FUBINI PRODUCTS OF C*-ALGEBRAS

TADASI HURUYA

(Received February 19, 1979)

1. Introduction. Let C and D be C^* -algebras and let $C \otimes D$ denote their minimal (or spatial) C^* -tensor product. For each $g \in C^*$ there is a unique bounded linear map R_g of $C \otimes D$ to D satisfying $R_g(c \otimes d) = \langle g, c \rangle d$. Similarly, for each $h \in D^*$ there is a unique bounded linear map L_h of $C \otimes D$ to C satisfying $L_h(c \otimes d) = \langle h, d \rangle c$. Let A and B be C^* -subalgebras of C and D, respectively. We define the Fubini product of A and B with respect to $C \otimes D$ to be

 $F(A, B, C \otimes D) = \{x \in C \otimes D \colon R_g(x) \in B, L_h(x) \in A \text{ for every } g \in C^*, h \in D^*\}$ (see [10]). If C_1 , C_2 and A are C^* -algebras such that $C_1 \supseteq C_2 \supseteq A$, and if D_1 , D_2 and B are C^* -algebras such that $D_1 \supseteq D_2 \supseteq B$, then $F(A, B, C_1 \otimes D_1)$ contains $F(A, B, C_2 \otimes D_2)$. In this paper we show that there is the largest Fubini product of A and B, denoted by $A \otimes_F B$. We also consider a condition for a C^* -algebra to have property S [13]. Aided by [15], we give several Fubini products $A \otimes_F B$ strictly containing $A \otimes B$.

The author would like to thank Professor J. Tomiyama for his useful suggestions. He would also like to thank Professor S. Wassermann for sending him a copy of the preprint [15].

- 2. Some properties of Fubini products. In this section we study certain elementary properties of Fubini products. The following result is known [12, Proposition 4.1] and is easy to check.
- LEMMA 1. Let C and D be C^* -algebras with C^* -subalgebras A and B, respectively. Let \overline{C} and \overline{D} be the enveloping W^* -algebras of C and D. Under the canonical embedding of $C \otimes D$ into the W^* -tensor product $\overline{C} \otimes \overline{D}$, let $\overline{A} \otimes \overline{B}$ denote the weak closure of $A \otimes B$. Then $F(A, B, C \otimes D)$ is just $(C \otimes D) \cap (\overline{A} \otimes \overline{B})$ and is a C^* -subalgebra of $C \otimes D$.
- LEMMA 2. Let A, C_1 and C_2 be C^* -algebras such that $C_1 \supseteq A$ and $C_2 \supseteq A$, and let B, D_1 and D_2 be C^* -algebras such that $D_1 \supseteq B$ and $D_2 \supseteq B$. Suppose that there are four contractive and completely positive maps:

Then there is a *-isomorphism Ψ of $F(A, B, C_1 \otimes D_1)$ onto $F(A, B, C_2 \otimes D_2)$ such that $\Psi(x) = x$ for all $x \in A \otimes B$.

PROOF. For convenience, if i=1,2, let $F_i=F(A,B,C_i\otimes D_i)$. By Lemma 1, each F_i is a C^* -subalgebra of $C_i\otimes D_i$. Let $x\in F_1$. If $g\in C_2^*$, we have $R_g(\phi_1\otimes \psi_1(x))=\psi_1(R_{(g\cdot\phi_1)}(x))\in B$. Similarly, if $h\in D_2^*$, we have $L_h(\phi_1\otimes \psi_1(x))\in A$. Let $g\in F_1$. If $g\in C_1^*$ and $h\in D_1^*$, then

$$egin{aligned} \langle g \otimes h, \, (\phi_2 \otimes \psi_2) \circ (\phi_1 \otimes \psi_1)(y)
angle &= \langle g, \, (\phi_2 \circ \phi_1)(L_{(h \circ \psi_2 \circ \psi_1)}(y))
angle \ &= \langle g, \, L_{(h \circ \psi_2 \circ \psi_1)}(y)
angle &= \langle h, \, (\psi_2 \circ \psi_1)(R_g(y))
angle &= \langle h, \, R_g(y)
angle &= \langle g \otimes h, \, y
angle \;. \end{aligned}$$

Hence $(\phi_2 \otimes \psi_2) \circ (\phi_1 \otimes \psi_1)(y) = y$ for all $y \in F_1$. Similarly, we have $\phi_2 \otimes \psi_2(F_2) \subseteq F_1$ and $(\phi_1 \otimes \psi_1) \circ (\phi_2 \otimes \psi_2)(y) = y$ for all $y \in F_2$.

