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0. Introduction. For n ^ 4, let M be an ^-dimensional conformally
flat submanifold of the (n + p)-dimensional Euclidean space En+P. Recently
under the assumption that M has the positive sectional curvature and
p <: n — 3, Sekizawa [3] proved that M contains an open subset on which
there exists an involutive distribution of dimension ^ n — p such that
each leaf of this distribution is totally umbilic in M and in En+P. In
this note we show that the result of Sekizawa remains true without
the assumption that the sectional curvature is positive.

The author sincerely thanks Professor S. Tanno for valuable sug-
gestions.

1. Statement of results. For n ^ 4, let M be an ^-dimensional
conformally flat submanifold of the (n + p)-dimensional Euclidean space
En+P. We denote the induced Riemannian metric on M by < , >, the
Riemannian connection by F, the Ricci tensor by Ric, the scalar curva-
ture by S, and the second fundamental form by a. The symmetric
tensor Ψ is defined by

Ψ(X, Y) = [Ric (X, Y) - <X, Y)S/2(n - ΐ)]/(n - 2)

for X, Ye TXM. We now recall the notion of umbilic subspace of TXM
introduced in [3]. A subspace V of TXM is said to be umbilic if
d i m F ^ 2 and a(X, X) = α(Γ, Y) for all unit vectors X and Y in V.
Then our first result is the following.

PROPOSITION 1. For n ^ 4, let M be an n-dimensional conformally
flat submanifold of the (n + p)-dimensional Euclidean space En+P. If
p <Ln — 3 and %SX is the set of all vectors Xe TXM such that \\a(X, X)\\2 =
2\\X\\W(X, X), then

(a) <%SX is the largest umbilic subspace of TXM, and dim ̂ /x ^>n — p.
(b) For each unit vector Xe%fx, the subspace {Ye TXM: a(Y, Z) =

<Γ, Z)a(X, X) for all Ze TXM) is equal to <2Sm.

Let p ^ n — 3. Then by Proposition 1 we can define a distribution
^ by MBX\-^^9. We call ^ the umbilic distribution. The umbilic
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distribution ^ is not smooth in general. However, we can prove the
following.

PROPOSITION 2. For n ^ 4 and p <ί n — 3, let M be an n-dimensional
conformally flat submanifold of the (n + p)-dίmensional Euclidean space
En+P. Then there exists an open subset of M on which the umbilic
distribution ^ is smooth.

Finally our main result is the following.

THEOREM. For n ^ 4 and p ^ n — 3, let M be an n-dimensional
conformally flat submanifold of the {n + p)-dimensional Euclidean space
En+P. If U is an open subset of M on which the umbilic distribution
^ is smooth, then ifr\U is involutive and each leaf L of^\Uis totally
umbilic in M and in En+P. In particular, L is a Riemannian manifold
of constant curvature.

REMARK 1. Let M* be the union of all open subsets of M on which
the umbilic distribution ^ is smooth. Using Proposition 2, we see that
If* is dense in M.

REMARK 2. Moore [2] states the above theorem without proof. Its
complete proof seems not to have been published yet.

2. Proof of Proposition 1. Since M is conformally flat, the Weyl
conformal curvature tensor vanishes. Hence by the Gauss equation we
have

(1) (a(X, Z\ a(Y, W)) - (X, Z)Ψ(Y, W) - Ψ(X, Z)(Y, W)

= <a(Y, Z), a(X, W)} - <Γ, Z)Ψ(X, W) - Ψ(Y, Z)(X, W)

for all vectors X, Y, Z and W in TXM. The formula (1) implies

(2) (a(X, X), a{Y, F)> = ¥(X, X) + Ψ(Y, Y) + \\a{X, F) | | 2

for all orthonormal vectors X and Y in TXM.

LEMMA 1. If X and Y are unit vectors in TXM such that a(X, X) =
a(Y, Y), then Ψ(X, X) = Ψ(Y, Y).

PROOF. Since p ^ n — 3 implies dimKer a(X, •) ̂  3, there exists a
unit vector ZeKera(X, •) orthogonal to X and Y. Using (2), we see that
Ψ(X, X) + Ψ{Z, Z) = <μ(X, X), a{Z, Z)} = (a(Y, Y), a(Z, Z)) = Ψ{Y, Y) +
Ψ{Z, Z) + \\a(Y, Z)\\\ Hence Ψ(X, X) ^ Ψ(Y, Y). By the symmetry of
X and Y, we get Ψ(X, X) = Ψ{Y, Y). q.e.d.

