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We show by using a suitable Lyapunov function that a bilinear
system may be stabilized by saturated linear feedback if some of the
state variables remain positive. In the specific application to the steam
turbine regulation a singular perturbations analysis is also performed.

1. The control problem. Consider a bilinear control system of the
form
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We have in the system r scalar controls; the first k appear in the usual
linear way while the last r — k appear multiplied by some state variables.

The specific form of the system corresponds to the model problem
of steam turbine regulation we shall consider later. The admissible
values of the controls are

0 <; WJαin ^ U* <i Umax

We assume further A2S, A32, b°if c°if b, c, ct with nonnegative elements, b{
nonnegative for j Φ li A22t A33 with nonnegative off-diagonal elements.

Under such assumptions if y(0)9 z(0) have nonnegative elements, then
y(t), z(t) will have nonnegative elements for all t ^ 0. A simple argu-
ment is obtained by multiplying y and z with a suitable exponential in
order to make also the diagonal elements positive and then constructing
the solution by successive approximations.

We shall assume further that A33 is Hurwitz.

REMARK. If Azz is Hurwitz and the off-diagonal elements of A33 are
nonnegative, then all elements of A^1 are negative. Indeed since the



300 A. HAL AN AY AND VL. R AS VAN

off-diagonal elements of A3S are nonnegative, all elements of eAzzt are

positive, hence all elements of I eAzztdt are positive; but
Jo

From this remark we deduce that if we simplify the model by letting
ε = 0 the reduced system will preserve the in variance property. We have
indeed

z = -Aΰ\AΆ2y + Σntiu* + Σil+iWcM1* + c)

and

dy/dt = (A22 - A^A^A^V + Σ? (W " A^A^e^u*

hence if y(0) ^ 0 we still have y(t) ̂  0 for all t ^ 0 and also z(t) ^ 0
for all t ^ 0 (if z is defined from the equality above corresponding to
the fast motion).

The control problem starts with the design of certain stationary
solution and then to a construction of linear feedback corrections in order
to keep this stationary solution.

2. Steady state design and the system for corrections. The steady
state—constant solution of the system—is designed in order to keep
given values for r outputs of the form pfx + q*y; we shall have thus
the equations

Anx + A12y + A13z + Σf a°iuί + a = °

-L*-22y ~r **-23z > s ii OiV/ ~τ~ y ife+1 u o^yι ~\~ o == Ό

A nι _J_ A v -I- X 1 ^ /•Qiti -L \^r /j/*/* ni^i _i_ /» — Π

p*« + q*y = p°j, 3 = i, •••, r .

The number of equations is equal to the number of unknowns; Azz is
invertible and we may start by solving with respect to z; we may then
use the resulting equations and the conditions for the outputs to solve
with respect to x, y and to the controls u\ It is important to observe
that if among the outputs we have the coordinates yli the system to be
solved is linear and has a unique solution. This is the practically im-
portant case as we shall see in the model problem of steam turbine.

Let x0, y0, zQ, uQ be the steady state values, assumed to be unique
and admissible, that is
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Denote

x = x — x0 , V = V — Vo , z = z — z0 , % = u — u0

and write down the equations for x, y, z with u as control; we have

dx/dt = AJc + A12y + A13? + Σ ϊ

- (A32 + Σϊ+i <C,)y + Λβ? + Σ? Φ* + Σί+i u'cly1* +

where Bt has columns 6f on position lt and zero for other positions and
Ct has columns ct on position ZΛ and zero for other positions.

We shall stabilize the reduced system obtained for e = 0

z = -AsΐtCΛ, + Σί+iMίCJy + Σf ^ + Άi&cάy1* +

dx/dt = AJS + [A12 - AjLβAsXAω + Σ£+i

+ Σf (6? - AnA^dDu* + Σ ί + i ^ δ * ~ Aa^cXy 1 ' +

To simplify notation let

A12 = A12 A 1 3 A 3 3 ( A 3 2 + 2_jl+i 'M'o^i)

3 3 Ci , Q-ί = A 1 3 A 3 3 C

C O OOi — Oi ^ 1 2 3 Λ 3 3 Ci ,

and consider finally the system

(dx/dt = AJS + Ά12y + Σ ί S°iu
ί + Σί+i a&W + v\f)

[dy/dt = Ά22y + Σf δϊffi* + Σί+i £

We introduce now the main stability assumption.
The matrix A22 is Hurwitz and An has all eigenvalues on the

imaginary axis with simple elementary divisors.