Since $\phi_1 \otimes \psi_1$ and $\phi_2 \otimes \psi_2$ are contractive and completely positive, by [4, Lemma 3.9] we may assume that F_1 and F_2 are unital, and that both $\phi_1 \otimes \psi_1 | F_1$ and $\phi_2 \otimes \psi_2 | F_2$ are unital and completely positive. Let $\Psi = \phi_1 \otimes \psi_1 | F_1$. Then $\Psi = (\phi_2 \otimes \psi_2 | F_2)^{-1}$, so that Ψ is isometric. It follows from [3, Corollary 3.2] and [9, Theorem 7] that Ψ is a *-isomorphism (cf. the proof of [6, Theorem 3.1]). It is easy to see that $\Psi(x) = x$ for all $x \in A \otimes B$. This completes the proof.

A unital C^* -algebra A is said to be injective [5] if for any unital C^* -algebras B and C such that $C \supseteq B$ with the common unit, any completely positive map of B into A extends to a completely positive map of C into A. Arveson proved in [2, Theorem 1.2.3] that for any Hilbert space H, the C^* -algebra L(H) is injective.

LEMMA 3. Let B, C_1 and C_2 be C^* -algebras such that $C_1 \supseteq B$ and $C_2 \supseteq B$. Suppose that C_2 is injective. Then there is a contractive and completely positive map Ψ of C_1 into C_2 such that $\Psi(b) = b$ for all $b \in B$.

PROOF. For i=1,2 let \widetilde{C}_i be the unital extension of C_i by the complex number field, let e_i be the unit of \widetilde{C}_i , and let B_i be the C^* -subalgebra of \widetilde{C}_i generated by B and e_i . It follows from [4, Lemma 3.9] that the map ψ_0 : $b+ce_1\to b+ce_2$ is a completely positive map of B_1 onto B_2 . Define a completely positive map ψ_1 of B_1 into C_2 by $\psi_1(x)=e\psi_0(x)e$, where e is the unit of C_2 . Since C_2 is injective, the map ψ_1 extends to a completely positive map ψ_2 of \widetilde{C}_1 into C_2 . Put $\Psi=\psi_2|C_1$, which has the desired properties.

The following result is a generalization of [11], and is an immediate consequence of Lemmas 2 and 3.

THEOREM 4. Let A and B be C^* -algebras. Let C_1 and C_2 be injective C^* -algebras such that $C_1 \supseteq A$ and $C_2 \supseteq A$, and let D_1 and D_2 be injective

 C^* -algebras such that $D_1 \supseteq B$ and $D_2 \supseteq B$. Then the following two statements hold.

- (1) There is a *-isomorphism Ψ_1 of $F(A, B, C_1 \otimes D_1)$ onto $F(A, B, C_2 \otimes D_2)$ such that $\Psi_1(x) = x$ for all $x \in A \otimes B$.
- (2) There is a *-isomorphism Ψ_2 of $F(A, B, A \otimes D_1)$ onto $F(A, B, A \otimes D_2)$ such that $\Psi_2(x) = x$ for all $x \in A \otimes B$.

DEFINITION. By $A \otimes_F B$ we denote any one of the *-isomorphic Fubini products of A and B of Theorem 4 (1). Then $A \otimes_F B$ is independent of the choice of injective C^* -algebras C and D such that $C \supseteq A$ and $D \supseteq B$, and is the largest of all Fubini products of A and B. In fact, if A_1 and B_1 are C^* -algebras such that $A_1 \supseteq A$ and $B_1 \supseteq B$, there are injective C^* -algebras C and D such that $C \supseteq A_1$ and $D \supseteq B_1$, hence $F(A, B, A_1 \otimes B_1) \subseteq F(A, B, C \otimes D) = A \otimes_F B$. Similarly, any one of the *-isomorphic Fubini products of A and B of Theorem 4 (2) is independent of the choice of injective C^* -algebra D such that $D \supseteq B$, and is the largest of Fubini products of A and B with respect to $A \otimes D$ with D taken over all C^* -algebras such that $D \supseteq B$.

