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1. Statement of the main theorem and its consequences. Let D^
be a dihedral group of order 2n generated by σ and τ with relations σn =
τ2 — 1 and τ~xστ = σ~\ Set Cn = (σ). Then Cn is a normal subgroup
of Dn. Throughout this paper all modules will be finitely generated left
modules. The main result of this paper is

MAIN THEOREM 1.1. Let P be a projective ZDn-module. Then P is
free if and only if P is free as a ZCn-module.

Let A be an order in a finite dimensional semi-simple Q-algebra QA.
C{A) denotes the locally free class group of A. Let B £ QA be a maximal
order containing A. Then the kernel D{A) of the natural homomorphism
of C(A) onto C{B) does not depend on the choice of B. Viewing projec-
tive ZZ)Λ-modules as ZCw-modules we obtain the restriction map

res: C(ZDn)^C(ZCn).

It is well known that res (D(ZDn)) £ D(ZCn). For an arbitrary finite
group G, every projective ZG-module is locally free and vice versa ([17]).
Hence Main Theorem can be reformulated as

THEOREM 1.2. res: C(ZDn) —> C(ZCn) is injective.

If n = 2% then (1.2) is an easy consequence of D(ZD2e) = 0 ([14]).
Namely,

PROPOSITION 1.3. res: C(ZD2e) -> C(ZC2e) is injective.

PROOF. Let B be a maximal order of QD2e containing ZD2e. Since
D(ZD2e) = 0, we have C(ZDt.) = C(B) ~ Π i ^ e C(Z[ζ2J + ζ2?]), where ζm =
exp (2πi/m). By Weber's theorem ([7]) the order of C(ZD2e) is odd. On
the other hand, Ker (res) is an elementary 2-group by Artin's induction
theorem (note that the Artin exponent of D2e is 2). This shows that res
is injective.

In this section we will discuss consequences of Main theorem. Let
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E/K be a finite normal extension of finite algebraic number fields with
Gal (E/K) = G. The ring of algebraic integers <^E of E can be viewed
as a module over ZG. It is a classical result that &Έ is a locally free
ZG-module if and only if E/K is tame, i.e., tamely ramified. It is known
that if E/K is tame, then the class of έ?E in C(ZG) is in D(ZG) (so-called
Martinet's conjecture solved by Frδhlich ([5])). Recently Taylor proved
a remarkable extension of the classical Hilbert-Speiser theorem in [18]:

THEOREM 1.4 (Taylor). If E/K is a tame abelian extension of
algebraic number fields with Gal (E/K) = G, then ^E is a free ZG-module.

If E/K is a tame extension of algebraic number fields with
Gal (E/K) - Dn, then E/Ec* is a tame extension with Gal (E/Ec«) = Cn.
Taylor's theorem implies that έ?E is a free ZC^-module. Hence by Main
theorem we have the following theorem which establishes a conjecture
for dihedral groups made in [5, p. 420]:

THEOREM 1.5. If E/K is a tame extension of algebraic number fields
with Gal (E/K) = Dn, then ί7E is a free ZDn-module.

IfK=Q and n is an odd prime, this result was proved by Martinet
([13]) before the appearance of Frδhlich's theory ([5]). If n is odd, this
follows from Taylor's theorem and the results of Cassou-Nogues in [2].
If ft is a power of 2, (1.5) was proved by showing that D(ZD2e) = 0 ([4],
[5]). If n is a power of an odd prime p, (1.5) follows from Corollary 2
in [19] and the fact that the order of D(ZDn) is also a power of p. If
n < 60, (1.5) was proved in [3] by directly computing D(ZDn).

