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1. Introduction. Let C and D be C*-algebras and let C ® D denote
their minimal (or spatial) C*-tensor product. For each g e C* there is a
unique bounded linear map R, of CQR D to D satisfying R,(cXRd) =
{g, ¢>d. Similarly, for each % e D* there is a unique bounded linear map
L, of CQ D to C satisfying L,(c ®d) = <k, dde. Let A and B be C*-
subalgebras of C and D, respectively. We define the Fubini produect of
A and B with respect to C&® D to be

F(A, B,CQXD)={xeC® D: R,(x)e B, L,(x) e A for every ge C*, he D*}

(see [10]). If C, C, and A are C*-algebras such that C,2C,2 4, and
if D, D, and B are C*-algebras such that D, 2 D, 2 B, then F(A4, B,
C,® D,) contains F(A, B, C,®D,). In this paper we show that there is
the largest Fubini product of A and B, denoted by AKX, B. We also con-
sider a condition for a C*-algebra to have property S [13]. Aided by [15],
we give several Fubini products 4 &, B strictly containing A @ B.

The author would like to thank Professor J. Tomiyama for his useful
suggestions. He would also like to thank Professor S. Wassermann for
sending him a copy of the preprint [15].

2. Some properties of Fubini products. In this section we study

certain elementary properties of Fubini products. The following result
is known [12, Proposition 4.1] and is easy to check.

LEMMA 1. Let C gnd D fe C*-algebras with C*-subalgebras A and
B, respectively. Let C and D be the enveloping W*-algebras of C and
D. Under the canonical embedding of CQ D into the W*-tensor product

C® D, let AR B denote the weak closure of AR B. Then F(A, B, CX D)
is just (CQ D)N (AR B) and is a C*-subalgebra of C & D.
LEMMA 2. Let A, C, and C, be C*-algebras such that C,=2 A and

C,2 A, and let B, D, and D, be C*-algebras such that D, =2 B and D, 2 B.
Suppose that there are four contractive and completely positive maps:

$:C,— Gy 6,: C,—C,, ¢(a) =a (1=12 acd),
i Dy — 29"}'/‘2:D2“>D1;’¢‘i(b)=b (1=12, beB).
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Then there is a *~isomorphism ¥ of F(A, B, C,Q D,) onto F(A4, B, C,R D,)
such that ¥(x) = x for all xe AR B.

PrOOF. For convenience, if 1 =1, 2, let F, = F(4, B, C;Q D,). By
Lemma 1, each F; is a C*-subalgebra of C,Q D,. Let xe F,. If geC¥,
we have R,(¢; Q y.(x)) = y(R,.4)(x)) € B. Similarly, if he D¥, we have
Ly, Q(x)) e A. Let yeF,. If geC¥ and he Df, then

g R h, (¢, @ ) o (3, D ¥:)(¥)) = (g, (¢ © ¢1)(L(h°¢‘2°¢‘1)(y))>
= <9, Layvp(¥)) = <hy (Y2o9)(By())) = <hy By(¥)) = 9k, ¥) .

Hence (¢, & ) 0 (¢, @ 4r,)(y) = y for all ye F,. Similarly, we have ¢, &
vo(Fy) S Fy and (¢, Q) 1) o (6, @ 4,)(¥) = y for all y e F,.

Since ¢, ® 4~ and ¢, X 4, are contractive and completely positive, by
[4, Lemma 3.9] we may assume that F, and F, are unital, and that both
6, Q.| F, and ¢, @ 4| F, are unital and completely positive. Let ¥ =
6 @Ay | Fy. Then ¥ = (¢, @ 4| F3)™", so that ¥ is isometric. It follows
from [3, Corollary 3.2] and [9, Theorem 7] that ¥ is a *-isomorphism (cf.
the proof of [6, Theorem 3.1]). It is easy to see that ¥(x) = z for all
xe A® B. This completes the proof.

A unital C*-algebra A is said to be injective [5] if for any unital
C*-algebras B and C such that C 2 B with the common unit, any com-
pletely positive map of B into A extends to a completely positive map
of C into A. Arveson proved in [2, Theorem 1.2.3] that for any Hilbert
space H, the C*-algebra L(H) is injective.

LeMMA 3. Let B, C, and C, be C*-algebras such that C,= B and
C, 2 B. Suppose that C, is injective. Then there is a contractive and
completely positive map ¥ of C, into C, such that ¥(b) = b for all b e B.

