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1. Introduction. By a compactification of a complex analytic mani-
fold V we mean a compact complex analytic manifold S together with a
1-codimensional analytic subset C of S such that S — C is biholomorphic
to V. A compactification (S, C) of a non-singular complex analytic
surface V will be called a minimal normal compactification of F, if it
satisfies the following two conditions: (i) any singular point of C is an
ordinary double point, (ii) no non-singular rational irreducible component
of C with self-inter section number —1 has at most two intersection
points with other components of C.

Hirzebruch [2] posed the problem of classifying the compactifications
of the ^-dimensional complex affine space Cn. Answering this in the
case of n = 2, Kodaira [3] proved that every compactification of C2 is a
rational surface and Morrow [8] announced a list of all minimal normal
compactifications of C2.

In his lecture on Nevanlinna theory [4], letting C* = C — {0}, Kodaira
asked what the compactifications of C x C* are. Recently, considering
the problem of classifying the compactifications of C x C * and (C*)2,
Ueda [13] obtained the following two results: (a) any compactification of
CxC* is a rational surface, (b) any minimal normal compactification
(S, C) of (C*)2 is of one of the following three types: (1) S is a rational
surface, (2) S is a Hopf surface containing only one irreducible curve,
(3) S is an algebraic surface (with pg = 0, b^S) = 2) and C an irreducible
non-singular elliptic curve on S, while Simha [12] proved that, in this
third case (3), S is a projective line bundle over an elliptic curve admitting
a global section C such that S — C is an analytically non-trivial principal
C-bundle. The proofs of the above results in [3] and [13] are based on
the Nevanlinna theory generalized by Kodaira [3].

In this note, we shall consider rational compactifications of CxC*
and (C*)2. In order to formulate our results, let us associate to each
curve C composed of non-singular rational curves crossing normally, a
weighted graph Γ(C) as follows: we represent each irreducible component
of C by a circle o ("vertex"), join these circles by straight lines as many
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times as the corresponding components intersect each other, and attach
to each of these circles the number ("weight") equal to the self-intersec-
tion number of the corresponding irreducible component of C. We shall
prove

THEOREM 1. // (S, C) is a minimal normal rational compactifica-
tion of (C*)2, then (1) S is the (complex) protective plane P2 and C is
the union of three lines in general position (see Figure 1), or (2) S is
a protective line bundle Fn over a protective line P1 and C is the union
of its 0-section9 °o -section and two distinct fibers, where n ^ 0, n Φ 1
and the self-intersection numbers of the 0-section and ^section are —n
and n respectively (see Figure 2).

THEOREM 2. If (S, C) is a minimal normal compactification of
CxC*, then all the irreducible components of C are non-singular rational
curves and the pair (S, Γ(C)) is of one of the types in Table I below
(see the end of this Introduction),

Since (S, C) of types 4r and 5r in Table I can be transformed into
that of type 3 by successive applications of birational transformations
of S which are biregular on S — C as follows: 5r —> 4r —> 5r_x —• 4r_x —»...—>
5i —>4X—>3 (see n°4), we can deduce from Theorem 2 that: for any com-
pactification (S, C) of C x C*, there is a birational mapping of S to P2

which biregularly maps S — C to P2 — (two lines).
The proof of Theorems 1 and 2 which we shall give below leans

heavily on the theory of cluster sets at isolated essential singular points
of holomorphic mappings into complex surfaces [10]. Note that, in
Theorem 2, we shall prove at the same time the rationality of any
compactification of C x C*, without the use of Nevanlinna theory, but
in [10] which we need instead, Ahlfors's theory on covering surfaces is
applied***. We shall do in n°4 the analysis of Γ(C) in a way analogous
to that in Ramanujam [11] in some sense.

—n

FIGURE 1 FIGURE 2

r e s u i t of Ueda for compactifications of (C*)2 and the rationality of any compacti-
fication of C2 mentioned above can also be proved by the aide of [10] instead of Nevanlinna
theory in [3].
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TABLE I

Type no
1.
2.
3.
4 r.
5 r.