Let G = PSL(2, pf) be a projective special linear group over the finite
field with pf elements, where p is an odd prime. By Dickson's classifi-
cation of all subgroups of G ([9]) and the hyperelementary induction
theorem, we obtain

(1.6) C{ZG) £ C(ZD{pf_im) 0 C(ZDipUim)
/ times

0 C(Z(CP x Cp x . . . x^Cp)) 0 C(ZCP * C(p_1)/2) ,

where Cp*C{p-ι)/2 is a semi-direct product of Cp and C{p^1)/2, with C{p^1)/2

acting faithfully on Cp. Frohlich showed in [6] that if E/Q is a tame
extension of algebraic number fields with Gal (E/Q) = Cp*Cq, where
q I (p — 1) and Cg acts on Cp faithfully, then E/Q has a normal integral
basis, i.e., ^E is a free ZCP*Cg-module. Thanks to Taylor's theorem his
arguments in [6] work for a relative extension case. From (1.5) and
(1.6) we obtain a normal integral basis theorem for G. For p = 2, a
similar argument works. Therefore
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PROPOSITION 1.7. If EjK is a tame extension of algebraic number
fields with Gal (E/K) = PSL(2, pf) for a prime p, then έ?E is a free
ZPSL(2, pf)-module.

Let G be a finite group of order m. Following Swan [16] we define
T(ZG) to be the subgroup of C(ZG) generated by the locally free ideals
rZG + ZΣ of ZG, where r e Z, (r, m) = 1 and Σ = Σ*e<? 0. Fundamental
properties of Γ(ZG) are found in [20]. Since T(ZCn) = 0 (see [16], for
example), by Main Theorem we obtain

THEOREM 1.8. T(ZDn) = 0.

This fact can also be shown by directly finding a generator of an
ideal rZDn + ZΣ of ZDn. This proof will be presented in a forthcoming
paper with S. Endo.

Let (ZCJ<r> = {aeZCn\a = τ^ατ}. By Main theorem and Jacobinski-
Roiter's theory on genera of modules ([10], [15] or [17]), we have

PROPOSITION 1.9. C(ZDn) = C((ZCJ<Γ>).

If n is an odd integer, this easily follows from Section 3 of [1].
For an arbitrary n, this will be proved in Section 2.

2. Twisted group rings. Let R be an order in a finite dimensional
commutative semi-simple Q-algebra QR. Let τ be a non-trivial automor-
phism of R such that τ2 = 1, i.e., an involution. We denote by S — R(τ}
the twisted group ring of <τ> over R with a trivial cocycle. Using this
notation we can write ZDn = ZCn(τ), since τ acts on ZCn by inner con-
jugation. R has the obvious S-module structure ( = S(1 + τ)). We assume
that R is a faithful S-module. If P is a locally free left ideal of S, then
by Roiter's theorem ([15]) there is an S-module M locally isomorphic to
R such that as S-modules we have

(2.1)

Conversely if M is given we can find P satisfying the formula (2.1).
Viewing S-modules as i?-modules we have the restriction map

resi: C(S) -» C(R) .

By (2.1) it is clear that res | sends the class of P to the class of M con-
sidered as i?-modules.

LEMMA 2.2. Let M be an S-module locally isomorphic to R. Then
there exists a locally free ideal X of the invariant subring iϋ<Γ> of R
such that
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PROOF. Since 22<Γ> ̂  Horn.? (Λf, M) = Hom^ (22, R) and M is locally
isomorphic to R, X = Hom5 (R, M) is a locally free ideal of R<τ>. Let us
consider the natural pairing

Φ: Honis (22, Λf) (x)Λ<r> 22 -> Λf .

Obviously Φ is an S-module homomorphism. By localization it is easy to
see that Φ is bijective. Hence X®R<τ>R = Λf.

Combining (2.2) with the formula (2.1) we have

LEMMA 2.3. If P is a locally free left ideal of S, then there exists
a locally free ideal X of 22<Γ> such that

Conversely if X is given we can find P satisfying the above formula.

If the natural homomorphism i: C(22<τ>) -> C(22) defined by tensoring
is injective, then (2.3) shows that sending the class of P to the class of
X defines a surjection φ from C(S) to C(22<Γ>). Now we have the com-
mutative diagram:

" " ->C(R)

(2.4) \

LEMMA 2.5. We assume that i is injective. Then φ is an isomor-
phism if (i) res£ is injective or (ii) R is a projective S-module. If (ii)
holds, then ress

R is injective.

PROOF. The first case follows from the commutative diagram (2.4)
directly. The second case follows from Jacobinski's cancellation theorem
([10J or [17]). More precisely if we have 22 φ S ^ 22 φ P , then the pro-
jectivity of 22 implies that S φ S = S φ P. Hence we have S^P. The
last assertion is straightforward.