3. The stabilizing feedback. We choose first

T =
\0 I

such that

JAn A12\ίAn 0\

\0 ΆJ \0 AJ

Here T12 is defined by the equation
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•L 12^-22 A u J- 12 — -̂ -12

This equation has a solution since Ά22 and — Au have no common eigen-
values.

The main stability assumption shows now that there exist P± > 0,
P2 > 0 such that

PxAn + AίP, = 0

p ϊ 4- Δ*P — Γ
JL 2-^*-22 ' -^1-22- ί 2 — •*

(Px = S*S where S is such that SAuS"1 is diagonal). Define the Lyapunov
function

V(x, y) = (2*, f ) r P p°j τ( ! j = (2*

We have F(£, ̂ ) > 0 for |2| + ||/| ^ 0. Compute the derivative with respect
to our system (Σ)

dV/dt - {2* A£ + fif2 + Σ ϊ ^ α f + Σί+i

+ Σf a1^* + Σί+i«'(»'' + i/WδflΓjSjPxίϊ + ru»)

+ (x* + r rsjpjAuic + Λ12y + Σf ajβ* + Σί+i^α*^1 ' + i#)

+ Γ12[l22^ + Σf bin* + Σϊ+i δiβW + VιM + t r A* + Σ? «'&!*

= -y*y + Σ f β'KSJ* + bTT^P^x + T12£) + (2

We choose now for i = 1, - , k

U* = -/3'KαS* + bm)Pi(x + ΓuSO + 6ί*P«»] , /3* > 0

if this value is admissible (i.e., belongs to [uLin — u\, u^ — ui])9 u*^=
^Lax ~ ̂ o if the value exceeds u^ — n\, and uι — u^ — u\ if the value
is less than wLn — u\.

For i = k + 1, , r we choose

u* = - r [ ( α f + bfT&P^x + Γuy) + 6fP2^] , 7* > 0

if this value is admissible, and as above if not. With such choice of the
controls we get dV/dt ^ 0; we used here the fact that on the invariant
set we are interested in we have yli + yι

0* = ylί ^ 0.
On the set where dV/dt = 0 we have clearly

y = 0; β* = 0 , i = l, •••,*?; u\yι< + yfr) = 0 , i = A? + l, --- , r
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hence for any trajectory on this set

( * ) (αS* + brT*)Pie

A"% = 0 i = 1, - - -, k .

Denote by Q the matrix with columns Pλ(a\ + T12bΐ).
Assume that (A*, Q) is controllable; this is a necessary and sufficient

condition for (*) to imply x0 = 0. We see thus that this complementary
assumption gives (by using Barbashin-Krasovski-La Salle theorem) global
asymptotic stability.

In this way we have stabilized the system on the invariant set
defined by y* + y\ :> 0.

Several specific features do not allow us to use directly known results
for singularly perturbed systems as the ones of [1], [2], [3], [4]. Among
them the fact that the controls are only continuous functions of the
state hence we do not have the required smoothness, and the global
character of the stability we want to see preserved. It is why specific
arguments have to be produced and we shall produce them for the model
problem of steam turbine regulation.

4. Steam turbine regulation. The mathematical model of a steam
turbine with one regulated bleeding is the following

Tads/dt = a1π1 + a2π2 — vg

Tτdπτjdt = — βτπτ + βιπ1 — β2μ2πτ

Txdnjdt = -βxπλ + μλ

T2dπ2/dt = —β3π2 + μ2πτ

with the following admissible values of the controls

0 ^ μx ^ 1 , 0 < τ2 ^ μ2 ^ 1 .

The time constants TJβ1 and T2/β3 associated with the steam volumes
enclosed in the turbine cylinders are small. It can be easily seen that
the above system belongs to the class defined previously. The system's
coefficients are the following

o! = 0 , a = -vg/Ta

A _ Q IT A (P IΨ (\\ 7i° 0 h — /Q/77 h —
-Γl22 — HTI •*- T f ^-23 — \Hil J-T V) f Ui — V , U2 — fj2j JL j , U —

/1//3Λ / 0

We have here k = 1, r — 2. It is obvious that the assumptions con-
cerning the coefficients are fulfilled in this case. Also is Azz Hurwitz.
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It follows that πτ(t), nx{t), π2(t) are nonnegative for all t ^ 0. (This can
be proved also directly.)

