FUBINI PRODUCTS OF C^{*}-ALGEBRAS

Tadasi Huruya

(Received February 19, 1979)

1. Introduction. Let C and D be C^{*}-algebras and let $C \otimes D$ denote their minimal (or spatial) C^{*}-tensor product. For each $g \in C^{*}$ there is a unique bounded linear map R_{g} of $C \otimes D$ to D satisfying $R_{g}(c \otimes d)=$ $\langle g, c\rangle d$. Similarly, for each $h \in D^{*}$ there is a unique bounded linear map L_{h} of $C \otimes D$ to C satisfying $L_{h}(c \otimes d)=\langle h, d\rangle c$. Let A and B be C^{*} subalgebras of C and D, respectively. We define the Fubini product of A and B with respect to $C \otimes D$ to be
$F(A, B, C \otimes D)=\left\{x \in C \otimes D: R_{g}(x) \in B, L_{h}(x) \in A\right.$ for every $\left.g \in C^{*}, h \in D^{*}\right\}$ (see [10]). If C_{1}, C_{2} and A are C^{*}-algebras such that $C_{1} \supseteq C_{2} \supseteq A$, and if D_{1}, D_{2} and B are C^{*}-algebras such that $D_{1} \supseteq D_{2} \supseteq B$, then $F(A, B$, $C_{1} \otimes D_{1}$) contains $F\left(A, B, C_{2} \otimes D_{2}\right)$. In this paper we show that there is the largest Fubini product of A and B, denoted by $A \otimes_{F} B$. We also consider a condition for a C^{*}-algebra to have property S [13]. Aided by [15], we give several Fubini products $A \otimes_{F} B$ strictly containing $A \otimes B$.

The author would like to thank Professor J. Tomiyama for his useful suggestions. He would also like to thank Professor S. Wassermann for sending him a copy of the preprint [15].
2. Some properties of Fubini products. In this section we study certain elementary properties of Fubini products. The following result is known [12, Proposition 4.1] and is easy to check.

Lemma 1. Let C and D be C^{*}-algebras with C^{*}-subalgebras A and B, respectively. Let \bar{C} and \bar{D} be the enveloping W^{*}-algebras of C and D. Under the canonical embedding of $C \otimes D$ into the W^{*}-tensor product $\bar{C} \bar{\otimes} \bar{D}$, let $\bar{A} \bar{\otimes} \bar{B}$ denote the weak closure of $A \otimes B$. Then $F(A, B, C \otimes D)$ is just $(C \otimes D) \cap(\bar{A} \bar{\otimes} \bar{B})$ and is a C^{*}-subalgebra of $C \otimes D$.

Lemma 2. Let A, C_{1} and C_{2} be C^{*}-algebras such that $C_{1} \supseteq A$ and $C_{2} \supseteq A$, and let B, D_{1} and D_{2} be C^{*}-algebras such that $D_{1} \supseteq B$ and $D_{2} \supseteq B$. Suppose that there are four contractive and completely positive maps:

$$
\begin{array}{ll}
\phi_{1}: C_{1} \rightarrow C_{2}, \dot{\phi}_{2}: C_{2} \rightarrow C_{1}, \phi_{i}(a)=a & (i=1,2, \quad a \in A), \\
\psi_{1}: D_{1} \rightarrow D_{2}, \dot{\psi}_{2}: D_{2} \rightarrow D_{1}, \psi_{i}(b)=b & (i=1,2, \quad b \in B) .
\end{array}
$$

Then there is a^{*}-isomorphism Ψ of $F\left(A, B, C_{1} \otimes D_{1}\right)$ onto $F\left(A, B, C_{2} \otimes D_{2}\right)$ such that $\Psi(x)=x$ for all $x \in A \otimes B$.