Assuming Main theorem, we show that there is a similar commuta-
tive diagram for S = ZDn similar to (2.4). Put

(1 + σ2 + σ" + + σ^2-1' if n is even
Σ =0 (1 + σ + σ2 + + σn~x if n is odd .

Since we are assuming Main theorem, we have T{ZDn) = 0, so that
argument in Section 3 of [3] shows that the natural maps
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C(ZDn) - C(ZDJΣ0 ZDn) , C(ZCn) - C(ZCJΣ0

and

are all isomorphisms. If we assume that C((ZCn)<τ>) —> C(ZCn) is injective,
then these isomorphisms imply that

C((ZCJΣ0

is injective too. Since ZCJΣ0 ZCΛ is a faithful ZDJΣQ

there is a surjective homomorphism

J?0 ZDn)-+C{(ZCJΣ0

which makes the diagram (2.4) commutative for S = ZDJΣ0 Z i \ . Let
^ be the composition of maps

C{ZDn) > C(ZDJΣ0 ZD%) -^ C((ZCJΣ0

Then ^ is surjective and the diagram

C(ZD%) — ^ -

\

is commutative.
Now if we assume Main theorem, then in order to prove (1.9), i.e.,

that φ is an isomorphism it is sufficient to show by the above commuta-
tive diagram that the natural map i: C((ZCn)<τ>) —> C(ZCn) is injective.
We will prove a general version of the injectivity of the map ί. Let G
be a finite abelian group and g the standard involution of ZG, i.e., the
automorphism of ZG induced by g(h) — h~x (heG). A character X: G —>C*
can be extended to the algebra homomorphism of ZG into C by linearity,
which we denote by the same symbol X.

LEMMA 2.6. IfG is a finite abelian group, then we have the follow-
ing.

( i ) If u is a unit of ZG satisfying u u9 = 1, then u is a trivial
unit of ZG, i.e., ue±G.

(ii) Let u be a trivial unit of ZG. If X(u) — 1 for every real
character X:G—>R*, then there is a veG such that u = v2.

PROOF. Projecting u to a simple component of QG on which g acts
as the complex conjugation, we easily see that u is a unit of finite order



54 T. MIYATA

in every simple component of QG. Hence u is of finite order in ZG, so
that u is a trivial unit by Higman's theorem ([8]). The proof of (ii) is
clear.

REMARK 2.7. We denote by U(A) the unit group of a ring A. By
(2.6) and an argument similar to that in the proof of Lemma 3.1 in [11],
we have U(ZG) = G U((ZG)<9>). Indeed, let u be a unit of ZG. Then
v = u9/u is a unit of finite order, say v = ±h for heG. Since %(i;) =
X(u9/u) = 1 for every real character X: ZG —>/?*, v = A, and h = w2 for
a suitable weG by (2.6). Noting that (w) f f = w~V = whΓγu9 = w , we
see that % = w~\wu) e G U((ZG)<g>).

THEOREM 2.8. jFor a finite abelίan group G, the natural homomor-
phίsm of C((ZG)<9>) into C(ZG) is injective.

PROOF. Let Jlί be a locally free ideal of (ZG)<9>. By [15] there
exists an ideal N of (ZG)<9> such that N = M and (ZG)<9>/N is annihilated
by an odd integer, say d. We assume that N ZG is a principal ideal a ZG.
Since α ZG is gr-stable, there is a unit w in ZG such that ag = u- a. a
being a regular element, we have u u9 = 1. Hence w is a trivial unit
by (2.6). Let X: G -+ JR* be a real character. Then %(ασ) = Z(α) Φ 0, hence
%(%) = X{a?)T{aTγ = 1. By (2.6) we have u = v2 for some veG and there-
fore, (/y~1α)fir = v~γa. Set 6 = v~ιa. Since beN ZG, we can write & =
Wiαj. + n2a2 + + nrar with nteN and α̂  6 ZG for 1 <£ i ^ r. Prom
this we have 26 = 6 + 6g = Σi^^r Wiία* + α?) e N. On the other hand,
db e N, hence δ e N. This shows that N is a principal ideal.

COROLLARY 2.9. D(ZJDJ = D((ZCn)<r>).

PROOF. We have an injection /: ZCn -> Γ = Πri, Z[ζJ. Since ZDW =
ZCn(τ), we have the injection / ' induced by /.

