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1. Introduction. Burton [1] has discovered a necessary condition
for the continuation of solutions of

(1) x{n) + a(t)g(x) = 0

to be that

(2) JV.i'Γ = +oo and

where

Gk+1(x) = n * , \\x - t)kg(t)dt; xgix) > 0 , x Φ 0
(fc + 1)! Jo

and a(t) is somewhere negative.
For n — 2 this is known to be a sufficient condition and Burton

showed that with an extra assumption it also holds for n = 3. We here
extend that result to all n and clarify the extra assumption that is to
be made. The point of the proof is that one can estimate the relative
growth of the derivatives of a function that is unbounded at a finite
point. These inequalities are of interest in themselves. The simplest
case is: if x(0) = x'(0) = 0; a>"(0) ̂  0, x"\t) ^ 0 then 2xx" ^ {xj for t ^ 0;
a result that is easily proved with the mean value theorem. This is
what Burton used. Our generalization is

THEOREM 1. If fe Mn and 1 < j <: n, k ^ 1, then

( 3 ) nf(fi)f{'\t) ^(

and

n(k + 1) — j + 1

Both are equalities if and only if f(t) = C(t — to)+.
Here x+ = max(0, x) and Mn = {f\fe Cn-\0, T); / ( i ) (0) = 0 for j ^
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n — 1; f{n~1] is convex and increasing on [0, T)}.

The inequalities in Theorem 1 are very special cases of some results
which will be dealt with elsewhere. The proofs of Theorem 1 and relevant
corollaries are in the next section. The differential equation is discussed
in section 3. We acknowledge helpful discussions with Max Jodeit, Jr.

2. Inequalities. In order to provide a straightforward proof of
Theorem 1, we note that if / 6 Mu9 then f{n~1] being convex, has a
representation

(5) f^(x) = \\x-t)dμ(t)
Jo

where μ is a non-negative Borel measure. If / e C{n+1) then dμ(t) =
Sof

{n)(O) + f{n+1)(t)dt where d0 is the unit mass at 0. By repeated integra-
tion one then has

( 6 ) nlf(x) = \\x - t)"dμ(t) = \°°(x - t)Ίdμ(t) .
Jo Jo

PROOF OF THEOREM 1. The inequality (3) can be written equivalently
by using (6). The result is

(s - t)l(x - s)l~jdμ{t)dμ{s)

5: Γ (%

There is no question of convergence, and interchange of order of inte-
gration follows easily since the integrands are non-negative. It is con-
venient to symmetrize (7) by switching the roles of s and t and adding
the result to (7). Thereby we must show that

~^> (/y» "f"\n ^YΛ* . O^^ J~H1 I (/γ Q\n~^{sy 1"\^—3 ~^ί
—— \*Λs VJ'-}- \tλs *^/+ I \tλy *̂ /-h \ * ^ /+ *

Letting u — (x — t)+, v = (x — s)+, and cancelling common factors, (8)
becomes

or

(10) (u*-1 - vj-ι){u - v) ^ 0 ,

thus (3) is proved. To prove (4), simply multiply (3) by / Λ - 1 and integrate
from 0 to t and simplify the right hand side by parts. If equality holds
in (4), then a differentiation yields equality in (3). Now note that in
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(10), the inequality is strict unless u = v. That is inequality holds in
(7) unless the measure dμ(s)dμ(t) lives on the diagonal. So equality in
(3) implies that μ is a unit mass.

The application to the differential equation requires a more complicated
inequality. In order to introduce Gn_x one multiplies (1) by x'(t) and
integrates, repeating this the appropriate number of times. With y = x\
applying this procedure to the first term of (1) leads to a consideration of

(11) In(y) = I y(ux) I \{u2) \ ""Vfan-i) \ly(un)y{n\un)dun duλ ,
Jo Jo Jo Jo

where n — 1 has been replaced by n.

THEOREM 2. If f e Mn, then

(12) (f(t)T+1(n + 1)-^ ^ /.(/) ^ (/(ί))^+1 .

Equality holds on the left if and only if f(t) = (t — to)+.

PROOF. Consider the special case of (4) when j = n — k + 1 and
k ^ n.

(13) ds ^
n + 1

Then

n +
. J/C-D^.J and

n + 1 (n + 1)

An iteration gives the left hand inequality. Equality holds if each step
using (13) has equality, so / is (t — to)+. The right hand inequality
follows by replacing each f{u%) by /(£) and then integrating.

Theorem 2 has limited use because of the severe zero requirements
on /. A version without these requirements follows easily.

COROLLARY 1. // /eC ( ί l + 1 )[0, T\ T< oo; and f{j)(t)^O for j ^

n + 1 then

1 ^(n + ifUf) + Rn(f(t))
where Rn is a polynomial of degree ̂  n whose the coefficients depend

on /.
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PROOF. Letting p = ΣJ=o fφ(O)tj/jl and h(t) = f{t) - p(t), then he
Mn and we may apply the theorem. Then In(h) becomes a sum of terms,
one of which is /»(/). In each other term, replace each factor f(ut) by
f{t) and each factor p ( O by \\p\\ = sxιpo^tsτ\p(fi)\.