Proof. For convenience, if $i=1,2$, let $F_{i}=F\left(A, B, C_{i} \otimes D_{i}\right) . \quad$ By Lemma 1, each F_{i} is a C^{*}-subalgebra of $C_{i} \otimes D_{i}$. Let $x \in F_{1}$. If $g \in C_{2}^{*}$, we have $R_{g}\left(\phi_{1} \otimes \psi_{1}(x)\right)=\psi_{1}\left(R_{\left(g \circ \phi_{1}\right)}(x)\right) \in B$. Similarly, if $h \in D_{2}^{*}$, we have $L_{h}\left(\dot{\phi}_{1} \otimes \psi_{1}(x)\right) \in A$. Let $y \in F_{1}$. If $g \in C_{1}^{*}$ and $h \in D_{1}^{*}$, then

$$
\begin{aligned}
& \left\langle g \otimes h,\left(\phi_{2} \otimes \psi_{2}\right) \circ\left(\phi_{1} \otimes \psi_{1}\right)(y)\right\rangle=\left\langle g,\left(\phi_{2} \circ \phi_{1}\right)\left(L_{\left(h \circ \psi_{2} \circ \psi_{1}\right)}(y)\right)\right\rangle \\
& \quad=\left\langle g, L_{\left(h \circ \psi_{2} \circ \psi_{1}\right)}(y)\right\rangle=\left\langle h,\left(\psi_{2} \circ \psi_{1}\right)\left(R_{g}(y)\right)\right\rangle=\left\langle h, R_{g}(y)\right\rangle=\langle g \otimes h, y\rangle
\end{aligned}
$$

Hence $\left(\phi_{2} \otimes \psi_{2}\right) \circ\left(\dot{\phi}_{1} \otimes \psi_{1}\right)(y)=y$ for all $y \in F_{1}$. Similarly, we have $\phi_{2} \otimes$ $\psi_{2}\left(F_{2}\right) \subseteq F_{1}$ and $\left(\phi_{1} \otimes \psi_{1}\right) \circ\left(\phi_{2} \otimes \psi_{2}\right)(y)=y$ for all $y \in F_{2}$.

Since $\phi_{1} \otimes \psi_{1}$ and $\phi_{2} \otimes \psi_{2}$ are contractive and completely positive, by [4, Lemma 3.9] we may assume that F_{1} and F_{2} are unital, and that both $\dot{\phi}_{1} \otimes \psi_{1} \mid F_{1}$ and $\phi_{2} \otimes \psi_{2} \mid F_{2}$ are unital and completely positive. Let $\Psi=$ $\phi_{1} \otimes \psi_{1} \mid F_{1}$. Then $\Psi=\left(\phi_{2} \otimes \psi_{2} \mid F_{2}\right)^{-1}$, so that Ψ is isometric. It follows from [3, Corollary 3.2] and [9, Theorem 7] that Ψ is a ${ }^{*}$-isomorphism (cf. the proof of [6, Theorem 3.1]). It is easy to see that $\Psi(x)=x$ for all $x \in A \otimes B$. This completes the proof.

A unital C^{*}-algebra A is said to be injective [5] if for any unital C^{*}-algebras B and C such that $C \supseteq B$ with the common unit, any completely positive map of B into A extends to a completely positive map of C into A. Arveson proved in [2, Theorem 1.2.3] that for any Hilbert space H, the C^{*}-algebra $L(H)$ is injective.

Lemma 3. Let B, C_{1} and C_{2} be C^{*}-algebras such that $C_{1} \supseteq B$ and $C_{2} \supseteq B$. Suppose that C_{2} is injective. Then there is a contractive and completely positive map Ψ of C_{1} into C_{2} such that $\Psi(b)=b$ for all $b \in B$.

Proof. For $i=1,2$ let \widetilde{C}_{i} be the unital extension of C_{i} by the complex number field, let e_{i} be the unit of \widetilde{C}_{i}, and let B_{i} be the C^{*}-subalgebra of \widetilde{C}_{i} generated by B and e_{i}. It follows from [4, Lemma 3.9] that the map $\psi_{0}: b+c e_{1} \rightarrow b+c e_{2}$ is a completely positive map of B_{1} onto B_{2}. Define a completely positive map ψ_{1} of B_{1} into C_{2} by $\psi_{1}(x)=e \psi_{0}(x) e$, where e is the unit of C_{2}. Since C_{2} is injective, the map ψ_{1} extends to a completely positive map ψ_{2} of \widetilde{C}_{1} into C_{2}. Put $\Psi=\dot{\psi}_{2} \mid C_{1}$, which has the desired properties.

The following result is a generalization of [11], and is an immediate consequence of Lemmas 2 and 3.