We now consider a condition for a C^* -algebra to have property S. A C^* -algebra A is said to have property S [13] if $F(A, B, A \otimes C) = A \otimes B$ for any C^* -algebras B and C such that $C \supseteq B$.

LEMMA 5. Let C and D be C*-algebras with C*-subalgebras A and B, respectively. Suppose that $F(A, B, C \otimes D) \supseteq A \otimes B$. Then there are separable C*-subalgebras A_0 , B_0 , C_0 and D_0 of A, B, C and D, respectively, such that $C_0 \supseteq A_0$, $D_0 \supseteq B_0$,

- (1) $F(A, B_0, C \otimes D_0) \supseteq A \otimes B_0$ and
- $(2) \quad F(A_0, B_0, C_0 \otimes D_0) \supseteq A_0 \otimes B_0.$

PROOF. Let $z \in F(A, B, C \otimes D)$ with $z \notin A \otimes B$. Then there is a sequence (z_n) such that

$$z_n = \sum\limits_{i=1}^{m_n} x_i^{(n)} igotimes y_i^{(n)}$$
 and $\lim\limits_n z_n = z$,

where each $x_i^{(n)} \in C$ and $y_i^{(n)} \in D$. Let A_0 be the C^* -subalgebra of A generated by $\{L_h(z): h \in D^*\}$ and let C_0 be the C^* -subalgebra of C generated by $\{x_i^{(n)}: i=1, \cdots, m_n, n=1, 2, \cdots\}$. Since $L_h(z_n) \in C_0$ $(h \in D^*)$, we have $C_0 \supseteq A_0$. Since C_0 is separable, so is A_0 . Similarly, let B_0 be the C^* -subalgebra of B generated by $\{R_g(z): g \in C^*\}$ and let D_0 be the C^* -subalgebra of D generated by $\{y_i^{(n)}: i=1, \cdots, m_n, n=1, 2, \cdots\}$. Then D_0 is a separable C^* -algebra containing B_0 . It is easy to see that $z \in F(A_0, B_0, C_0 \otimes D_0) \subseteq F(A, B_0, C \otimes D_0)$. If $z \in A \otimes B_0$, we have $z \in A \otimes B$,

T. HURUYA

a contradiction to the assumption. Thus $F(A, B_0, C \otimes D_0) \supseteq A \otimes B_0$ and $F(A_0, B_0, C_0 \otimes D_0) \supseteq A_0 \otimes B_0$.

THEOREM 6. Let A be C^* -algebra and let H be a separable infinite dimensional Hilbert space. Then the following two statements are equivalent.

- (1) A has property S.
- (2) $F(A, B, A \otimes L(H)) = A \otimes B$ for every separable C^* -subalgebra B of L(H).

PROOF. Since every separable C^* -algebra can be regarded as a C^* -subalgebra of L(H), and L(H) is injective [2, Theorem 1.2.3], this theorem is an immediate consequence of the second remark in the definition following Theorem 4 and Lemma 5 (1).

REMARK. Let C and D be C^* -algebras. If $A \otimes_F B = A \otimes B$ for any separable C^* -subalgebras A and B of C and D, respectively, we have $C \otimes_F D = C \otimes D$ by the first remark in the definition following Theorem 4 and Lemma 5 (2).

3. Examples. In this section we need certain results and notation from [15]. Let H be a separable infinite dimensional Hilbert space, let $H=\bigoplus_{n=1}^{\infty}H_n$ denote a decomposition of H into subspaces of dimension n and write $M=\bigoplus_{n=1}^{\infty}L(H_n)=\{(x_n)\colon x_n\in L(H_n),\,\sup_n||x_n||<\infty\}$. If U is a free ultrafilter on the positive integers and if tr_n is the trace on $L(H_n)$ so normalized that the unit has trace 1 $(n=1,2,\cdots)$, then $I_U=\{(x_n)\colon \lim_U\operatorname{tr}_n(x_n^*x_n)=0\}$ is a maximal two-sided ideal in M and $N=M/I_U$ is a II_1 factor. If $x\in N$ is represented by the sequence $(x_n)\in M$, then $\operatorname{Tr}(x)=\lim_U\operatorname{tr}_n(x_n)$. For each n we identify $L(H_n)$ with the algebra of $n\times n$ complex matrices, and let ∞ denote the transposition of a matrix. For $x=(x_n)\in M$ let $x=(x_n)$. Then $(I_U)^*=I_U$ and an antiautomorphism of N is defined by $(x+I_U)^*=x+I_U$.

