between small neighborhoods of 7,(3)
([6]). This implies that the realization of 3 is unique as a germ.

We say that 3 bounds a Stein domain, if there exist a (reduced
irreducible) complex space M, a subdomain M of M which is free from
singular points, and a realization j:3 — M of ¥, such that j(J) bounds
a relatively compact Stein open subset D of JM. Note that D may have
finitely many isolated singular points. We remark that there exist
strongly pseudoconvex hypersurfaces ¥ with dim, ¥ = 3 such that X do
not bound any Stein domains ([5]).

Let S be a compact complex manifold of dimension 2, which will be
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called a surface. Let X be a real analytic submanifold of (real) dimen-
sion 83in S. Then Y admits the real analytic CR-structure induced from
S. Suppose that ¥ is strongly pseudoconvex.

DEFINITION 1. 3 is called a global strongly pseudoconvex hypersur-
face (GSPH) in S, if S — Y is connected.

LEMMA 1 ([5]). Let X2 be a strongly pseudoconvex hypersurface
realized in a complex manifold M. Then there are a meighborhood N
of ¥ and a strongly plurisubharmonic function @ defined on N such
that ¥ = {xe N: p(x) = 0}.

Now we shall prove the following

THEOREM. Let S be a compact complex manifold of dimension 2.
Then S contains a real analytic GSPH which bounds a Stein domain
possibly with finitely many isolated singular points, if and only if S
is one of the following:

(i) S contains a GSS,

(ii) S is biholomorphic to a modification of a surface of Class VI,
an elliptic surface of Class VII,, or a non-primary Hopf surface.

REMARK 1. Primary Hopf surfaces belong to (i). Generally, S
satisfying the assumption of the theorem belongs to (i), if and only if
the fundamental group of S is infinite cyclic.

REMARK 2. The “if part” of the theorem is clear, since surfaces
without exceptional curves of the first kind which belong to (ii) of the
theorem are biholomorphic to submanifolds of Hopf manifolds, and since
any submanifold of Hopf manifolds contains real analytic GSPH’s [2, 3].
Therefore the rest of the paper is devoted to the proof of the “only if
part”’ of the theorem.

We shall repeat the argument of §1 [4]. Consider the following
homology exact sequence with Z-coefficients:

(1) eee > H(S — 2)—> H(S)— H(S, S — 2)
— H(S — 3)— H(S)—> H(S,S — 3)—0.
By the duality theorem, we have
H(S,S—-3)= H2)=Z, and H(S,S—23)= H(3)=0.
Since both S and S — X are connected by assumption, we have
H(S—3X)= H(S)=Z.
Therefore (1) is reduced to
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(2) o HS— - HS) B Z—0.
Let h:7(S)— H/(S) be the Hurewicz homomorphism. Put
j=poh:m(S)—~Z.
Take the infinite cyclic covering
@:85—8
of S such that 7t1(§) is equal to the kernel of j. Denote by § the holo-

morphic automorphism of S such that the orbit space S/¢§) is equal to
S. Let

1:8§S—3—>8
be the inclusion and
iy s T (S — 2) — 7w (S)
the induced homomorphism. From (2),
1,T(S — X)Cker g
follows. Hence there is a lifting
1:8—-3-8§
of 7 and we obtain the commutative diagram

S

A
!
S - X e S .
%
Let F = 1(S — X). Let N’ be a sufficiently small tubular neighborhood

of ¥ in S. By Lemma 1, we can assume that there is a strongly pluri-
subharmonic funetion @ on N’ such that

Y={xeN:px) =0}.
Take a small ¢ > 0 such that
N(e) = {meN': |p(2)| < ¢}
is relatively compact in N’. Put
Nt(e) ={xeN:0 = p(x) <e}, and
N()={xeN:—e< o) <0}.

There are exactly two connected components N,(¢), N,(¢) of & *(N(¢)) such
that Nie)N F # @ (i = 1,2). Suppose that @(Nye) N F) = N*(). Then
A(NLe) N F)N N~(e) = @(Ny(e) N F) N N*(e) = © and &(Ny(e) N F) = N~ (e).
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Taking §~* instead of § if necessary, we can assume that F(IV,(¢)) = Ny(e).
We put
E(e) = Ny(e) U F'U Nye) .