Now, if we simplify the model by letting TJβ, = T2/β3 = 0, the
reduced model will have the form

Tads/dt = (ajβjμ, + (a2/β5)μ2πτ - vg

Tτdπτ/dt = μ1 — βτπτ — β2μ2τcτ

and the in variance property πτ{t) ^ 0 if πτ(0) ^ 0 holds.
The steady state solution of the system is designed in order to keep

given values for s and πτ. More precisely we shall have

a1π1 + a2π2 — vg = 0 , — βτπτ + βγπ1 — β2μ2πτ — 0 ,

—β\K\ ~^ μi== o , — βz^2 ~^ μ^τ — o , s = o , TΓy = ΊZ%

It can be seen that this system has a unique solution (πτ corresponds
here to yli from the general case). It must be mentioned that π% and
vg are such that this unique solution should be admissible, that is

0 ^ μl ^ 1 , 72 ^ μl ^ 1 .

Let π°τ, TΓJ, π°2, μl, μl be the steady state values. Denote

We have

T rlr I elf — a Ύ -I- n Ύ

Tτdx2/dt = — (/3Γ -
(**) ]

T2dxjdt = ^2^2 — i

where

//° <r /j/ <Γ 1 f#° Ύ //0 < /)/ < 1 //0
~~^ Γ 1 ^ ^ t v i ^ ^ X Γ' 1 > /9 ^~~ r^2 • ^ 2 -*- Γ' 2

One can see that for uλ = u2 = 0 this system has a trivial solution
which is not asymptotically stable. The simple stability is not satis-
factory from the practical point of view. Therefore the system needs
stabilization and, more precisely, feedback stabilization.

We shall stabilize the reduced system obtained by neglecting the
effect of the steam volumes {TJβλ = Γ2//93 = 0).

Tadxjdt - (a2μ°2/βB)x2 + (ajβju, + (a2π°τ/β3)u2 + (a

Tτdx2/dt — —(βτ + β2μl)x2 + u, — β2π°τu2 — β2u2x2 .
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We have

An = 0 , Ά22 = - ( / 3 Γ + β2μl)/Tr ,

hence the main stability assumption is fulfilled.
Define the following Lyapunov function

where A > 0, i? > 0. Differentiating this function along the solutions
of the reduced system we find

dV/dt = UxM x2{t))u, + (x2 + TtiMxJί), xlt))u2 - B(βτ + β2μl)[x2(t)Y

where the linear forms lt(xlf x2) are given by

/3(S + /3 |̂)V Ta βs(βτ + βμl) V P z

We choose now

^i(»i, E2) = -CI^XH X2) , C > 0

if this value is admissible, ^ = 1 — μj if the value exceeds 1 — μl, and
%! = —μl if the value is less than — μl; u2(xl9 x2) = —Dl2(xlf x2), D> 0
if this value is admissible, u2 = 1 — μ\ if this value exceeds 1 — μ% and
%2 = 72 -̂  μl if the value is less than τ2 — i"?

Taking into account that on the invariant set we have π\ + x2 ^ 0
it follows that

dV/dt ^ -B(βτ + /92^°2)[^)]2

On the set where dV/dt = 0, x2 = 0 and, because of the form of the
equations, xλ — 0. Therefore the global asymptotic stability with respect
to the above mentioned invariant set follows from the theorem of
Barbashin-Krasovski-La Salle.

In this way we obtained the stability of the reduced model. But
the linear saturated feedback defined above must stabilize the complete
model. In the following we shall prove, using the same Lyapunov func-
tion defined previously, that the complete model with the feedback con-
structed for the reduced one, is globally asymptotically stable if the time
constants TJβ1 and TJβ3 are small enough.

The proof will be performed in several steps.
(a) We show that the complete system with ut defined as above is

locally asymptotically stable. In order to prove this we choose a neigh-
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borhood of the origin such that w< should be linear functions of xx and
x2. Neglecting the higher order terms we get a fourth order linear
system. Taking into account that TJβ1 and T2/β3 are small parameters
and that the boundary layer system is stable, we need only the stability
of the reduced second order system. Applying the Hurwitz criterion
we get, after some lengthy but straightforward computation, that this
second order linear system is stable. Using the first approximation
stability theorem and singular perturbations, we get local stability for
system (**), if TJβ1 and T2/β3 are sufficiently small.