/ ' : ZDn -> Γ<τ> - Π Z[ζr]<τ> .
r\n

If r is not a power of 2, Z[ζr]<τ> is a hereditary order in Q(ζr)<τ>,
therefore, C(Z[ζr]<τ» = C(Z[ζr + C71]). If r is a power of 2, (1.3) implies
that C(Z[ζr])<r> ~ C(Z[ζr + ζ-]). Hence C(Γ<r>) = Πn CίZK. + ζ^D^CCB),
where B is a maximal order of QDn containing ZDn. Now we have a
commutative diagram with exact rows

0 > D(ZDn) > C(ZDJ >C(T<r» >0

1 I* V
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where φr is the map constructed in (2.3). Note that C(T<τ>) -> C{T) is injec-
tive by the classical Kummer theorem. Since φ and φ' are isomorphisms,
we have D(ZDn) = D((ZCn)<τ>).

3. A certain factor ring of ZDn. Let Dn = <σ, τ \ σn = τ2 = 1,
r~1σr = α*"1) be a dihedral group of order 2n. We write % = 2em, where
m is an odd integer, and σ = p-μ, where p is of order m and μ is of order
2e. Let us set 2T = l + io + lo

2+ . + ρm~\ S=ZDJΣ-ZDn and R = ZCJΣ ZCn9

where Cn is the subgroup of Dn generated by σ. σ, p, μ and τ denote
the images of a, p, μ and τ in S, respectively. S is the twisted group
ring of <τ> over R, where τ acts on R by inner conjugation. Let RQ

be {?*6i?|r~Vr = r}, the invariant subring of R under <r>. Then i2 is
a free i20-module with basis (1, σ). For the remainder of this paper we
will use these notations and will assume m > 1.

As ϋJ-modules R = S(l + r) and R = S(l — r). These isomorphisms
impose on R two S-module structures. As S-modules we set

R+ = S(l + τ) and R_ = S(l - f) .

Since the left multiplications by elements of S on R+ are jR0-endomor-
phisms, we have an imbedding S->EndΛoCff+). By this imbedding we
view S as a subring of Endβo (R+). Using the free j?o-basis (1, σ) we
identify End^ (R+) with M2(R0), the ring of 2 x 2-matrices with entries
in Ro. By this identification an arbitrary element a + bτ + cσ + dστ e S
(α, b, c, de Ro) is represented by the matrix

la + 6 6ft) — c + d\

\c + d a - b + cω) '

where ω — σ + σ~\ We set this matrix equal to ί^ ^J6ilf2(i20). Then

we obtain the following relations:

a(ω2 — 4) = xω2 — (y — z)ω — 2(« + u)
( 8 ' 2 ) c(ft)2 - 4) = 2(» - « ) - ( » - w)α) .

Since ω = pμ + ρ~ψ~\ we have ω2 — 4 = ^ / P + p~Ψ~2 — 2. This shows
that (pψ2 + iO"2^"2)2 - 4 = £*£* + i o" 4 ^" 4 - 2 e (ω2 - A)R0. Repeating this
procedure we have ρ2"' + p~2e — 2 e (ft)2 — 4)i20. Since ^ is of odd order m,
we have that p + jδ"1 — 2 e (ft)2 — 4)i20. From this we obtain

LEMMA 3.3. ϋ?0/(ft)2 — 4)i?0 is annihilated by m.

Since m is an odd integer,

LEMMA 3.4. (ft) — 2)R0 and (ft) + 2)R0 are coprime ideals, namely,
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(ω - 2)R0 + (ω + 2)R0 = Ro and (ω - 2)R0 f] (ω + 2)i20 = (α>2

LEMMA 3.5. P f j belongs to S if and only if

( i ) 2(x-u) = (y- z)ω mod (ω2 - 4)J?0 if e^O

or

(ii) # — w ΞΞ 2/ — z mod (α> — 2)R0 if e — 0.

If e = 0, i.e., n is odd, α> and ω + 2 are units. Hence (i) implies
(ii). (i) follows easily from the formula (3.2).