Fn

Fπ

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

(n
(n
(ri

in

0, n φ 1 and m is any integer)

0, Pi's and q/s are ^ ί
0, Pi's and g/s are ^ J

1 1
-o

FIGURE 3

0 m 0 n 0
-o-

— n

FIGURE 4 FlGURE 5

- 2 - 2 - 2
-o o

qt — 3 vertices , — 3 vertices

-JPΓ-I - 2 - 2 - 2 1 - 3
..^ o o- o o-

qr-i — 3 vertices

Qfr-2

pr — 3 vertices

ί?2 — 3 vertices

FIGURE 6

Pi - 2 vertices

qι — 3 vertices - 3 vertices

p 2 — 3 vertices

FIGURE 7

Px — 2 vertices
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2. Preliminaries. 1° A result of [10]. Let S be a non-singular
complex analytic surface and C be a connected compact (complex) analytic
curve on S satisfying the above conditions (i) and (ii) in Introduction.
Suppose further that, for each irreducible component Ct of C, there is
a holomorphic mapping /^zΓ-^S — Cofa punctured disc Δ* — {zeC\0 <
\z\ < 1} into S-C such that Ct c/,((); S) c C, where

p>o
Δ*

and
n° 7),

is the closure of ft(Δ*) in S. We have then, by [10] (Chapter II,

LEMMA 1. The curve C must be of one of the types (a) to (ε) in the
following Table II, in which, for the types βb (b ̂  2), 7, 7', δ and e,
each irreducible component of C is a non-singular rational curve and
the assigned Figures (8-12) represent the weighted graph Γ(C).

TABLE II

Name of Type Explication of C

a a(n)

βi β(n)

βb β(nlfn2, --,nb)

ϊ 7*(wi» n2, ' ' ' j w-δ)

yf Tf{.ΊHii ΎHi ' ' ' f Mb)

δ δ(n0; qifluqrih,

i, n2, - ,nb)

an irreducible non-singular elliptic curve with the self-
intersection number (C2) = n ^ 0.
an irreducible rational curve with only one ordinary
double point and (C2) = n ^ 0.
Figure 8, all w< = —2 or max {ni, n2, , Ub) ^ 0.
Figure 9, all ni=— 2 or max {r&i+l, %2» , tij-i, τι&+l}^0.
Figure 10, max {wi + 1, w2, , nb} ^ 0.
Figure 11, (i) n0 ^ 2,

(ϋ) (Zi, Z2, i8) = (3, 3, 3), (2, 4, 4) or (2, 3, 6 - m)
with m = 0,1, 2, 3,
(iii) for each ί = 1, 2, 3, (^, qt) is a pair of
coprime integers such that 0 < qj < U and
that l-i/qt = ni,i — J^| Πit2 — —_1 |̂ ni,rί (con-
tinued fraction expansion), where ^,.,^2 are
the integers appearing in Figure 11.

Figure 12, max {riι,n2j , nb) ^ 0.

-2
o

nh - 2

- 2

FIGURE 8 FIGURE 9
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-2 nλ n2 nb <i )_
o p o o T

6 - 2

FIGURE 10 FIGURE 11

The following three remarks can be checked easily and left to the
reader.

REMARK 1. For the types /3(-2, - 2 , , -2) with 6 ^ 2 and
τ( —2, —2, •••, —2), the intersection matrix ((C, C3)) is degenerated and
negative semi-definite.

REMARK 2. For the type j(ri), we have: det ((C^C,-)) = 16(w + 2);
therefore, if the matrix ((C, C, )) is degenerated (w = — 2), it is negative
semi-definite.

REMARK 3. For the type δ, the determinant of the matrix (—(Ct Cj))
is of the form:

det (-(C f Q ) = a • (-w 0 - Σ ff*/l») , α ^ 0 .Σ
Then, if det (-(C, Cy)) = ±det ((Q C, )) = 0, combining this with the
conditions (ii) and (iii) in Table II, we have the following six types:

δ ( - l ; 1/2, 1/3, 1/4) , δ ( - l ; 1/2, 1/4, 1/4) , δ ( - l ; 1/3, 1/3, 1/3) ,

«(-2; 1/2, 2/3, 5/6) , S(-2; 1/2, 3/4, 3/4) , δ(-2; 2/3, 2/3, 2/3) .