Theorem 4. Let A and B be C^{*}-algebras. Let C_{1} and C_{2} be injective C^{*}-algebras such that $C_{1} \supseteq A$ and $C_{2} \supseteq A$, and let D_{1} and D_{2} be injective
C^{*}-algebras such that $D_{1} \supseteq B$ and $D_{2} \supseteq B$. Then the following two statements hold.
(1) There is a *-isomorphism Ψ_{1} of $F\left(A, B, C_{1} \otimes D_{1}\right)$ onto $F(A, B$, $C_{2} \otimes D_{2}$) such that $\Psi_{1}(x)=x$ for all $x \in A \otimes B$.
(2) There is a ${ }^{*}$-isomorphism Ψ_{2} of $F\left(A, B, A \otimes D_{1}\right)$ onto $F(A, B$, $\left.A \otimes D_{2}\right)$ such that $\Psi_{2}(x)=x$ for all $x \in A \otimes B$.

Definition. By $A \otimes_{F} B$ we denote any one of the ${ }^{*}$-isomorphic Fubini products of A and B of Theorem 4 (1). Then $A \otimes_{F} B$ is independent of the choice of injective C^{*}-algebras C and D such that $C \supseteqq A$ and $D \supseteqq B$, and is the largest of all Fubini products of A and B. In fact, if A_{1} and B_{1} are C^{*}-algebras such that $A_{1} \supseteqq A$ and $B_{1} \supseteq B$, there are injective C^{*}-algebras C and D such that $C \supseteqq A_{1}$ and $D \supseteq B_{1}$, hence $F(A, B$, $\left.A_{1} \otimes B_{1}\right) \subseteq F(A, B, C \otimes D)=A \otimes_{F} B$. Similarly, any one of the ${ }^{*}$-isomorphic Fubini products of A and B of Theorem 4 (2) is independent of the choice of injective C^{*}-algebra D such that $D \supseteqq B$, and is the largest of Fubini products of A and B with respect to $A \otimes D$ with D taken over all C^{*}-algebras such that $D \supseteqq B$.

We now consider a condition for a C^{*}-algebra to have property S . A C^{*}-algebra A is said to have property S [13] if $F(A, B, A \otimes C)=$ $A \otimes B$ for any C^{*}-algebras B and C such that $C \supseteqq B$.

Lemma 5. Let C and D be C^{*}-algebras with C^{*}-subalgebras A and B, respectively. Suppose that $F(A, B, C \otimes D) \supsetneqq A \otimes B$. Then there are separable C^{*}-subalgebras A_{0}, B_{0}, C_{0} and D_{0} of A, B, C and D, respectively, such that $C_{0} \supseteq A_{0}, D_{0} \supseteq B_{0}$,
(1) $\quad F\left(A, B_{0}, C \otimes D_{0}\right) \supsetneq A \otimes B_{0}$ and
(2) $\quad F\left(A_{0}, B_{0}, C_{0} \otimes D_{0}\right) \supsetneqq A_{0} \otimes B_{0}$.

Proof. Let $z \in F(A, B, C \otimes D)$ with $z \notin A \otimes B$. Then there is a sequence $\left(z_{n}\right)$ such that

$$
z_{n}=\sum_{i=1}^{m_{n}} x_{i}^{(n)} \otimes y_{i}^{(n)} \quad \text { and } \quad \lim _{n} z_{n}=z,
$$

where each $x_{i}^{(n)} \in C$ and $y_{i}^{(n)} \in D$. Let A_{0} be the C^{*}-subalgebra of A generated by $\left\{L_{h}(z): h \in D^{*}\right\}$ and let C_{0} be the C^{*}-subalgebra of C generated by $\left\{x_{i}^{(n)}: i=1, \cdots, m_{n}, n=1,2, \cdots\right\}$. Since $L_{h}\left(z_{n}\right) \in C_{0} \quad\left(h \in D^{*}\right)$, we have $C_{0} \supseteq A_{0}$. Since C_{0} is separable, so is A_{0}. Similarly, let B_{0} be the C^{*} subalgebra of B generated by $\left\{R_{g}(z): g \in C^{*}\right\}$ and let D_{0} be the C^{*} subalgebra of D generated by $\left\{y_{i}^{(n)}: i=1, \cdots, m_{n}, n=1,2, \cdots\right\}$. Then D_{0} is a separable C^{*}-algebra containing B_{0}. It is easy to see that $z \in$ $F\left(A_{0}, B_{0}, C_{0} \otimes D_{0}\right) \subseteq F\left(A, B_{0}, C \otimes D_{0}\right)$. If $z \in A \otimes B_{0}$, we have $z \in A \otimes B$,
a contradiction to the assumption. Thus $F\left(A, B_{0}, C \otimes D_{0}\right) \supsetneqq A \otimes B_{0}$ and $F\left(A_{0}, B_{0}, C_{0} \otimes D_{0}\right) \supsetneqq A_{0} \otimes B_{0}$.