Let 3, be a connected component of @ *(J) contained in N,(c). By as-
sumption ¥, bounds a Stein domain. Hence, by the uniqueness of the
realization of Y, there is a Stein space B and a compact subset K’ such
that B— K’ is biholomorphic to N8, for a sufficiently small §,, 0<<d,<e.
Let : B— K’ — N,6,) be the holomorphic mapping. Identifying xe€ B—K’
with n(x) € N,(9,), we obtain a complex space

Z(S) =B L;J (Ny(05) U F U Nye)) .

For any ¢, 0 <¢, <¢, Z(¢,) can be regarded naturally as a subdomain
of Z(e). Since E(e) is non-singular, all singular points of Z(e) are
contained in K’ and they are isolated. Moreover we can assume that
Z(¢) is normal. Let 0 < 6 < §,. Since Z(¢) is strongly pseudoconvex and
B is a normal Stein space, the holomorphic mapping

JINL(9) : Ni(8) — Ny(0)
induced by § extends to a holomorphic mapping
9:7Z(0)— Z(9)

by a theorem of Hartogs. It is easily checked that ¢(Z(5)) = D(),
where we put D(0) = KU N,0), and K= B — F.

LEMMA 2. There exists a point O* € K such that

N o(Z©) = (0% .
The proof is the same as that of Lemma 1 [4].

Let A be the union of all 1-dimensional compact subvarieties in Z(5).
Then A is called the maximal compact analytic subset in Z(0). We see
easily that, for 0 < §, < §, the maximal compact analytic subset in Z(5,)
coincides with A provided that 6 — §, is sufficiently small.

In the following, we shall consider two cases (a) O* ¢ A, and (8) O* € A4,
separately.

(a) Case O*¢ A (including the case A = @).

PropPoSITION 1. If O*¢ A, then S is a modification of a surface of
Class VI,, an elliptic surface of Class VII,, or a Hopf surface.

ProOOF. By using the same method as in [4, §2] and [3, p. 560], we
can construct a proper holomorphic mapping of degree 1 onto a sub-
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variety of a higher dimensional Hopf manifold. It is easy to see that
the singularities of the image variety must be isolated. Hence we infer
that the image is non-singular, since no positive dimensional subvarieties
of a Hopf manifold admit isolated singularities (ef. [2]). It is shown in
[2] that a 2-dimensional submanifold is one of the above. q.e.d.

REMARK 3. If O*¢ A and if O* is a non-singular point, then Sis a
modification of a primary Hopf surface. If O* ¢ A and if O* is a singular
point, then S is a modification of a surface of Class VI, an elliptic
surface of Class VII, or a non-primary Hopf surface.

(B) Case O* e A.
Let

N Z*(0) — Z(0)
be the simultaneous minimal resolutions of all singular points of Z(9).
Then g : Z(0) — Z(6) induces a holomorphic mapping
g% : Z*(0) — Z*(0)
such that
(3) Nog* =gon.
Let A, be the connected component of A containing O*. We put 4* =
A4, and B* = \NHO*).
LEMMA 3. There exists a positive integer v, such that g*"(4*) is a
point for all v = v,.
PrOOF. Since g(4,) = 0%, it is clear that
(4) g*’(A*)C B*
for all y=1. Put Bf = N2 9% (B*). Then obviously we have g*(B}) =
By. Suppose that B;j* contains irreducible curves C, ---, C,. Since

9*(B¥) = B¥, we can classify C,s into the orbits of g¢g*. Let
(Cjoy +++, Cjrj-) (3 =1,2, ---, 8) be the orbits, where we can assume that

9*Ci) =Cpvy (k=0,---,7; — 1)
9*(Cjr;-1) = Cyo .
Since A* is connected, there exists an orbit, say (Cy, ---, Cy,-), such

that C,; intersects a curve C which contracts to a point by g*. We can
assume that C,; = C,,. Then we have

(6) C* <Gy
On the other hand, by (5), we have

(5)
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0102 = an = sz = - = Cl'ro—12 = C'm2 ’

which contradicts (6). Hence we infer that Bj consists of points. Since
g*(B*)c B* and B* is connected, we conclude that there is a positive
integer vy, such that g**(B*) consists of a point for all v=y, Since g*"(4*)=
g*’(B*) for all v = v,, we obtain the lemma. g.e.d.