And for these six types, ((C< Cy)) is negative semi-definite.

2° T&e proo/ of the existence of /,. Let S be a compact complex
analytic surface, C a compact analytic curve on S, and suppose that
S — C is biholomorphic to F, where F is one of the following:

( 1 ) C2:\x\<oo9 \y\<oo,

( 2 ) CxC*:\x\<oo'9 0 < |τ/| < oo ,

( 3 ) ( C * ) 2 : 0 < | α ? | < oo , 0 < \y\ < oo ,
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x, y being two complex variables. Then,

LEMMA 2. For each irreducible component C* of C, there exists a
holomorphic mapping f: Δ* —> S — C of a punctured disc Δ*\ 0 < \z\ < 1
into S - C such that C, af(0; S) c C.

PROOF. We will prove this for the case (3) V = (C*)2. The proof
for the other cases are similar. Let us take five distinct points Pk

(k = 1, 2, , 5) of Ct which are regular points of C, and let φ : S — C —> V
be an analytic isomorphism. For each k, we can find a sequence of
points {Pkn}n=i,2, ' oΐ S — C which converges to Pk and such that both
\ιmn^OQx{φ{Pkn))i \ιmn^ooy{φ{Pkn)) exist, where we allow °o as a limit. Let
%kn = %(φ(Pkn))> Vkn = v(φ(Pkn))- Since ψ is an isomorphism, at least one
of the following four conditions holds for each k 6 {1,2, , 5}: lim xkn = °o,
limα?^ = 0, lim ykn = oo, lim^/^ = 0. Hence, one of them holds for two
fc's. Replacing x by y or 1/Λ and renumbering {Pk}, if necessary, we
may assume l i m , ^ xίn = limΛ_>0O a;2% = oo, Further, we may assume xkn Φ xjm

for every (&, n) ^ (i, m), after a slight variation of {Pkn}. By Lemma 3
below, we can find a holomorphic function h(x) with no zeros on a
punctured disc Λ* : 1/p < |α?| < ©o (0 < p < oo) such that h{xkn) = ykn (ΦO)
for all (fc, w), fc = 1, 2; w = 1, 2, . Let fix) = ^"^a?, Λ(α)), then we
have a holomorphic mapping f:Δ*;-^S — C such that f(°°\S) ( c C )
contains two regular points P l f P 2 of C on Cί. Therefore, by Proposition
3 of [10], we have Ct c/^oo; &) c C.

LEMMA 3. Lei e = {zn}n=U2t... be a discrete subset of the z-plane C
and a(zn) = an be an arbitrary complex valued function on e. Then,
there exists an entire function f(z) such that f(zn) = an. Furthermore,
if a(zn) does not take zero, we can find f(z) which does not take zero on
C: \z\ < oo.

PROOF, (due to H. Cartan [1]). By Weierstrass's theorem, there is
an entire function g(z) of the form: g(z) = Π?=i (s — zn)ePn(z), where Pn(z)
are polynomials of z. By Mittag-Leffler's theorem, we can find a meromor-
phic function ψ(z) on \z\ < oo which has the same principal part as
0»/flr(s) at each point zn, n = 1, 2, . Then, the product f(z) = g(z) f{z)
is an entire function which is of the form

f(z) = an + flr(j5) (holomorphic function)

at each zn, so that f(zn) = a%. As for the second assertion of Lemma 3,
it suffices to apply the above result to find an entire function h{z) such
that h(zn) = logαΛ. Putting f(z) — eh{z), we obtain a desired function.
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3° Rational ruled surfaces. Let us recall some facts on rational
ruled surfaces. Let S be a compact non-singular complex analytic surface
and C be an irreducible non-singular rational curve on S with the self-
intersection number (C2) = 0. Since H\C, έ?) = C, H\C, έ?) = 0 and the
normal bundle of C is analytically trivial, there exists, by Kodaira and
Spencer [7], a holomorphic function h in a neighborhood U of C such that
h~\0) = C (regular fiber). Therefore, S contains infinitely many rational
curves hr\t), and by Kodaira [5, Theorem 5.1], S is an algebraic surface,
so that, again by Kodaira and Spencer [7], we obtain a holomorphic
mapping π of S onto a non-singular analytic curve R which has C as a
regular fiber. Thus, S is a ruled surface. Let us assume that there
exists another rational curve C" Φ C on S which intersects C Since
π\c,:C -+R is not constant, R is then isomorphic to a projective line
P1, and S is a rational ruled surface. By Nagata [9], S can be obtained,
from a projective line bundle Fn over P1 which has the 0-section with
the self-inter section number — n (n ̂  0), by a finite succession of quadratic
transformations QPl, QP2, , QPr (r ^ 0), in such a way that