Theorem 6. Let A be C^{*}-algebra and let H be a separable infinite dimensional Hilbert space. Then the following two statements are equivalent.
(1) A has property S .
(2) $F(A, B, A \otimes L(H))=A \otimes B$ for every separable C^{*}-subalgebra B of $L(H)$.

Proof. Since every separable C^{*}-algebra can be regarded as a $C^{*}-$ subalgebra of $L(H)$, and $L(H)$ is injective [2, Theorem 1.2.3], this theorem is an immediate consequence of the second remark in the definition following Theorem 4 and Lemma 5 (1).

Remark. Let C and D be C^{*}-algebras. If $A \otimes_{F} B=A \otimes B$ for any separable C^{*}-subalgebras A and B of C and D, respectively, we have $C \otimes_{F} D=C \otimes D$ by the first remark in the definition following Theorem 4 and Lemma 5 (2).
3. Examples. In this section we need certain results and notation from [15]. Let H be a separable infinite dimensional Hilbert space, let $H=\bigoplus_{n=1}^{\infty} H_{n}$ denote a decomposition of H into subspaces of dimension n and write $M=\bigoplus_{n=1}^{\infty} L\left(H_{n}\right)=\left\{\left(x_{n}\right): x_{n} \in L\left(H_{n}\right), \sup _{n}\left\|x_{n}\right\|<\infty\right\}$. If U is a free ultrafilter on the positive integers and if tr_{n} is the trace on $L\left(H_{n}\right)$ so normalized that the unit has trace $1(n=1,2, \cdots)$, then $I_{U}=\left\{\left(x_{n}\right)\right.$: $\left.\lim _{U} \operatorname{tr}_{n}\left(x_{n}^{*} x_{n}\right)=0\right\}$ is a maximal two-sided ideal in M and $N=M / I_{U}$ is a II_{1} factor. If $x \in N$ is represented by the sequence $\left(x_{n}\right) \in M$, then $\operatorname{Tr}(x)=$ $\lim _{U} \operatorname{tr}_{n}\left(x_{n}\right)$. For each n we identify $L\left(H_{n}\right)$ with the algebra of $n \times n$ complex matrices, and let \sim denote the transposition of a matrix. For $x=\left(x_{n}\right) \in M$ let $\widetilde{x}=\left(\widetilde{x}_{n}\right)$. Then $\left(I_{U}\right)^{2}=I_{U}$ and an antiautomorphism of N is defined by $\left(x+I_{U}\right)^{2}=\widetilde{x}+I_{U}$.

If K denotes the completion of N with respect to the canonical trace norm, K is a Hilbert space. A self-adjoint unitary operator J on K is defined by $J x=\widetilde{x} \quad(x \in N)$. N acts on K by left multiplication: if $L_{x} \in$ $L(K)$ is given by $L_{x} a=x a \quad(x, a \in N)$, then the map $x \rightarrow L_{x}$ is a normal ${ }^{*}$-isomorphism of N into $L(K)$, the standard representation of N. If we identify N with its image in $L(K)$, the commutant N^{\prime} is just the set of right multiplications by elements of $N[7, \mathrm{I}, \S 5$, Théorème 1]. If $x, a \in N$, then $J x J a=J(x \widetilde{a})=a \widetilde{x}$. Thus $J N J \subseteq N^{\prime}$ and the map $x \rightarrow J x J$ is a *-isomorphism of N onto N^{\prime}.