Denote by O** the point of Lemma 3:
g (A") = {0} (v =) .
Obviously O** is a point on B*.
LEMMA 4. .2 9%(Z2*(0)) = {0**}.

ProoF. Put
M* =N g™(Z*0)) -

By Lemma 2 and (3), we have M*c A\ %0*) = B*cC A*. Then, from
M* = g*(M*) and Lemma 3, it follows that

{0**}c M* = gg*"(M*) c ng*"(A*) = {0**}.
qg.e.d.

For a pair of topological spaces (X, Y), we shall mean by X c Y
that X is a relatively compact subset of Y.

LEMMA 5. There exists a strongly plurisubharmonic function @ on
an open meighborhood W of O** and a positive constant ¢, satisfying
the following conditions: Put D, = {ze W:®(z) <c}. Then, for any c,
0<e=cy,

(i) D.cW,

(ii) D, c g* (D),

(ili) g*:g* (D, — {0**}) — D, — {0**} is biholomorphic, and

(iv) D, is biholomorphic to an open ball in C*.

ProOOF. Let (W, (w,, w,)) be a system of local coordinates such that
w,(0**) = w,(0O**) = 0. Take a small neighborhood W of O** in W, such
that ¢g*(W)c W, for all large integers v. This is possible by Lemma
4. In terms of the coordinates (w, w,), we express g* locally by the

Taylor series:

W, = QuW; + QW + hyy(W) + hyg(w) + - -+
(7) ,
Wy = QW + W, + hop(w) + hog(w) + - -+,

where a,;€ C, and h;(w) denotes the homogeneous k-th term of the j-th
component of g*. We put
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T — <a11 au) )
UZSR 2
LEMMA 6. The absolute value of all eigenvalues of T are less than

PROOF. Since {g*'} is uniformly bounded, there is a subsequence {g**’}
which converges to 0 uniformly on a relatively compact neighborhood
W, of O** in W. This implies that lim;,.. 7% = 0. Then the lemma
follows easily.

LeEMMA 7. If the absolute values of all eigenvalues of T are less
than 1, them there are a positive definite 2 X 2 hermitian matrix H
and a positive constant € such that

1 — &)(w, Hw) = (Tw, HTw)
for every we C? where (w, 2) = W2, + W2y, W = (W, Wy), 2 = (24, 25).
The proof is easy.
In (7), we put
Fiw) = S hu(w)  (1=1,2)
and
F(w) = "(F(w), F*w)) .
SCHWARZ’S LEMMA. On a small neighborhood W, of O**,
| Fi(w)] < K;[lwll®, [|w]f = |w ]+ [w]*,
for some positive constants K; (7 =1, 2).
For a proof, see [1].

LEMMA 8. Let H be as in Lemma 7. Then there exist positive
numbers ¢, and ¢ such that the equality

(1 — &)(w, Hw) = (9*(w), Hg*(w))
holds for any ¢ with 0 < ¢ < ¢, and any w with (w, Hw) < c.
PrROOF. By the equality g*(w) = Tw + F(w), we have
(g*(w), Hg*(w)) = (Tw + F(w), H(Tw + F(w)))
= (Tw, HTw) + (F(w), HF(w)) + 2|(F(w), HTw)|
= (1 — &)(w, Hw) + (F(w), HF (w)) + 2|(F(w), HTw)| .

By Schwarz’s Lemma, there are a positive constant M and a small
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neighborhood W, of O** such that

|(F(w), HF(w))| = M||w]|*,
and

2|(F(w), HT(w))| = M||w|]’
for all we W,. Put

D, ={we W:(w, Hw) < b} .

If we choose ¢, >0 to be sufficiently small, then D, c W,, and, for
we D, we have

M(||wl|l* + [|w]]’) = (¢/2)(w, Hw) .

This implies that, for any ¢, 0 < ¢ < ¢, and for any we D,, the equality
(9*(w), Hg*(w)) = (1 — ¢/2)(w, Hw)

holds. Thus the proof of Lemma 8 is complete.