If K denotes the completion of N with respect to the canonical trace norm, K is a Hilbert space. A self-adjoint unitary operator J on K is defined by $Jx = \widetilde{x}$ $(x \in N)$. N acts on K by left multiplication: if $L_x \in L(K)$ is given by $L_x a = xa$ $(x, a \in N)$, then the map $x \to L_x$ is a normal *-isomorphism of N into L(K), the standard representation of N. If we identify N with its image in L(K), the commutant N' is just the set of right multiplications by elements of N [7, I, §5, Théorème 1]. If $x, a \in N$, then $JxJa = J(x\widetilde{a}) = a\widetilde{x}$. Thus $JNJ \subseteq N'$ and the map $x \to JxJ$ is a *-isomorphism of N onto N'.

Let Φ be the quotient map of M onto N. By [14, Lemma 2.4] there

is a representation σ of $M \otimes M$ on K such that

$$\sigma(a \otimes b) = \Phi(a)J\Phi(b)J \qquad (a, b \in M)$$
.

Since $\sigma(M \otimes I) = N$ and $\sigma(I \otimes M) = JNJ = N'$, σ is irreducible.

Since $M \otimes M \subseteq L(H) \otimes L(H)$, there are, by [8, 2.10.2], a Hilbert space K_0 with $K \subseteq K_0$ and an irreducible representation π of $L(H) \otimes L(H)$ on K_0 such that $\pi(x) \mid K = \sigma(x)$ for $x \in M \otimes M$. Commuting factor representations π_1 and π_2 of L(H) on K_0 are defined by

$$\pi_1(x) = \pi(x \otimes I), \, \pi_2(x) = \pi(I \otimes x) \qquad (x \in L(H))$$
.

Then $\ker \pi_1 = \ker \pi_2 = LC(H)$ by [15, Lemma 3].

In [15, Section 4] Wassermann showed that there is an isomorphism of the free group on two generators into the unitary group of M. Let C denote the C^* -subalgebra of M generated by its image. Anderson [1] showed that there is a projection p in M such that $\operatorname{Tr}(\Phi(p)) \geq 1/2$ and $px \in LC(H)$ if $x \in C \cap I_{\mathcal{C}}$. Let $C^*(C, p)$ denote the C^* -subalgebra of M generated by C and p.

From now on, we use H, M, π , π_1 , π_2 , K_0 and $C^*(C, p)$ in the above situation.

LEMMA 7. There exist no completely positive unital maps ρ_1 and ρ_2 of $L(K_0)$ to $\pi_2(C^*(C, p))'$ and $\pi_1(C^*(C, p))'$, respectively, such that

$$ho_1(axb) = a
ho_1(x)b \qquad (a,\ b\in\pi_1(C^*(C,\ p)),\ x\in L(K_0)) \;, \
ho_2(axb) = a
ho_2(x)b \qquad (a,\ b\in\pi_2(C^*(C,\ p)),\ x\in L(K_0)) \;.$$

PROOF. It was shown in the proof of [15, Proposition 5] that such a ρ_1 cannot exist. It was also shown in the proof of [15, Theorem 8] that such a ρ_2 cannot exist.

LEMMA 8. Let A and B be C^* -subalgebras of L(H) both containing $C^*(C, p)$. Then

- (1) $F(A \cap LC(H), B, A \otimes B) \nsubseteq \ker \pi$,
- (2) $F(A, B \cap LC(H), A \otimes B) \nsubseteq \ker \pi$.