(b) The solutions of (**) with the controls chosen as above are
bounded. Indeed, using a method which is typical for singular perturba-
tions we get

\x3(t) - u&ti), x2(t))/βi\

From the equation of πx(t) it follows that

0 ^ πλ(t) ^ 2/ft t ^ to

and from the equation of πτ(t) we get

0 ^ πτ(t) ^ πΓ(0) exp (-(βτ + β2μl)(t/Tτ)) + β,(βτ + βff.T1 supί>

hence πτ(t) is bounded.
Using again the singular perturbations we find

W) - (μ°2x2(t) + ulxtf), Xz(t))π&))lβz\ ^ kV~ΨM * ^ **

From the equation of π2(t) it follows that

0 ^ π2(t) ^ τr2(0) exp (-/38ί/Γ2) + (l//38) supf>0 πτ(t)

hence π2(t) is bounded.
It remains to show the boundedness of xt(t). This follows from the

properties of the Lyapunov function. Taking into account the bounded-
ness of x2(t) and the above relations, we have

A ^ A A Λ

If Γx/A a n ( i Γg/̂ Sa are sufficiently small, then

dV/dt£ -K\xx{t)\ + J?

for t ^ ί0 and | ĉ  | ^ L. Here L follows from the condition that
x2(t)) should be saturated (i.e., to equal either — μ\ or 1 — μj). If this
control is not saturated, then — μ\ ^ lx(xlf x2) ^ 1 — μ\ and, from the
boundedness of x2{t) it follows that x^t) is also bounded.

If d V/dt satisfies the above inequality, then there exists tx > t0 such
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that

We prove this by contradiction, using the positivity of V(xx(t\ x2(t)).
Denote

I — max V(xu x2(t)) .

Obviously I < oo due to the boundedness of x2(t). We have also the
inequality V(xlf x2(t)) ^ ax\ — b\xx\. Denote by x the positive solution of
the equation

aζ2 - bζ = I + 1

where I has been defined above. In this case

xx{t) I < x for all t 7> tγ

where tλ is the one defined above (the moment when x^t) enters the
interval \xλ\ <; K\K + L). Indeed, if this wouldn't be true, one could
find t2 > tx such that \x±(Q\ > x, hence V(xx(Q, x2(t2)) ^ ax\{t2) — &|&i(t2)l >
I + 1. But 1^(01 ̂  KjK + L, hence Vfafa), x2{Q) <Zl. It follows that
there exists tB e (tlf t2) such that

V(τ (t λ r (t \\ — / 4- 1

and

F(^(ί), x2(ί)) ^ ί + 1 for td<,t<^t2.

Therefore |^(ί 3) | > K/K + L, (dV/dt)(Q ^ 0 hence |^(ί 3) | ^ ^/Z". This
contradiction proves the boundedness of xx(t).

(c) Using again the properties of the Lyapunov function it is
possible to show that for a given δ0 there exists t ;> ί0 such that I^Cί)! +
|£2(f)| ^ δ0. Indeed, after some simple manipulation we find

dV/dt ^ -B(βτ + /32i"0

2)[ί»2(ί)]
2 - min{(l - μ\f/c, (μ\f/c ,

clKx^t), x2(t))} + ΐc1V
/TJβ1 + ϊί2VT2/βz t > tQ .

Now, if our statement is not true, then

xx(t) I + I x2{t) I > δQ for all ί > t0 .

On the set I&J + |α&2| > δ0

 w e have

(d/dt)V*(t) = {djdtWixti), xlt)) ^ kyτjβ~ + kyτjβt - a{d0)

where a(δ0) > 0. If TJβι and Γ2//33 are small enough, e.g., such that
+ ϊίtVTJβϊ < αW/2 then (d/dt)V*(t) ^ -α(δβ)/2 and this in-
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equality gives a contradiction. Hence our statement is true.
(d) Due to the fact that our system is locally asymptotically stable,

there exists δ0 such that \xϊ\^δ0 should imply l i m ^ xt(t; ί0, x°lf x% x% xl) — 0.
Taking into account the estimates obtained from singular perturbations,
we see that, if TJβι and T2/β3 are sufficiently small, one can find such
a σ0

 i n order that | x^t) | <̂  δQf \ x2(t) | <; δ0 should imply | xt(t) \^d0, ί =
1, , 4. But, as it has been already shown, one can find a t ^ t0 such
that Icc^ί)! + |ίc2(ί)l < ô This ends the proof.

5. Concluding remarks. As it has been shown by several authors
(e.g., [5]), global stabilization of some bilinear control systems can be
obtained by saturated quadratic feedback. An engineering application
(steam turbine regulation) where the quadratic feedback is difficult to
implement lead up to a special class of bilinear control systems, with
nonnegative state variables, which can be stabilized by saturated linear
feedback. In order to simplify the design, singular perturbations theory
was used, but the proof of the correctness of this procedure could be
accomplished only for the application. The extension to the whole class
of systems discussed here is an open problem.
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