S = QPrQpr_x - - QPl(Fn) and π = πQ o QP[ o . . . o Q^ ,

where τr0: Fn -^ P1 is the projection. Therefore, each fiber π~\z) (z e P1)
is a curve with no loop composed of non-singular rational curves crossing
normally. Since rank H2(Fn; R) = 2, we have

LEMMA 4. rank H2(S; R) = r + 2.

On the other hand, if one denotes the number of irreducible com-
ponents of π~\z) by 1 + a(z) for each z e P\ we have

LEMMA 5. Σzepi^(^) = r.

Now let Cu C2, - -, Cn be irreducible non-singular rational curves on
a non-singular projective algebraic surface S such that C — U?=i Ct is
simply connected. We have then,

LEMMA 6. (a) If there is a pair a, β (1 <̂  a < β <; w) sucfe
(Ci)^0, (C?)^0 αwd CaΠCβ = 0 , ί/̂ β̂  (C*) = (CJ) = 0 α^cί ίfeere is
one Cr (7 ^ α, /3) which intersects Cal] Cβ. Further, for this Cr, we have
(Ca Cr) = (C/, Cr) = v ^ 1. (ΓΛe graph Γ(C) looks like Figure 13).

v-lines v-lines

FIGURE 13
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(b) Assume that any singular point of C is an ordinary double
point and that there is a pair a, β (1 <̂  a < β <̂  n) such that (C«) > 0,
(C2

β) > 0. Then n = 2 and (C2) = (C;) = 1. (Γ(C) looks like Figure 3.)

PROOF, (a) Blow up na = (C«) points {Pk} of Ca and nβ = (C2

β) points
{Qk} of Cβ to obtain C'a9 C'β in S' such that (C?) - (C?) = O , C : n C ; = 0 .
Since the image C" of C in S', composed of non-singular rational curves,
is connected, S' has a structure of ruled surface π: S' -> P1 over a projec-
tive line P1: \z\ ^ <>o with an inhomogeneous coordinate z such that Ca =
TΓ-^O), CJ = TΓ-^OO). If W α > 0, the image P'k of Pk in S' is a compact
(rational) curve and the function z°π\P k is not constant. Therefore it
takes all values \z\ ^ oo and P£ Π π'^cx)) ^ 0 . This is contradictory to
Ca n Cβ = 0 . Therefore, wα = 0. In the same way, nβ = 0. We have

thus a rational ruled surface structure S —> P1 on S such that π'XO) =
Caf π " ^ 0 0 ) = Ĉ  (regular fibers). In the same way as above, we see that
any component Cr (ΊΦa, β) such that CYΓ\(Ca{jCβ)Φ0 intersects both Caf

Cβ. Since C is simply connected, this Cr is unique and Ca Π Cr (resp.
CβΠCr) consists of a single point, say p (resp. q). Let t be an inhomogene-
ous coordinate function on Cr ^ P1 such that ί(p) = 0, t(g) = oo. The
function «(t) = {z°π\c)(t) takes zeros only for t = 0 and poles only for
ί = oo. Therefore, s(t) = α ί% where α e C* = C - {0}, v e N - {0}. Thus,
(Cβ - Cr) - (Cβ Cr) = v.