Let Φ be the quotient map of M onto N. By [14, Lemma 2.4] there
is a representation σ of $M \otimes M$ on K such that

$$
\sigma(a \otimes b)=\Phi(a) J \Phi(b) J \quad(a, b \in M)
$$

Since $\sigma(M \otimes I)=N$ and $\sigma(I \otimes M)=J N J=N^{\prime}, \sigma$ is irreducible.
Since $M \otimes M \subseteq L(H) \otimes L(H)$, there are, by [8, 2.10.2], a Hilbert space K_{0} with $K \subseteq K_{0}$ and an irreducible representation π of $L(H) \otimes L(H)$ on K_{0} such that $\pi(x) \mid K=\sigma(x)$ for $x \in M \otimes M$. Commuting factor representations π_{1} and π_{2} of $L(H)$ on K_{0} are defined by

$$
\pi_{1}(x)=\pi(x \otimes I), \pi_{2}(x)=\pi(I \otimes x) \quad(x \in L(H)) .
$$

Then $\operatorname{ker} \pi_{1}=\operatorname{ker} \pi_{2}=L C(H)$ by [15, Lemma 3].
In [15, Section 4] Wassermann showed that there is an isomorphism of the free group on two generators into the unitary group of M. Let C denote the C^{*}-subalgebra of M generated by its image. Anderson [1] showed that there is a projection p in M such that $\operatorname{Tr}(\Phi(p)) \geqq 1 / 2$ and $p x \in L C(H)$ if $x \in C \cap I_{U}$. Let $C^{*}(C, p)$ denote the C^{*}-subalgebra of M generated by C and p.

From now on, we use $H, M, \pi, \pi_{1}, \pi_{2}, K_{0}$ and $C^{*}(C, p)$ in the above situation.

Lemma 7. There exist no completely positive unital maps ρ_{1} and ρ_{2} of $L\left(K_{0}\right)$ to $\pi_{2}\left(C^{*}(C, p)\right)^{\prime}$ and $\pi_{1}\left(C^{*}(C, p)\right)^{\prime}$, respectively, such that

$$
\begin{array}{ll}
\rho_{1}(a x b)=a \rho_{1}(x) b & \left(a, b \in \pi_{1}\left(C^{*}(C, p)\right), x \in L\left(K_{0}\right)\right), \\
\rho_{2}(a x b)=a \rho_{2}(x) b & \left(a, b \in \pi_{2}\left(C^{*}(C, p)\right), x \in L\left(K_{0}\right)\right) .
\end{array}
$$

Proof. It was shown in the proof of [15, Proposition 5] that such a ρ_{1} cannot exist. It was also shown in the proof of [15, Theorem 8] that such a ρ_{2} cannot exist.

Lemma 8. Let A and B be C^{*}-subalgebras of $L(H)$ both containing $C^{*}(C, p)$. Then
(1) $F(A \cap L C(H), B, A \otimes B) \nsubseteq \operatorname{ker} \pi$,
(2) $\quad F(A, B \cap L C(H), A \otimes B) \nsubseteq \operatorname{ker} \pi$.

Proof. (1) Suppose that $F(A \cap L C(H), B, A \otimes B) \cong \mathrm{ker} \pi$. As in the proof of [14, Proposition 2.5], the relation $\pi_{1} \circ L_{h}=L_{h} \circ\left(\pi_{1} \otimes I\right) \quad\left(h \in L(H)^{*}\right)$ shows that $\left\{x \in A \otimes B: \pi_{1} \otimes I(x)=0\right\}=F(A \cap L C(H), B, A \otimes B)$. Hence there is a representation $\bar{\pi}$ of $\pi_{1}(A) \otimes B$ such that $\bar{\pi}(a \otimes b)=a \pi_{2}(b)$ ($\left.a \in \pi_{1}(A), b \in B\right)$. By [15, Lemma 1] there is a completely positive unital map ρ_{1} of $L\left(K_{0}\right)$ to $\pi_{2}(B)^{\prime}$ such that $\rho_{1}(a x b)=a \rho_{1}(x) b \quad\left(a, b \in \pi_{1}(A), x \in L\left(K_{0}\right)\right)$. Such a ρ_{1} cannot exist by Lemma 7. Hence we obtain (1).
(2) This follows from an argument similar to (1).