The reduced norm map Nrd: S —»Ro is the composition of maps

S

Hence it is easy to check that Nrd(α + bτ) = a aτ — b-bτ (α, 6 6 JB), where
aτ = τ'^aτ and bτ = τ~xbτ. (3.5) shows that

LEMMA 3.6. Nrd: U(S) -> U(R0) is surjective.

LEMMA 3.7. R+ and R_ are projective S-modules and S ~ J B + 0 J B _ .

PROOF. Let p be a prime. If p | m , Zp (g)z S = Zp ® z Endβo (72+) by
(3.3), which implies that ZP®ZR+ is a projective Zp (g)z S-module. If
p I m, 2 is invertible in Zp, hence we get Zp (x)z i2+ ^ (Zp (g)z S (1 — f )/2) 0
(Zp (g)z S (1 + f)/2). Therefore Zp ®z R+ ^ Zp (x)z S- (1 + f)/2 is a projec-
tive Zp ® z S-module. From the exact sequence 0 -> i?_ —> S —> i?+ -> 0,
we obtain S = i?

We prove an analogue of Main theorem for S and R, namely,

THEOREM 3.8. res£: C(S) -+C(R) is an injection.

Thanks to (2.5), in order to prove (3.8) it is sufficient to prove the
following.

PROPOSITION 3.9. The natural homomorphism C(R0) —> C(R) is an
injection.

To prove this we need one more lemma.

LEMMA 3.10. If ueR is a unit of finite order, then um = ±μi for
some i.

PROOF. We have an injection /: R^> Hr\m,r>iZ[ζr, μ], where the
projection fr: R —> Z[ζr, μ] is given by sending p to ζ r. Since fr(u) is a
unit of finite order in U(Z[ζr, μ\), we have fr(u) = ±ζiμk by Higman's
theorem ([8]). Put fr(um) = h(r)μa{r), where h(r) = ± 1 . We show that
h(r) and a(r) mod 2e do not depend on r. Let psm0 and p*mQ be divisors
of m, where p is an odd prime. Then we have
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Q o (ζps ~ ζpt) .

This shows that h(p8mQ) — /&(p*m0) and a(p8m0) = α(p*w0) mod 2e. By
induction on the number of primes dividing m we see that h(r) and α(r)
mod2e do not depend on r |ra. Hence um = ±μ* for some i.

REMARK 3.11. If we 17(12), then ume(μ)U(R0) (cf. (2.7)).

Now we prove (3.9). Let M be a locally free ideal of 120. We can
choose an ideal JV of Ro such that N = M and RQ/N is annihilated by an
integer d coprime to 2m. We assume that JV R is a principal ideal c JB.
There is a unit % in R such that cΓ = u c. We have u MΓ = 1 and hence,
u is a unit of finite order. By (3.10) um = ±μ £ for some i. If e ^ 1,
let us look at algebra homomorphisms

κ: R -Λ> z[ζ,f μ] > Fp[μ]l(μ - 1) = Fp

and

w jδ] > FP[μ]/(μ + 1) s FP ,

where ί) is an odd prime dividing m. Since c 12 is coprime to 2mlί,
κ(c) and κ'(c) are non-zero. This shows that um = jδ* and i is even, say
i = 2j. If β = 0, i.e., w = m is odd, it is easy to see that um = 1. In
both cases (μjcmy = ^ c w . By the same argument as in (2.8) we see that
Nm is principal. On the other hand, N-R = iV0 JV as 120-modules. Note
that R is a free #0-module of rank 2. This shows that Ker (C(R0) -> C(R))
is an elementary 2-group. Hence the class of N in C(R0) is trivial. This
completes the proof.

Thanks to (3.8) we can use (2.5), i.e., we have a surjection φ: C(S) —•
C(RQ), which makes the following diagram commutative (cf. (2.4)):

C(S) —-*^-* C(R)

Since R is a projective S-module by (3.7), φ is an isomorphism, hence
resfe is injective.

COROLLARY 3.12. C(S) = C(12o) α^d D(S) = JD(JB0).

The first isomorphism was proved above. The second is proved by
a method similar to that in (2.9).

REMARK 3.13. (2.8) and (3.9) are clearly analogues to the following
classical theorem of Kummer:
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KUMMER A. The class number of Q(ζn + ζ*1) divides that of Q(ζJ.