(b) As we have seen in (a), Ca and Cβ ((C*) > 0, (CJ) > 0) must
intersect each other, at only one point P. Blow up this point of inter-
section P and denote the images of S, Caf Cβ9 P etc. by S', Ca9 Cr

β, P'
etc. respectively. We have (C'a

2) = (C^2) = 0, C i n C ' ^ = 0 . Since any
singular point of C is an ordinary double point, there is no component
of C intersecting Pr other than Ca9 C'β. Therefore, applying the result
of (a), we see that Γ(C') looks like Figure 4 with m = - 1 , so that Γ(C)
looks like Figure 3.

LEMMA 7. Lei C be a simply connected curve composed of three non-
singular rational irreducible curves Ca9 Cβ, Cr on a non-singular protec-
tive algebraic surface S, such that (C2) = (C|) = 0,Caf]Cβ = 0, (Cn- Cr) =
(Cβ - Cr) = v ^ 1. Suppose further that rank £Γ2(S; Λ) = 2 α^cί that S - C
is biholomorphic to C x C*. Then, S = Fn (n ^ 0) and v = 1. (Γ(C)
Zoo&s ii&β Figure 4.)

PROOF. Let π: S~^ P1, z, t be the same as in Proof (a) of Lemma
6. Recall that Ca = π~\0), Cβ = ^ ( o o ) , «(t) = (zoτr|Cr)00 - α - V (a Φ 0).
Since rank H2(S; R) = 2, we have S = F Λ by Lemma 4 (r = 0); the pro-
jection πiS-^P1 has no singular fiber. Put C* = P1 — {0, oo}. Since
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C* = Cγ Π π~\C*) has no branching point as a covering over C* with
respect to the projection π\0*9 S — C is therefore topologically a fiber
bundle over C* with fiber Fρ& P1 — {v points} and with projection π\s_c:
5 — C -> C*. Consider the exact sequence of homotopy groups of this
fiber bundle:

• π2(C*) Λ πλ{F) - , π^S - C) - π^C*) Λ ττo(^) . . . .

II II
0 0

Since πx(C*) ~ Z, πx{S - C) ^ πx(C x C*) ^ Z, it follows that πλ(F) = 0,
which implies v = 1.

3. Rational compactification of (C*)2. Let (S, C) be a minimal
normal rational compactification of (C*)2. We know by Ueda ([13] n° 4)
and Simha [12] that

( i ) the first Betti number b^C) is equal to 1, and
(ii) there exists an exact sequence of homology groups (with real

coefficients) as follows:

0 -> R2 -> H2(C; R) * H2(S; R) -> 0 ,

where i* is the homomorphism induced by the inclusion map C <=-> S.
Let d , C2, ••-, Cb be the irreducible components of C. Since 6+(S) = 1
(S is rational), it follows from this exact sequence that

(iii) the intersection matrix ((C* C3)) is degenerated, but not nega-
tive semi-definit.

Further, since rankϋΓ20S, Λ ) ^ l , it follows from (ii) that δ^>3. Now,
by Lemmas 2 and 1, C must be one of the curves listed in Table II.
Since b^C) = 1 (by (i)), C is of type β(nl9 n2y •••, nb) with Γ(C) as in
Figure 8, where we have max {nί9 n2, , wj ^ 0, because of (iii) and
Remark 1 (to Lemma 1). We may assume (Cf) = nt (i = 1, 2, «, 6).

. Suppose first (C2) = ^ = 0. Then, according to Preliminary 3°, S

has a structure of rational ruled surface S —> P1 such that CΊ is its
regular fiber, and S = QPrQPr_, Q^CFJ, where r - rankiϊ 2(S) - 2 =
6 — 4 by Lemma 4 and (ii), so that 6 ^ 4 . On the other hand, since the
components C3, C4, , C ^ are contained in a fiber of TΓ, say π~\z0), we have

6 — 4 <; α(«0) ^ X α(z) = r , (Lemma 5) .
2 6 Pi

Hence, α(s0) = 6 — 4 and the fiber π~\z^ is composed of C3, C4, , C6_!.
Therefore, by Nagata's theorem cited in Preliminary 3°, if 6 ^ 5 , there
is at least one component C, (3 ^ i ^ b — 1) with (C ) = — 1, which is
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contradictory to the assumption of the minimality of C. Thus, we have
6 = 4 and r = 0, so that S = Fn. Since C2 and C4 are two disjoint
holomorphic sections of π, we can take them as 0-section and oo -section,
while Ci and C3 are its regular fibers. This is the case (2) of Theorem 1.