Theorem 9. Let H be a separable infinite dimensional Hilbert space. Then $L C(H) \otimes_{F} L C(H)$ strictly contains $L C(H) \otimes L C(H)$.

Proof. Since $L(H)$ is injective, it is enough to show that $F(L C(H)$, $L C(H), L(H) \otimes L(H)) \supsetneq L C(H) \otimes L C(H)$. By Lemma 8 we have

$$
\begin{align*}
& F(L C(H), L(H), L(H) \otimes L(H)) \nsubseteq \operatorname{ker} \pi \tag{1}\\
& F(L(H), L C(H), L(H) \otimes L(H)) \nsubseteq \operatorname{ker} \pi
\end{align*}
$$

Since $F(L(H), L C(H), L(H) \otimes L(H))$ is a closed two-sided ideal in $L(H) \otimes$ $L(H)$ [10, Lemma 2.2], the restriction of π to $F(L(H), L C(H), L(H) \otimes$ $L(H)$) is an irreducible representation. Let $\left\{u_{\beta}\right\}$ be an approximate identity for $F(L(H), L C(H), L(H) \otimes L(H))$. Then $\left\{\pi\left(u_{\beta}\right)\right\}$ converges strongly to the identity operator on K_{0}.

Suppose that $F(L C(H), L C(H), L(H) \otimes L(H)) \subseteq$ ker π. We note that $F(L C(H), L C(H), L(H) \otimes L(H))=F(L(H), L C(H), L(H) \otimes L(H)) \cap F(L C(H)$, $L(H), L(H) \otimes L(H))$. Since $F(L C(H), L(H), L(H) \otimes L(H))$ is a two-sided ideal [10, Lemma 2.2], it follows that if $x \in F(L C(H), L(H), L(H) \otimes L(H)$), we have $u_{\beta} x \in F(L C(H), L C(H), L(H) \otimes L(H))$, so that $\pi(x)=\lim _{\beta} \pi\left(u_{\beta}\right) \pi(x)=$ $\lim _{\beta} \pi\left(u_{\beta} x\right)=0$ (strongly). Hence we obtain $F(L C(H), L(H), L(H) \otimes$ $L(H)) \subseteq \operatorname{ker} \pi$. This inclusion contradicts (1), and we have

$$
\begin{gathered}
F(L C(H), L C(H), L(H) \otimes L(H)) \supseteqq \operatorname{ker}(\pi \mid F(L C(H), L C(H), \\
L(H) \otimes L(H))) \supseteqq L C(H) \otimes L C(H)
\end{gathered}
$$

This completes the proof.
Theorem 10 (cf. [15, Theorem 8]). Let K be an infinite dimensional Hilbert space and let A be a C^{*}-subalgebra of $L(K)$ such that $A \supseteqq L C(K)$. Then $A \otimes_{F} L C(K)$ strictly contains $A \otimes L C(K)$.

Proof. As in the proof of Theorem 9, it is enough to show that $F(A, L C(K), L(K) \otimes L(K)) \supsetneqq A \otimes L C(K)$.

Suppose that

$$
\begin{equation*}
F(A, L C(K), L(K) \otimes L(K))=A \otimes L C(K) \tag{2}
\end{equation*}
$$

With H as in Theorem 9, we may assume that $H \subseteq K$. Then we have $L C(H) \subseteq L C(K) \subseteq A$, so that, by (2), $F(L C(H), L C(K), L(K) \otimes L(K)) \subseteq$ $A \otimes L C(K)$. Thus $F(L C(H), L C(K), L(K) \otimes L(K))=F(L C(H), L C(K)$, $A \otimes L C(K))$. By [13, Theorem 22] we obtain $F(L C(H), L C(K), A \otimes$ $L C(K))=L C(H) \otimes L C(K)$, hence
(3) $F(L C(H), L C(H), L(K) \otimes L(K))=F(L C(H), L C(H), L C(H) \otimes L C(K))$.

Then a second application of [13, Theorem 22] shows that

$$
\begin{equation*}
F(L C(H), L C(H), L C(H) \otimes L C(K))=L C(H) \otimes L C(H) \tag{4}
\end{equation*}
$$

Since there is a projection of norm one from $L(K)$ onto $L(H)$, it follows from [10, Proposition 3.7] that
$F(L C(H), L C(H), L(K) \otimes L(K))=F(L C(H), L C(H), L(H) \otimes L(H))$.
Hence (3), (4) and (5) yield that $F(L C(H), L C(H), L(H) \otimes L(H))=L C(H) \otimes$ $L C(H)$. This contradicts Theorem 9, and we obtain the desired result.