PROOF. (1) Suppose that $F(A \cap LC(H), B, A \otimes B) \subseteq \ker \pi$. As in the proof of [14, Proposition 2.5], the relation $\pi_1 \circ L_h = L_h \circ (\pi_1 \otimes I)$ $(h \in L(H)^*)$ shows that $\{x \in A \otimes B : \pi_1 \otimes I(x) = 0\} = F(A \cap LC(H), B, A \otimes B)$. Hence there is a representation $\overline{\pi}$ of $\pi_1(A) \otimes B$ such that $\overline{\pi}(a \otimes b) = a\pi_2(b)$ $(a \in \pi_1(A), b \in B)$. By [15, Lemma 1] there is a completely positive unital map ρ_1 of $L(K_0)$ to $\pi_2(B)'$ such that $\rho_1(axb) = a\rho_1(x)b$ $(a, b \in \pi_1(A), x \in L(K_0))$. Such a ρ_1 cannot exist by Lemma 7. Hence we obtain (1).

(2) This follows from an argument similar to (1).

T. HURUYA

THEOREM 9. Let H be a separable infinite dimensional Hilbert space. Then $LC(H) \bigotimes_F LC(H)$ strictly contains $LC(H) \bigotimes LC(H)$.

PROOF. Since L(H) is injective, it is enough to show that $F(LC(H), LC(H), L(H) \otimes L(H)) \supseteq LC(H) \otimes LC(H)$. By Lemma 8 we have

(1)
$$F(LC(H), L(H), L(H) \otimes L(H)) \nsubseteq \ker \pi,$$
$$F(L(H), LC(H), L(H) \otimes L(H)) \nsubseteq \ker \pi.$$

Since $F(L(H), LC(H), L(H) \otimes L(H))$ is a closed two-sided ideal in $L(H) \otimes L(H)$ [10, Lemma 2.2], the restriction of π to $F(L(H), LC(H), L(H) \otimes L(H))$ is an irreducible representation. Let $\{u_{\beta}\}$ be an approximate identity for $F(L(H), LC(H), L(H) \otimes L(H))$. Then $\{\pi(u_{\beta})\}$ converges strongly to the identity operator on K_0 .

Suppose that $F(LC(H), LC(H), L(H) \otimes L(H)) \subseteq \ker \pi$. We note that $F(LC(H), LC(H), L(H) \otimes L(H)) = F(L(H), LC(H), L(H) \otimes L(H)) \cap F(LC(H), L(H), L(H) \otimes L(H))$. Since $F(LC(H), L(H), L(H) \otimes L(H))$ is a two-sided ideal [10, Lemma 2.2], it follows that if $x \in F(LC(H), L(H), L(H) \otimes L(H))$, we have $u_{\beta}x \in F(LC(H), LC(H), L(H) \otimes L(H))$, so that $\pi(x) = \lim_{\beta} \pi(u_{\beta})\pi(x) = \lim_{\beta} \pi(u_{\beta})\pi(x) = 0$ (strongly). Hence we obtain $F(LC(H), L(H), L(H) \otimes L(H)) \subseteq \ker \pi$. This inclusion contradicts (1), and we have

$$F(LC(H), LC(H), L(H) \otimes L(H)) \supseteq \ker(\pi \mid F(LC(H), LC(H), LC(H))$$
,
 $L(H) \otimes L(H))) \supseteq LC(H) \otimes LC(H)$.

This completes the proof.

THEOREM 10 (cf. [15, Theorem 8]). Let K be an infinite dimensional Hilbert space and let A be a C^* -subalgebra of L(K) such that $A \supseteq LC(K)$. Then $A \bigotimes_F LC(K)$ strictly contains $A \bigotimes LC(K)$.

PROOF. As in the proof of Theorem 9, it is enough to show that $F(A, LC(K), L(K) \otimes L(K)) \supseteq A \otimes LC(K)$.

Suppose that

$$(2) F(A, LC(K), L(K) \otimes L(K)) = A \otimes LC(K).$$

With H as in Theorem 9, we may assume that $H \subseteq K$. Then we have $LC(H) \subseteq LC(K) \subseteq A$, so that, by (2), $F(LC(H), LC(K), L(K) \otimes L(K)) \subseteq A \otimes LC(K)$. Thus $F(LC(H), LC(K), L(K) \otimes L(K)) = F(LC(H), LC(K), A \otimes LC(K))$. By [13, Theorem 22] we obtain $F(LC(H), LC(K), A \otimes LC(K)) = LC(H) \otimes LC(K)$, hence

(3) $F(LC(H), LC(H), L(K) \otimes L(K)) = F(LC(H), LC(H), LC(H) \otimes LC(K))$. Then a second application of [13, Theorem 22] shows that (4) $F(LC(H), LC(H), LC(H) \otimes LC(K)) = LC(H) \otimes LC(H)$.