Hence, we assume from now on that nt Φ 0 for all i, and % > 0.
Blow up n times successively, the point of intersection corresponding to
the line between the vertices with weights nt and nb of Γ(C) (Figure 8)
to obtain (S', C") with Γ(C) which looks like Figure 14. Since nt Φ - 1

τ&i vertices

FIGURE 14

for all i and % — 1 Φ — 1, the above argument asserts that Sf = JF7, and
JΓ(C") looks like Figure 2. Here w = 1, for C" contains a component with
the self-inter section number —1. Blowing down this component, we thus
obtain: S = P2 (projective plane) and Γ(C) as in Figure 1. C is there-
fore composed of three lines in S = P2 in general position. This completes
the proof of our Theorem 1 (see Introduction).

4. Compactifications C x C*. Let (S, C) be a minimal normal com-
pactification of C x C*. With Ueda [13], let us consider the exact
sequence of homology groups with real coefficients for the pair (Sf C):

0 - H3(S) -> H3(S, C) Λ ^

Since S -C^Cx C*, we have £Γ8(S, C) ~ R, H2(S, C) = 0 and Jϊ^C) =
jff^S) = Λ or 0.

Let us denote the k-th Betti number of * by &*(*), and suppose
61(C) = 1. We have then 6^5) = 1. By Theorems 3 and 25 of Kodaira [6],

(a) b+(S) = 2 ^ and (b) S is not algebraic .

On the other hand, by the Poincare duality, &3(S) = 6±(S) = 1, so that

(c) ί*: H2(C) —> SiίS) is an isomorphism .

Now, applying Lemmas 2 and 1, we see that C is of type β(n19 n2, , w6)



COMPACTIFICATIONS 463

(6 ^ 1) in Table II. If 6 = 1, we must have 62(S) = 62(C) = 1, so that
b+(S) = 0 by (a). This implies that (C2) < 0 and that C is exceptional,
which is absurd. Thus 6 ^ 2 . Now, det ((C, Cy)) ^ 0 by (c). According
to Remark 1 to Lemma 1, we have then, max {nl9 n2, , nb} >̂ 0 and by
Preliminary 3°, S must be a rational surface, contradicting (b).

Thus, we have

( i ) 6,(0 = 0.

Therefore, 63(S) = b^S) = bx(C) = 0. Letting Cl9 C2, , Cn to be the
irreducible components of C, we have the following two conditions:

(ii) n = 62(C) = 62(S) + 1,

(iii) the intersection matrix ((C< Cy)) is degenerated.

Further, since 6X(C) = 0 (even), we have, by Kodaira [6, Theorem 3],
b+(S) = 2pg + 1 ^ 1. Since ΐ*: JΪ2(C) -> .ff2(S) is surjective, we get the
condition:

(iv) ((C* Cj)) is not negative semi-definite.

Now, by Lemmas 2 and 1, C belongs to Table II. The above con-
ditions (i), (iii), (iv) and Remarks 1-3 to Lemma 1 imply that C is of
one of the following three types:

1. y(nlf n2, - , nb) (Figure 9) with 6 ^ 2 and max {^ + 1, nz, ,
nb_ίf nb + 1} ^ 0,

2. y'(nun29 ,w6) (Figure 10) w i t h 6 ^ 2 and m a x {Wi + l,w2> * * >nb} ^ 0,
3. ε(^!, n2, , w6) (Figure 12) w i t h 6 ^ 2 and m a x {%, n2, , ^ J ^ 0.

(By 6+(S) ^ 1, we have ra = 62(C) = 62(S) + 1 ^ 2 . )
We denote by dΓ(C) t h e d e t e r m i n a n t de t (—(C< Cy)) of t h e intersec-

tion m a t r i x w i t h opposite sign (— (C* Cy)). By (iii), dΓ(C) = 0. We p u t :
1. w1=^n1 + l9 w2 = n2, , ^ 6_ x = nb_lf wb = nb + 1, if C is of type

7,

2. Wi = nλ + 1, ^ 2 = n2f , w6 = %6, if C is of type 7',
3. Wi = nt for all i ( = 1 , 2, , 6), if C is of type ε.
We have max {wlf w2, , wb} ^ 0.