In our notations this can be formulated as

KUMMER B. The natural homomorphism of C(Z[ζn + ζ"1]) into
C(Z[ζn]) is injective.

According to [12] there is a modern formulation of this theorem due
to Iwasawa.

KUMMER-IWASAWA. The norm map C(Z[ζJ) -• C(Z[ζn + ζ"1]) is
surjective.

For a cyclic group Cm of odd order m we can give an analogue of
the Kummer-Iwasawa theorem. In fact we have the inflation map
inf: D(ZCm) -> D(ZDm) defined by sending the class of P to the class of
ZDm ®zcm P- Cassou-Nogues proved in [1] that inf is a surjection. The
composition of map

D{ZCm) - ^ D{ZDm) - ^ > D(ZCM)

is clearly an analogue of the norm map in the Kummer-Iwasawa theorem.
Hence by (2.5) we have

PROPOSITION. If M is a locally free ideal of (ZCm)<τ> there exists a
locally free ideal P of ZCm such that P Pτ = M ZCm, where Pr—
{aT\aeP}.

4. The proof of Main theorem. In this section we prove Main
theorem, i.e., the injectivity of res: C(ZDn) -^C(ZCn). If n is a power
of 2, i.e., if m = 1, this was shown in (1.3). Hence we assume that
m > 1.

Set Dr — D2e and C" = C2e. We have two pull back diagrams:

ZDn > ZD' ZCn > ZC

I 1 - 1 1
S >FmD' R >FmC

where Fm is a finite ring ZjmZ. From [14] we have a commutative
diagram

U(S) e U(ZD') > U(FmD') > C(ZDn) > C(S) φ C(ZD') > 0

1 1 1 1
U{R) 0 U(ZC) > U{FmC) > C(ZCn) > C(R) 0 C(ZC) >.O ,

where the rows are exact and the vertical arrows are all restriction
maps. Since the image of U(S) 0 U{ZD') (resp. U(R) 0 U(ZC')) in
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U(FmD') (resp. U{FmC')) coincides with the image of U(S) (resp. U(R)),
the above diagram reduces to

U(S) -^-» U(FmD'Y» > C(ZDn) > C(S) 0 C(ZD') > 0

\λz Mi res res'

U(R) -£-> U(FmC) > C(ZCn) > C(R) © C(ZC') *0,.

where U{FmD')ab is the abelization of U(FmD') and λx (resp. λ2) is the
restriction map. From the left square of this diagram, we have

0 * ImΛ > U{FmD')ah-—* Coker f,- >0

J/'2
0 > I m / 2 — > U{FmC) —>Coker/ 2 >0,

where λό is induced by λ2 and λ3 is induced by λlβ By (1.3) and (3.8) we
have

Ker λ3 = Ker (C(ZDn) - ^ > C(ZCn)) .

This group is an elementary 2-group by Artin's induction theorem. Ap-
plying the snake lemma to the above diagram we have an exact sequence

Ker λ2 > Ker X1 > Ker λ3 > Coker λ̂  > Coker λx .

To complete the proof of Main theorem we must show that

(A) Coker λ2 -> Coker λx is injective

and

(B) Ker λ2 —> Ker λx is surjeetive.

PROOF OF (A). Let us look at λx and λ2 closely. It is easy to check
that λ2 is the composition of maps

U(S) > K^S) — KX{R) — U{R) .

Let u — a-Vbτ (α, beR) be a unit of S and κu\ S —> S be an S-module homo-
morphism defined by tcu(s) = s u for all s e S. The image of u in K^S)
is the class of κu. The map res^ sends the class of κu to the class of
κu considered as an iϋ-module homomorphism. Since S = R 0 Rτ is a free
ϋJ-module with basis (1, σ). κu can be represented by a 2 x 2-matrix
(a

T (V). Therefore we see that X2(u) = a αΓ — b 6Γ, i.e., λ2 is the

reduced norm map. By the same method we can show that λi is the
reduced norm map too.
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Now let ueU(R). If f2(u) eImXu then f2(u) is τ-invariant. Since
uτ/u is a unit of finite order, (uτ/u)m = ±μi for some i by (3.10). Since
f2(uτ/u) = f2(u)τ f2(u)-1 = 1, we have/2(±jδ4) = ±jδ* = 1. This shows that
i == 0 mod 2% i.e., um is τ-invariant. By (3.6) Nrd: U(S)->U(RQ) is sur-
jective, hence um is in the image of λ2. This implies that Ker (Coker λ2 —>
Cokerλx) is a group of odd order. Since Ker (C(ZDn) -> C(ZCn)) is an
elementary 2-group, Coker λ2 —> Coker λj. is injective.