PrOOF. For i=12 let C, be the unital extension of C; by the
complex number field, let e, be the unit of C,, and let B, be the C*-sub-
algebra of C; generated by B and e, It follows from [4, Lemma 3.9] that
the map «: b + ce; — b + ce, is a completely positive map of B, onto B,.
Define a completely positive map «y of B, into C, by +n(x) = ey (e,
where ¢ is the unit of C,. Since C, is injective, the map +, extends to
a completely positive map +, of C, into C,. Put ¥ = .| C;, which has
the desired properties.

The following result is a generalization of [11], and is an immediate
consequence of Lemmas 2 and 3.

THEOREM 4. Let A and B be C*-algebras. Let C, and C, be injective
C*-algebras such that C, 2 A and C,2 A, and let D, and D, be injective
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C*-algebras such that D, 2 B and D, 2 B. Then the following two
statements hold.

(1) There is a *-isomorphism ¥, of F(A, B, C,Q D,) onto F(A, B,
C, X D,) such that ¥.(x) = x for all xtc AR B.

(2) There is a *-isomorphism ¥, of F(A, B, AR D,) onto F(A, B,
AR D,) such that Uy(x) =z for all xe A B.

DEFINITION. By A®,;B we denote any one of the *-isomorphic
Fubini products of A and B of Theorem 4 (1). Then A&, B is inde-
pendent of the choice of injective C*-algebras C and D such that C2 A
and D 2 B, and is the largest of all Fubini products of A and B. In
fact, if A, and B, are C*-algebras such that 4, 2 A and B, 2 B, there
are injective C*-algebras C and D such that C2 4, and D2 B,, hence F(4, B,
A RB)C F(A4, B,CQR® D)= AR, B. Similarly, any one of the *-iso-
morphic Fubini products of A and B of Theorem 4 (2) is independent of
the choice of injective C*-algebra D such that D 2 B, and is the largest
of Fubini products of A and B with respect to AQ® D with D taken
over all C*-algebras such that D 2 B.

We now consider a condition for a C*-algebra to have property S.
A C*-algebra A is said to have property S [18] if F(4, B, ARC) =
A& B for any C*-algebras B and C such that C 2 B.

LEMMA 5. Let C and D be C*-algebras with C*-subalgebras A and
B, respectively. Suppose that F(A, B,CQ D)2 AR B. Then there are
separable C*-subalgebras A, B, C, and D, of A, B, C and D, respectively,
such that C, 2 A, D, 2 B,

(1) F(A4,B,CQ®D)2 AR B, and

(2) F(4, B, C,®D)R A4 B,

PROOF. Let 2€ F(A, B,C® D) with 2z¢ AQ B. Then there is a
sequence (z,) such that

Moy
2, = Z{ ™ @y™ and limz, =z,
= n

where each 2 eC and y™eD. Let A, be the C*-subalgebra of A
generated by {L,(2): h € D*} and let C, be the C*-subalgebra of C generated
by {#:2=1,.---,m,,n=12,---}. Since L,(2,)eC, (heD*), we have
C,2 A, Since C, is separable, so is A, Similarly, let B, be the C*-
subalgebra of B generated by {R,(z):geC*} and let D, be the C*-
subalgebra of D generated by {y:i=1,---,m, n=12,---}. Then
D, is a separable C*-algebra containing B,. It is easy to see that ze¢
F(4, B,C,Q® D)<= F(A, B,CQRD,). If ze AR B,, we have 2¢ AQ B,
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a contradiction to the assumption. Thus F(4, B, CQ D,) 2 AQ B, and
F(A, B, C,® D,) 2 A, ® B,.

THEOREM 6. Let A be C*-algebra and let H be a separable infinite
dimensional Hilbert space. Then the following two statements are
equivalent.

(1) A has property S.

(2) F(A,B,ARQ L(H)) = AQ B for every separable C*-subalgebra
B of L(H).

PrROOF. Since every separable C*-algebra can be regarded as a C*-
subalgebra of L(H), and L(H) is injective [2, Theorem 1.2.3], this theorem
is an immediate consequence of the second remark in the definition
following Theorem 4 and Lemma 5 (1).

REMARK. Let C and D be C*-algebras. If A®,B = A B for any
separable C*-subalgebras A and B of C and D, respectively, we have
C®rD =CQ® D by the first remark in the definition following Theorem
4 and Lemma 5 (2).