1° Suppose first that there is only one wi ^ 0. Then, (w) —
(wlf w2, , wn) is of the form:

(-Pi, -3>2, , -ί>r, m, - ? „ -g._!, , -qλ) ,

where P l ^ 1, Pi ^ 2 (i = 2, 3, . - , 6), 9 l ^ 1, 9 i ^ 2 (i = 2, 3, •-, β),
m ^ 0 , r ^ 0 , 5 ^ 0 and r + s = b — 1 ^ 1 . dΓ(C) can be calculated as
follows (cf. Ramanujam [11]): Let
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(A) a = 16, 4, 1 according as C is of type 7, 7', ε respectively,

(B) a, = p19 ai = pί- j J l v T - . . . - j j p j " f or 2 ^ i ^ r ,

A = ?i, A = Qi ~ J j ϊy-i - ~ J j ?i £ or 2 ^ i ^ β .
(continued fractions)

We have then,

dΓ(C) = α «! a2 ar(-m - l/αr - l/βr) β, β.^ β1

(Omit the α's and - l / α r if r = 0; the ^β's and -1//3. if s = 0.)

Since αfc ^ 1, /3fc ̂  1 for all k ^ 1, m ^ 0 and r + s ^ 1, this leads to
dΓ(C) Φ 0, a contradiction.

2° Next suppose that there is a pair (ί0, i0) such that wio ^ 0,
^ i o ^ 0 and j 0 > iQ + 1. Blowing up the intersection points of Ct'&
suitably, we may assume wίo = wjo = 0. Let us denote by C the total
transform of C. The graph Γ(C) looks like Figure 15. In case 15-a,

15-a)

- 2
1 K n\ Γt
JLO-CJ υ

0

- 1

L

- 0 —
0

- 1

TL.

....
o

—0

FIGURE

- 2
1 r 1 Λ n

15

- 1

1-,

apply Lemma 6 to (S'f C) to see that S' = Fn and that Γ(C') is of the
form of Figure 4, which means that Γ(C) was of the same form (Figure
4, S = Fn).

As for case 15-b (resp. 15-c), contracting the two (resp. four) curves
corresponding to the vertices with weights —1 and —2 on the horizontal
line of Figure 15-b (resp. 15-c), we get (S", C") with the graph Γ(C")
which looks like Figure 16 (resp. 17). Applying Lemma 6 to this (S", C"),

0 0 0 0 0 0

FIGURE 16 FIGURE 17 FIGURE 18

we see that the case 15-b cannot occur, and that in case 15-c, Γ(C")
must be of the form of Figure 18. But note that 62(C") - 62(S") =
HC) - b2(S') = 68(C) - 62(S) = 1, so that 62(S") = 2. By Lemma 7, also
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the case 15-c cannot occur.
3° Suppose now that there is a pair (iQ, jQ) such that wio > 0, wjo > 0

and i 0 > i0. Blow up the point of intersection corresponding to the line
between the vertices with weights niQ and niQ+1 of Γ(C) (Figures 9, 10
or 12) to get (S\ C") with the graph Γ(C) which looks like Figure 19.

—1 ni+1—l
o o

FIGURE 19

Apply the above result of 2° to this (S'f C) to see that Γ(C') is of the
form of Figure 4 with m = — 1 and that S' = Fx. This means that Γ(C)
was of the form of Figure 3 and S = P2.

4° Thus, we may assume from now on that (wlf w2, , wb) or
(wbt wb_u , wλ) is of the form:

(-Pi, ~P2, ' , -Pr9 m>, 0, -qr,, -?._!, - , -q,) ,

where Pl ^ 1, p, ^ 2 (i = 2, 8, - , r), ^ ^ 1, qό ^ 2 (j = 2, 3, • , *),
r ^ 0, s ^ 0 and m ^ 0. We prove

PROPOSITION (P): I ^ this case, (S, Γ(C)) is o/ one o/ ί/̂ e %pes (3),
(4) and (5) in Table I (see Introduction).