3. The differential equation. The standard assumptions on the
differential equation (1) are

( i ) g(x) is continuous, xg(x) > 0 for x Φ 0, g is unbounded on R;
and

(i i ) a(t) is continuous and has isolated zeros, and is somewhere
negative on [0, oo).

Under these conditions the equation (1) has local solutions. If a(t) ^
0, then all solutions extend to [0, oo). However, if a(t) is somewhere
negative this is no longer the case, since for example, y{n) — n\ yn+1 = 0
has solutions y = (1 — t)" 1 . The growth of g(y) is important. Burton
has showed that if all solutions of (1) can be continued to [0, oo) under
(1) and (ii) then (2) must hold. For example, g(y) = \y\asgn (y), 0 < a < 1
satisfies this. I t is now our purpose to investigate the converse of this
statement.

It is known that for n = 2 this is correct. In this case the condition
(2) is a Nagumo condition. We sketch a proof in order to motivate the
rest of our work. Suppose a(t) ^ 0 on [0, T] and

(14) x" + a(t)g(x) = 0 .

Then for t near T say (T - ε, T\ x" ^ 0 and so x\t) -+ ~ as t -+ T~.
Thus on (Γ - ε, T\ x'x" = -a(t)g(x(t))x'(t) ^ Mg{x(t))x\t) and

(15) * W - x\T - έf = f' χtχlι ^ MG&xQ)) - MGMT - e)) .
2 2 J

Thus (15) gives for t e ( T - ε, T) that x'(tf ^ MGMt)) and

Thus

S »(ί) _

G1{u)~υ2du ^ Λίε .
x(Γ-ε)

If (2) holds then x(t) must remain finite. So (2) suffices to have all
solutions extend. If one tries the above for the third order, one is
hampered by the presence of the term — I (#")2 on the left. This is the

Jo

reason for the inequalities.
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We are now prepared to set the stage for our general argument.
Suppose that n > 2 and (1) has a solution x(t) which cannot be extended
to [0, oo). Then lim sup^Γ- | x(t) | = +oo, say lim sup,^- x(t) = +co. If
α(ί) ^ 0 near T, this cannot happen since then x{n) <̂  0 there. To apply
the inequalities one needs to have functions which have constant sign
derivatives. Now a solution may fail to continue because it oscillates.
If this occurs we can construct another non-continuable solution with
the required sign conditions. Let z(t) be a solution of (1) such that
z{T - ε) = x(T - ε) + 1, zw(T - e) > x{i)(T - ε) i = 1, , n - 1 and
z{i)(T - ε) ̂  0. If w = z - x, then w{n)(t) = -a{t)[g{z) - g{xj\ so ww[n) > 0
on [T — ε, T) provided g is increasing and w Φ 0. We assume that g is
increasing. Then if w is zero somewhere, let ξ0 be the least zero on
[T — ε, Γ). By repeated application of the mean value theorem (noting
that w(ί)(T - ε) > 0), one arrives at T - ε < ξn^ < < & < ξ0 < T such
that w(i)fe) = 0. This implies that w{n) = 0 somewhere on [T - ε, ξn^)
and hence w has a zero there too. This condition shows that w > 0 on
[Γ - f, T) so « > x there and \imt^τ z(t) = +oo. It follows that ^(ί)(^)->
co as ί —> Γ~ for i = 1, ••-,%.

REMARK. The above argument shows that if # is bounded on R
then the continuation problem is trivial. This is the reason for the
unbounded requirement in (i).

CONTINUATION LEMMA. // (2) holds and a(t) <; 0 on [α, 6] then every
solution of (1) that satisfies xx{n+1) ^ 0 can be continued across the interval,
i.e., x{j)(b) 0 <; j <̂  n is defined.

PROOF. Since on [a, b], xx{n) ̂  0 and xx{n+1) ^ 0, a non-continuable
solution must satisfy x{j) —> + ̂  as t-+T~y for some Te(a, 6], i — 0,
• , n and therefore for an interval of the form (T - δ, Γ), α;(i)(ί) ̂  0
i = 0, , n + 1. We now estimate i»_i(cc') in two ways. First according
to the corollary {x\t)f ^ nn^In^(xr) + R^ix'). On the other hand letting
1/ = xf and M = sup[α,6]|α(ί)| we have from (1) yy{n~~1] ^ Mg{x{t))x'{t) so
that

Jα

Then

\ *~V(̂ —l) \ ^ ^ ^ " W W ^ - i
Jo Jα

^ Λf Γ""tG1(x(M._1))a!l(tt._1)dtt._1 + Cί Γ
Jα Jα
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This process is repeated, terminating in

where Rn_λ is a polynomial in y of degree <. n — 1. Since y(t) -^ <χ>,
Rn-ι(y)ly(f>Y -^ 0 as t —• Γ~ so we get an inequality of the form y{t)n <:
MGn^(x{t)) for ί sufficiently near Γ. Thus

- α) ^ M(b - α) , and

G^iuY^dn ^ M(b - a) .

x(a)

Since x(t) -» + oo a s ί -> Γ~ this violates (2).