PROOF OF (B). We set Σo = 1 + μ2 + μ4 + + /Z2-^"1-". We have
the decomposition U(FmD')ah = U(FmD'/Σ0 - FmD')ah @U(FmD'l(β2 - 1)). It
is well known that G = U(FmD'/Σ0 Fw2)')α6 = K^F^jΣ, jFmZ>') =
U{{FmC'IΣQ-FmCr)<τ>). This shows that λx restricted to G is injective. Now
we set S = FmD'l(μ2 -JL)FmD'. Then U(β) = ϊ7(S/(iδ - 1, τ - 1)) 0
U(S/(μ - 1, τ_+ 1)) 0 C7(S/(// + 1, r - 1)) 0 Z7(S/(̂  + 1, τ + 1)). Hence we
can write U(S) = {(ê , α2, α3, α J l ^ e U(Fm)}. Under this notation we have
Ker λx = {(u, u~\ v, v~λ) \ u, v e U(Fm)} and a commutative diagram

U(S) > U(SI(ω2 - 4)S) —

Let α: be the natural map U(S) —> ί7(S). Then, to prove (B) it is sufficient
to show that α(Ker λ2) = Ker V By (3.4) we have U(S/(ω2 - 4)S) =
U(S/(ω ~ 2)S) 0 C/(S/(ω + 2)S). It is easy to see that β(U(S/(ω - 2)S)) =
U(S/(μ - 1)S) (resp. β(U(S/(ω + 2)5) - l7(S/(£ + 1)S))). Since S is the
subring of EndΛo (β+) = M2(R0), U(S/(ω ± 2)S) is a subgroup of
GL2{RJ{ω ± 2)R0). Let v = a + 6τ + cσ + dστ (α, b,c,de R0/(ω2 - 4)# 0 )

be an arbitrary element of U(S/(ω2 — 4)S). By the formula in Section 3,
v can be written as

where we denote α, 6, c and d mod (α> + 2)i20 or α, 6, c and d mod (α> — 2)iϋ0

by the same letters. Set

/ 1 0\ (1 0

Then by (3.5) we can write

t-vt =
0 a/ \0 u'
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Thus the image of v in U(S) is (u, x, u', xf). Hence in order to prove
(B) it is sufficient to show that for an arbitrary x e U(R0/(ω — 2)R0)
(resp. x' e U(R0/(ω + 2)R0)) there is y e R0/(ω-2)R0 (resp. y* e U(RJ(ω + 2)R0))
such that

is the image of a suitable element of Kerλ2. If n is odd, i.e., e = 0,
we only need to show the existence of an element of Kerλ2 in the case
of x.

Now there is an element AeR0 such that lJ

r(ω + 2)A = x mod (ω — 2)R0.
Clearly the image of 1 + (α> + 2)A in RJ{ω2 — 4)RQ is a unit. Hence
(1 + (a) + 2)A)i?0 + (ω2 - 4)#0 = Ro. Therefore

(1 + (ω + 2)^)^0 + (a) -

We can find B\ CeR0 such that (1 + (ω + 2)A)B' + {ω - 2){ω + 2)2C - 1.
Looking at this mod (ω + 2)R0f we see that B' = 1 + (α> + 2)J5 for some
β 6 i?0. Set

/ lHo> + 2)A (ω + 2)C\ I 1 0\
\-(ω-2)(ω + 2) l+(ω + 2)Bj \-l - 1 / \ - l - 1

Then

where C is the image of C in iϋo/(α> — 2)i20 and

/I 0\
Γ = ί o \ mod (α> + 2)R0 .

Therefore Ye U(S) by (3.5). Since det(Γ) = l, we obtain ΓeKerλ 2 .
Therefore (a?"1, x, 1, 1) e Ker \ is the image of an element of Ker λ2. For
x' a similar argument works. This completes the proof of Main theorem.
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