Let α, α*, /3y (i = 1, 2, , r, j = 1, 2, ,'8) be the same as in 1°
(Recall (A) and (B).) Then,

dΓ(C) = α α, α2 αr[(m + l/αr)(0 + 1//3.) - 1] /3. A-! A

(Omit the α's and l/α r if r = 0; the /3's and l/βs if s = 0) .

Since dΓ(C) = 0, we obtain,

(m + l/αr)(0 + I/A) = 1 .

We deduce from this that ® s Φ 0 and 6 ^ 3 .
Suppose that r = 0 and s ^ 2. Then, we must have βs = m (integer).

This implies g8 = m + 1, ^s_! = = q2 = 2 and gx — 1, so that Γ(C)
looks like Figure 20. Blow up the point of intersection corresponding

- 2 - 20 — m - 1 - 2 - 2

s — 1 vertices

FIGURE 20
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to the line between the vertices with weights m and 0, and contract
the proper transform of the curve corresponding to the vertex with
weight 0. Repeat this m times to get (S\ C") with the graph Γ(C')
which looks like Figure 20 with m = 0. Contracting s + 1 curves with
weights - 1 and - 2 on the horizontal line of Γ{C), we get (S", C") with
Γ(C") which looks like Figure 21. This contradicts Lemma 6. Therefore,

0 s + 1 0
o o o

FIGURE 21

(D if r = 0, we have s = 1 and m — β1 = q19 so that Γ(C) is of
type (3).

(Since 62(S) = 2 in this case (recall ί>2(C) — 62(S) + 1), we see that
S = Fn by Lemma 4, and the existence of a holomorphic section with the
self-inter section number — m implies that n = m.)

Now, let us prove Proposition (P) by induction on 5 (^3). If b =
r + s + 2 = 3, we have r = 0 by ®. Thus, (S, Γ(C)) is of type (3) in
Table I (by ©). Next, assuming that Proposition (P) is true for b <̂  60—1,
we consider the case b = 60 (^4). Since r = 0 implies that (S, Γ(C))
is of type (3), we may assume r ^ 1, s ^ 1. We have m + l/α r = ̂ S,.
Let ar = l/q, where q, I are coprime natural numbers such that 0 < q <; L
Then,

/3. = (m + 1) - (ί - g)/i , 0 ^ (i - g)/ί < 1 .

Hence, qs = m + 1. Γ(C) looks like Figure 22. Blow up the point of
intersection corresponding to the line between the vertices with weights
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m and 0 in Figure 22, and contract the proper transform of the curve
corresponding to the vertex of weight 0. Repeat this m times to get
(S', C") with the graph Γ(C) which looks like Figure 23 (a or b), where
k ^ 0 and, in case 23-a, either <7s_fc_i ^ 3 or s = H 1 holds. The latter
case 23-b does not occur, for if it did, contracting the k + 2 curves
corresponding to the vertices with weights —1 and —2 on the horizontal
line of Figure 23-b, we sould get a graph which looks like Figure 24-a,

—pr 0 k+2 0
24-a) -o o o o

-pr 0 k + 1 l-cr,-*-!
24-b) o o o o

— pr

24-c) *

FIGURE 24

contradicting Lemma 6. Hence, Γ(C) is of the form of Figure 23-a.
Contracting the k + 1 curves corresponding to the vertices with weights
- 1 and - 2 of Figure 23-a, we get (S", C") with Γ{C") which looks like
Figure 24-b (s - k ^ 2, g , .^ ^ 3) or Figure 24-c (s = k + 1). Since the
length of this graph Γ(C") is shorter than that of Γ(C), the induction
hypothesis asserts that (S", Γ{C")) is of one of the types (3), (4), (5) in
Table I. Following the returning process: (S", C") -> (S', C) -> (S, C),
we see that /̂ (C) is of type (4) or (5). This completes the proof of
Theorem 2. (Since the compactifications of types (4) and (5) are, as it is
clear from the above proof, birational to that of type (3), we have
shown at the same time that any compactification of CxC* is a rational
surface.)
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