Let C and D be C^{*}-algebras with C^{*}-subalgebras A and B, respectively. Tomiyama [10, Theorem 3.1] proved that if all the irreducible representations of A are finite dimensional of bounded dimension, then $F(A, B$, $C \otimes D)=A \otimes B$. However, if we remove the condition "of bounded dimension" from his theorem, we have the following situation.

Example 11. With H and M as in the beginning of this section, all the irreducible representations of $M \cap L C(H)$ are finite dimensional, and $(M \cap L C(H)) \otimes_{F} L(H)$ strictly contains $(M \cap L C(H)) \otimes L(H)$.

Proof. It is easy to see that $M \cap L C(H)=\left\{\left(x_{n}\right) \in M: \lim _{n}\left\|x_{n}\right\|=0\right\}$. It follows from [8, 10.4.3 and 10.10.1] that all the irreducible representations of $M \cap L C(H)$ are finite dimensional. Since M is injective, we show that $F(M \cap L C(H), L(H), M \otimes L(H)) \supsetneq(M \cap L C(H)) \otimes L(H)$. Applying Lemma 8 with $A=M$ and $B=L(H)$, we have

$$
\begin{equation*}
F(M \cap L C(H), L(H), M \otimes L(H)) \nsubseteq \operatorname{ker} \pi \tag{6}
\end{equation*}
$$

Suppose that $F(M \cap L C(H), L(H), M \otimes L(H))=(M \cap L C(H)) \otimes L(H)$. Then $F(M \cap L C(H), L(H), M \otimes L(H)) \subseteq \operatorname{ker} \pi$. This inclusion contradicts (6). It then follows that $F(M \cap L C(H), L(H), M \otimes L(H)) \supsetneqq(M \cap L C(H)) \otimes$ $L(H)$. This completes the proof.

References

[1] J. Anderson, A C^{*}-algebra A for which $\operatorname{Ext}(A)$ is not a group, Ann. of Math. 107 (1978), 455-458.
[2] W. B. Arveson, Subalgebras of C^{*}-algebras, Acta Math. 123 (1969), 141-224.
[3] M. D. Chor, A Schwarz inequality for positive linear maps on C^{*}-algebras, Illinois J. Math. 18 (1974), 565-574.
[4] M. D. Choi and E. G. Effros, The completely positive lifting problem for C^{*}-algebras, Ann. of Math. 104 (1976), 585-609.
[5] M. D. Choi and E. G. Effros, Lifting problems and the cohomology of C^{*}-algebras, Canad. J. Math. 29 (1977), 1092-1111.
[6] M. D. Choi and E. G. Effros, Injectivity and operator spaces, J. Funct. Anal. 24 (1977), 156-209.
[7] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, 2° édn, Gauthier-Villars, Paris, 1969.
[8] J. Dixmier, Les C^{*}-algèbres et leurs représentations, 2^{e} édn, Gauthier-Villars, Paris, 1969.
[9] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338.
[10] J. Tomiyama, Tensor products and approximation problems of C^{*}-algebras, Publ. Res. Inst. Math. Sci. 11 (1975), 163-183.
[11] J. Tomiyama, On the Fubini product of von Neumann algebras, Bull. Yamagata Univ. Natur. Sci. 9 (1976); 53-56.
[12] J. Tomiyama, Some aspects of the commutation theorem for tensor products of operator algebras, Proc. of the colloquium on "Algebras of operators and their applications to mathematical physics", Marseille, 1977.
[13] S. Wassermann, The slice map problem for C^{*}-algebras, Proc. London Math. Soc. (3) 32 (1976), 537-559.
[14] S. Wassermann, On tensor products of certain group C^{*}-algebras, J. Funct. Anal. 23 (1976), 239-254.
[15] S. Wassermann, A pathology in the ideal space of $L(H) \otimes L(H)$, to appear.
Department of Mathematics
Faculty of Education
Niigata University
Nitgata, 951 Japan