The Continuation lemma gives a criterion for all solutions to be
extendable to [0, ©o). However the extra requirement that xx{n+1) ^ 0
is troublesome. It is needed to get Corollary 1. On the other hand, the
condition that

Xin+v = -a(t)g\x(t))x\t) - a\t)g(x(t)) ^ 0

when x(t) ^ 0 is not easy to verify. Consider for example, the condition
when a(t) = 0. The resolution of this problem lies elsewhere. The key
is to compare with other equations. Suppose for example that a(t) were
a negative constant. Then x{n+1) = c2g'(x(t))x'(t) ^ 0 when g' ^ 0 and
x' ^ 0. Thus in this case the proof of the Continuation lemma works
without the assumption xx{n+1) ^ 0.

COMPARISON LEMMA 1. Let xt(t) be solutions to

(16), x?\t) + cL&Mxάt)) = 0 i = 1, 2

on [c, d) where az(t) < a^t) <; 0, and 0 < x['\c) = x{

2

3Ί(c) = bό j = 0, ,
n — 1 with g(bQ) > 0. If g is increasing then xx(t) < x2(t) on [c, d).

PROOF. Let z(t) = xx(t) - x2(t). Then z{j\c) = 0 j = 0, , n - 1 and
z^(£) - α2(t)[flr(a?2(t)) - J7θ»i(t))] + K W - ^(OlflrC îC*))- Now ^(w)(c) =
[α2(c) — di(c)]g(b0) < 0. Therefore «(ί) < 0 on some maximal interval
[c, e) c [c, d). On the interval (c, e) ^x < ίc2 and so 2;(ίl)(ί) ^ 0 on this
interval. Thus zij)(t) ^ 0 on this interval j = 0, , n — 1 and it is not
possible that z{e) — 0. Thus e must be d.

COROLLARY 2. // # is increasing then the Continuation lemma holds
without the assumption that xx{n+1) ^ 0.

PROOF. If (1) has a solution with x(t) -+ + oo as ί -^ Γ" then compare
(1) with
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(17) »'"' + Γ min α(ί)~U») = 0 .

By the Comparison lemma 1, (17) has a solution that is unbounded, say
y(t) -• oo as t -> Tr for Z\ ^ Γ. But for t near I7!, #'(£) ^ 0 so y{n) is
increasing so that the Continuation lemma applies to get a contradiction.

COMPARISON LEMMA 2. Let xt(t) be solutions of x2(a) = x^a) + ε, ε>0,
and

(18), xl*\t) + a{t)gix(t)) = 0 a#>(α) = 6y > 0 i = 1, 2 i - 1, , n - 1

on [a, b) where α(ί) ̂  0, a satisfies (ii) αwd ^̂  satisfy (i). // ^(OJ) ^ g2(x)
x ^ 0 ^iίfe #2 increasing, then xλ(t) < αs2(ί) o^ [α, 6).

PROOF. Again let z(t) = ^(ί) — a?2(<0 so that «(α) < 0, z'(a) = 0 1 <:
j ^ n - 1 and s™(i) = α(*)[flr2(α52(*)) - g&M)] + ^ ^ ( ^ ( ί ) ) - fl^t))]. Then
^ ( % ) ( ί)^0 on any interval where ^ ^ ^ Let [α, c) be a maximal interval
in [α, 5) where 2 ^ 0. If c < 6, then «(c) = 0 and z{n) ^ 0 on [α, c). But
then 2;{w~1) <: 0 on (α, c), which in turn implies z[n~~ι) <: 0 on (a, c), , z' ^ 0
on (α, c). Thus «(c) ^ z{a) < 0. Thus c = 6.

Now let g be defined by g(x) = supo^^β g(ί), for x ^ 0; and (̂α;) =
infx1gt<Q g(t) for ίc ^ 0. We have the main theorem.

THEOREM 3. Let (i) and (ii) 6e satisfied and n > 2. TT^w
(a) // <7 satisfies (2), £fcew αίϊ solutions of (1) continue to [0, 00).
(b) 1/ gr is increasing, then (2) is necessary and sufficient for all

solutions of (1) to continue to [0, 00).

PROOF. The necessity of (b) is Burton's result while the sufficiency
is a use of Corollary 2. Part (a) follows from Comparison lemma 2 and
Corollary 2.

REMARK. An examination of the proofs show that the hypotheses
on g need only hold for |x | sufficiently large, but this is a minor gen-
eralization.
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