Since there is a projection of norm one from L(K) onto L(H), it follows from [10, Proposition 3.7] that

 $(5) \quad F(LC(H), LC(H), L(K) \otimes L(K)) = F(LC(H), LC(H), L(H) \otimes L(H)).$

Hence (3), (4) and (5) yield that $F(LC(H), LC(H), L(H) \otimes L(H)) = LC(H) \otimes LC(H)$. This contradicts Theorem 9, and we obtain the desired result.

Let C and D be C^* -algebras with C^* -subalgebras A and B, respectively. Tomiyama [10, Theorem 3.1] proved that if all the irreducible representations of A are finite dimensional of bounded dimension, then $F(A, B, C \otimes D) = A \otimes B$. However, if we remove the condition "of bounded dimension" from his theorem, we have the following situation.

Example 11. With H and M as in the beginning of this section, all the irreducible representations of $M \cap LC(H)$ are finite dimensional, and $(M \cap LC(H)) \otimes_F L(H)$ strictly contains $(M \cap LC(H)) \otimes L(H)$.

PROOF. It is easy to see that $M \cap LC(H) = \{(x_n) \in M: \lim_n ||x_n|| = 0\}$. It follows from [8, 10.4.3 and 10.10.1] that all the irreducible representations of $M \cap LC(H)$ are finite dimensional. Since M is injective, we show that $F(M \cap LC(H), L(H), M \otimes L(H)) \supseteq (M \cap LC(H)) \otimes L(H)$. Applying Lemma 8 with A = M and B = L(H), we have

(6)
$$F(M \cap LC(H), L(H), M \otimes L(H)) \nsubseteq \ker \pi$$
.

Suppose that $F(M \cap LC(H), L(H), M \otimes L(H)) = (M \cap LC(H)) \otimes L(H)$. Then $F(M \cap LC(H), L(H), M \otimes L(H)) \subseteq \ker \pi$. This inclusion contradicts (6). It then follows that $F(M \cap LC(H), L(H), M \otimes L(H)) \supseteq (M \cap LC(H)) \otimes L(H)$. This completes the proof.

REFERENCES

- [1] J. Anderson, A C^* -algebra A for which Ext(A) is not a group, Ann. of Math. 107 (1978), 455-458.
- [2] W. B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224.
- [3] M. D. Choi, A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math. 18 (1974), 565-574.
- [4] M. D. Choi and E. G. Effros, The completely positive lifting problem for C*-algebras, Ann. of Math. 104 (1976), 585-609.
- [5] M. D. CHOI AND E. G. EFFROS, Lifting problems and the cohomology of C*-algebras, Canad. J. Math. 29 (1977), 1092-1111.
- [6] M. D. CHOI AND E. G. EFFROS, Injectivity and operator spaces, J. Funct. Anal. 24 (1977), 156-209.
- [7] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, 2º édn, Gauthier-Villars, Paris, 1969.

70 T. HURUYA

- [8] J. DIXMIER, Les C*-algèbres et leurs représentations, 2e édn, Gauthier-Villars, Paris, 1969.
- [9] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338.
- [10] J. Tomiyama, Tensor products and approximation problems of C*-algebras, Publ. Res. Inst. Math. Sci. 11 (1975), 163-183.
- [11] J. Tomiyama, On the Fubini product of von Neumann algebras, Bull. Yamagata Univ. Natur. Sci. 9 (1976); 53-56.
- [12] J. Tomiyama, Some aspects of the commutation theorem for tensor products of operator algebras, Proc. of the colloquium on "Algebras of operators and their applications to mathematical physics", Marseille, 1977.
- [13] S. Wassermann, The slice map problem for C^* -algebras, Proc. London Math. Soc. (3) 32 (1976), 537-559.
- [14] S. Wassermann, On tensor products of certain group C^* -algebras, J. Funct. Anal. 23 (1976), 239-254.
- [15] S. WASSERMANN, A pathology in the ideal space of $L(H) \otimes L(H)$, to appear.

DEPARTMENT OF MATHEMATICS FACULTY OF EDUCATION NIIGATA UNIVERSITY NIIGATA, 951 JAPAN