Now we go back to the proof of Lemma 5. Put o(w) = (w, Hw).
Then (i) and (iv) are clear. Note that g*: Z*(6) — D*(0) = N (D(d)) is
proper and bimeromorphic. Since dim Z*(§) = 2, there is a finite number
of points a,, -+, a, in D*(0) such that

9*:2*() — ¢* ({ay, -+, @) > D*() — {a, --+, @)}
is biholomorphic. Hence we can choose ¢, so that (iii) holds for all ¢
with 0 <c¢=¢,. Since (iii) holds, g*_llD, is biholomorphic near the strong-
ly pseudoconvex boundary éD,. Therefore to prove (ii), it is sufficient
to show that g*(0D,)c D,. Take any point w €oD,. Since w0, we have
(9%(w), Hg*(w)) = (w, Hw) — &(w, Hw) < (w, Hw) = ¢
by Lemma 8. Hence ¢g*(w) e D,. g.e.d.

We fix positive numbers a and B such that 0 <a<pg<e¢. We
consider the following subsets in Z*(6):

D,={weW:p(w) < a},

Dy ={we W:p(w) < g},
Q={weW:a<opw) <8},
G =9*"(Dy), and
P=g"@Q.

Here 8 — a is assumed to be small enough so that Q NP = &. Note
that ¢*|P:P— @ is biholomorphic by Lemma 5 (iii). Hence, taking
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infinitly many copies (G — D,);, j € Z, of G — D,, we can form a complex
manifold

(8) §*=l;J(G—Da)j

by identifying each poi_nt x € P; with g*(x) € Q;_;, where P; and Q; denote
the subsets of (G — D,); corresponding to P and @, respectively. We
define a holomorphic automorphism §* of S* by

(G - Ba)jﬁ (G - Da)i-ﬂ .
() ()
X . [ md €r

Then the orbit space
is obviously a surface with a GSS by Lemma 5 (iv).

LEMMA 9. There exists a bimeromorphic holomorphic mapping of
S onto S*.

PrROOF. We define a holomorphic mapping
(9) 5:5—8*

as follows. For any point peS, there is an integer v such that g*(p) e
E(9). Since F(é) has no singular points, A : N (H#(6)) — E() is biholo-
morphic. Hence A7'o§*(p) is a point in Z*(). We find a non-negative
integer p such that g*“ o X0 §*(0)€G — D,. Leti:G — D,— (G — D), C
S* be the natural inclusion. Now we define

F(p) =g* " etog*oNTo (D)
As we see by this definition of &, ¢ is holomorphic provided that & is

well-defined. Suppose that §'(p)ec E(d) and ¢g** oA "1o§'(p)eG — D,. It
suffices to show

(10) g e to g onTe g (p) = §F " o de g onT o () -
First we suppose that »' =y and g/ > p. Then (10) is reduced to
(1) Tog*(q) = §* - 1(q)

where £k =g — ¢ and q = g*" oA (p)€G — D,. Since both ¢ and
9*“(q) are in G — D,, we have £ = 1. Then (11) follows from the definition
of §*. Next we suppose that v’ > ». Since both §'(p) and §*(p) are in
E®), we have ' =y + 1. Hence (10) is reduced to

(12) g oo g o N o i(g) = §* Mo Tog* o)
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where ¢ = §*(p) and §(q) are in E(). Since both g** oA"'o§(q) and g**o
A7Yq) are in G — D, and since g** oA"log(q) = g*""or"Yq), we have
p=p, p=¢+1,or p=p +2. If p =y, then (12) is reduced to

F*etog* () = i(r), r=g"oNNq),

which follows from the definition of g*. If g =g +1, (12) holds
trivially. If g = g + 2, then (12) is reduced to

G oi(r) =Tog*(r), r=g""oNYg),

which follows also from the definition of §*. Hence (10) is proved.
Consequently, & is well-defined. It is not difficult to see that & is

generally one-to-one and satisfies 60§ = §*-6. Hence & defines a
bimeromorphic holomorphic mapping

0:8 =8K§> — 8* = §*Kg*) . g.e.d.

Since S* contains a GSS and S is a modification of S* by Lemma 9,
S itself has a GSS. Therefore we have the following.

PROPOSITION 2. If O*e A, then S contains a GSS.

PROOF OF THEOREM. The “if part” of the theorem is explained in
Remark 2. The “only if part” of the theorem is clear by Propositions
1 and 2. g.e.d.
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