3. Examples. In this section we need certain results and notation
from [15]. Let H be a separable infinite dimensional Hilbert space, let
H = @:_, H, denote a decomposition of H into subspaces of dimension n
and write M = @;-, L(H,) = {(x,): «, € L(H,), sup, ||z,|| < «}. If U is a
free ultrafilter on the positive integers and if tr, is the trace on L(H,)
so normalized that the unit has trace 1 (» =1, 2, ---), then I, = {(x,):
lim, tr,(xkxz,) = 0} is a maximal two-sided ideal in M and N = M/I, is a
II, factor. If x € N is represented by the sequence (x,) € M, then Tr(x) =
lim, tr,(z,). For each n we identify L(H,) with the algebra of n X n
complex matrices, and let ~ denote the transposition of a matrix. For
z=(x,)eM let %= (%,). Then (I;)” = I, and an antiautomorphism of
N is defined by (x + I,)" =% + I,.

If K denotes the completion of N with respect to the canonical trace
norm, K is a Hilbert space. A self-adjoint unitary operator J on K is
defined by Jr =2 (xe N). N acts on K by left multiplication: if L, €
L(K) is given by L,a = za (x, a € N), then the map  — L, is a normal
*_jsomorphism of N into L(K), the standard representation of N. If
we identify N with its image in L(K), the commutant N’ is just the
set of right multiplications by elements of N [7, I, §5, Théoréme 1]. If
x, @ € N, then JxJa = J(x@) = a%. Thus JNJ < N’ and the map x— JaJ
is a *-isomorphism of N onto N’.

Let @ be the quotient map of M onto N. By [14, Lemma 2.4] there
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is a representation ¢ of M @ M on K such that
gla ® b) = O(a)JO(b)J (a, be M) .

Since (M Q I) = N and 6(IQ M) = JNJ = N’, ¢ is irreducible.

Since MQQ M L(H)Q L(H), there are, by [8, 2.10.2], a Hilbert space
K, with KC K, and an irreducible representation = of L(H)® L(H) on K,
such that 7(x)| K = o(x) for re M@ M. Commuting factor representations
7, and 7w, of L(H) on K, are defined by

(@) =@ I), m@) =r(I@2)  (ve L(H)).

Then ker w, = ker 7, = LC(H) by [15, Lemma 3].

In [15, Section 4] Wassermann showed that there is an isomorphism
of the free group on two generators into the unitary group of M. Let
C denote the C*-subalgebra of M generated by its image. Anderson [1]
showed that there is a projection p in M such that Tr (&(p)) = 1/2 and
pre LC(H) if xeCnNI.. Let C*C, p) denote the C*-subalgebra of M
generated by C and p.

From now on, we use H, M, n, =, n,, K, and C*(C, p) in the above
situation.

LEMMA 7. There exist no completely positive unital maps o, and p,
of L(K,) to m,(C*(C, p))’ and 7, (C*(C, p))’, respectively, such that

p(axd) = ap @) (a, bem(C*(C, p)), x € L(K))) ,
plaxd) = ap(x)b (e, bem(C*(C, p)), x € L(K,)) .

Proor. It was shown in the proof of [15, Proposition 5] that such
a o, cannot exist. It was also shown in the proof of [15, Theorem 8]
that such a p, cannot exist.

LEMMA 8. Let A and B be C*-subalgebras of L(H) both containing
C*(C, p). Then

(1) F(ANn LC(H), B, AQ B) & ker x,

(2) F(A, BNLCH), AR B) & ker «.

ProoF. (1) Suppose that F(ANLC(H), B, AR B)C kerw. As in the
proof of [14, Proposition 2.5], the relation 7,0 L, = L,o(x, ® I) (he€ L(H)*)
shows that {rec AQR B: 7, Q I(zx) = 0} = F(AN LC(H), B, AQ B). Hence
there is a representation T of 7,(4) ® B such that 7(a ® b) = am,(db)
(aem(A), be B). By [15, Lemma 1] there is a completely positive unital
map p, of L(K,) to w,(B)" such that o,(axd) = ap,(x)b (a, bem (A), x € L(K,)).
Such a o, cannot exist by Lemma 7. Hence we obtain (1).

(2) This follows from an argument similar to (1).
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THEOREM 9. Let H be a separable infinite dimenstonal Hilbert space.
Then LC(H) X, LC(H) strictly contains LC(H)Q LC(H).

Proor. Since L(H) is injective, it is enough to show that F(LC(H),
LC(H), L(H) ® L(H)) 2 LC(H) ® LC(H). By Lemma 8 we have

(1) F(LC(H), L(H), L(H) @ L(H)) & ker 7 ,
F(L(H), LC(H), L(H) ® L(H)) £ ker .

Since F(L(H), LC(H), L(HYQL(H)) is a closed two-sided ideal in L(H) ®
L(H) [10, Lemma 2.2], the restriction of = to F(L(H), LC(H), L(H) ®
L(H)) is an irreducible representation. Let {u,} be an approximate
identity for F(L(H), LC(H), L(H) Q L(H)). Then {n(u;)} converges strong-
ly to the identity operator on K.

Suppose that F(LC(H), LC(H), L(H) ® L(H)) < ker . We note that
F(LC(H), LC(H), L(H)®L(H))=F(L(H), LC(H), L(H)® L(H))N F(LC(H),
L(H), L(H) ® L(H)). Since F(LC(H), L(H), L(H) Q L(H)) is a two-sided
ideal [10, Lemma 2.2], it follows that if x € F(LC(H), L(H), L(H) ® L(H)),
we have uyx € F(LC(H), LC(H), L(H)QL(H)), so that w(x)=lim, 7(u,;)n(x) =
lim, 7(u,x) = 0 (strongly). Hence we obtain F(LC(H), L(H), L(H)®
L(H)) € ker #. This inclusion contradicts (1), and we have

F(LC(H), LC(H), L(H) @ L(H)) 2 ker(z | F(LC(H), LC(H) ,
L(H) ® L(H))) 2 LC(H) ® LC(H) .

This completes the proof.

THEOREM 10 (cf. [15, Theorem 8]). Let K be an infinite dimensional
Hilbert space and let A be a C*-subalgebra of L(K) such that A 2 LC(K).
Then AR, LC(K) strictly contains A Q LC(K).

PrROOF. As in the proof of Theorem 9, it is enough to show that
F(4, LC(K), L(K) ® L(K)) 2 A Q LC(K).

Suppose that
(2) F(4, LC(K), L(K) ® L(K)) = A® LC(K) .

With H as in Theorem 9, we may assume that H < K. Then we have
LC(H) < LC(K) < A, so that, by (2), F(LC(H), LC(K), L(K) ® L(K)) <
A® LC(K). Thus F(LC(H), LC(K), L(K)® L(K)) = F(LC(H), LC(K),
AQ® LC(K)). By [13, Theorem 22] we obtain F(LC(H), LC(K), AQ
LC(K)) = LC(H) ® LC(K), hence

(3) F(LC(H), LC(H), L(K) & L(K)) = F(LC(H), LC(H), LC(H) ® LC(K)) .
Then a second application of [13, Theorem 22] shows that
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(4) F(LC(H), LC(H), LC(H) ® LC(K)) = LC(H) ® LC(H) .

Since there is a projection of norm one from L(K) onto L(H), it follows
from [10, Proposition 3.7] that

(5) F(LC(H), LC(H), L(K) ® L(K)) = F(LC(H), LC(H), L(H) @ L(H)) .

Hence (3), (4) and (5) yield that F(LC(H), LC(H), L(H) ® L(H)) = LC(H)®
LC(H). This contradicts Theorem 9, and we obtain the desired result.

Let C and D be C*-algebras with C*-subalgebras A and B, respectively.
Tomiyama [10, Theorem 3.1] proved that if all the irreducible represen-
tations of A are finite dimensional of bounded dimension, then F(A, B,
CR D)= AQ®B. However, if we remove the condition “of bounded
dimension” from his theorem, we have the following situation.

ExAmMPLE 11. With H and M as in the beginning of this sectiomn,
all the irreducible representations of M N LC(H) are finite dimensional,
and (M N LC(H)) ®y L(H) strictly contains (M N LC(H)) Q L(H).

Proor. It is easy to see that M N LC(H) = {(x,) € M: lim, ||z,]|] = 0}.
It follows from [8, 10.4.3 and 10.10.1] that all the irreducible represen-
tations of M N LC(H) are finite dimensional. Since M is injective, we
show that F(M N LC(H), L(H), MY L(H))2(MnNLC(H))Q L(H). Applying
Lemma 8 with A = M and B = L(H), we have

(6) FMnLCH), L(H), MQ L(H)) £ ker & .

Suppose that F(M N LC(H), L(H), MQ L(H)) = (M N LC(H)) Q® L(H).
Then F(M N LC(H), L(H), M Q L(H)) < kerz. This inclusion contradicts
(6). It then follows that F(M N LC(H), L(H), MQ L(H)2(MN LC(H)®
L(H). This completes the proof.
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