LEMMA 2. If V is an umbilic subspace of TXM, then
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PROOF. For each unit vector Xe V, there exists a unit vector
YeV orthogonal to X. Since V is umbilic, we have a(X, X) = a(Y, Y)
and a(X, Y) = 0. Lemma 1 implies Ψ(X, X) = Ψ(Yf Y). Hence by (2)
we see that ||α(X, X)| |2 = <α(X, X), a(Y, Γ)> - f(X, X) + ̂ (Γ, Γ) =
2Ψ(X, X). q.e.d.

Let TxM
λ be the normal space to M at #, and define a Lorentzian

inner product (( , )) on TXM
L 0 ί 0 ί by

( 3 ) «(&, sx, t j , (f2, β8, «8)» = <ίi, &> + «A + ίA

for (£„ sif tt) e TXM
L 0 i ί 0 R. Now we define a symmetric bilinear map

β: TM x TaM-> TXM
L 0 Λ 0 Λ b y

(4) /3(X, F) - (a(X, Y), <X, Γ>, -?Γ(X, Y)) .

The formula (1) implies that β is flat with respect to (( , )) in the sense
of [2, p. 91]. Furthermore, p ^ n - 3 implies dim TXM > dim (T^Λί1 0
ί φ Λ ) , and (4) implies /5(X, X) ̂  0 for all nonzero Xe TXM. Hence by
[2, Proposition 2] there exists a nonzero null vector e e TXM

L 0 i? 0 Λ
and a nonzero symmetric bilinear map f: TXM x TXM^R such that
dim N(β-fe)^n-p^ 3, where N(β-fe) = {Xe TXM: (β-fe)(X, Y) = 0
for all F e Γ A

Let e = (ξ, 8, t). Since e is a null vector, we have \\ζ||2 + 2sί = 0.
For all XeN(β-fe) and F e Γ A we see that a{X9 Y) = f(X, Y)ξ,
(X, Y) =f(X, Y)s and -Ψ(X, Y) = f(X, Y)t. Hence we have the
following:

( 5) a(X, Y) = (X, Y)ξ/s

(6) Ψ(X,Y)=-(X,Y)t/s

(7) \\a(X, YW = 2{X, Y}Ψ{X, Y)

for XeN(β - fe) and Ye TXM.

LEMMA 3. a(X, X) = ζ/s for all unit vectors l e f , ,

PROOF. For each unit vector X 6 <%fx, there exists a unit vector
YeN(β - fe) orthogonal to X. By (5) and (7) we have a(Y, Y) = f/s
and \\a(Y, Γ)| | 2 = 2Ψ(Y, Y). Using (2) and \\a(X, X)| |2 = 2Ψ(X, X), we
see that \\a(X, X)-ξ/s\\*=\\a(X, X)\\> + \\a(Y,YW-2(a(X, X), a(Y, Γ)> =
2?f(X, X) + 2f(Γ, Γ) - 2(a(X, X), a(Y, Γ)> = -2||α(JΓ, Γ)| | 2. Hence by
(7) we get \\a(X, X) - ί/s||2 = 0. q.e.d.

LEMMA 4. If Xe <2SX, then a(X, Y) = 0 for all Ye TXM orthogonal
to X.
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PROOF. We may assume that X is a unit vector in ^ β , and Y is a
unit vector orthogonal to X. Since dim N(β — fe) ^ 3, there exists a
unit vector Z e N(β — fe) orthogonal to X and Y. Then by (5) and
Lemma 3 we have a(X, X) = ξ/s — a{Z, Z). Hence by Lemma 1 we have
Ψ(X, X) = Ψ(Z, Z). Using (2), we see t h a t \\a(X, Y)\\2 = (a(X, X ) ,

α(Γ, F)> -?F(X, X ) - y ( Γ , Γ) - <α(Z, Z\ α(Γ, y)>-f(Z f Z ) - y ( Γ , Γ) =
||αC2Γ, Γ)||2. Hence by (5) we get ||α(X, Γ) | | 2 = 0. q.e.d.

Let i\Γbe a subspace of TXM defined by N= {Xe TXM: a(X, Y) =
{X, Y)ξjs for all Ye TXM}. Since (5) implies Nz)N(β - fe), we see
that dim N ^ n — p ^ 3 and JV is an umbilic subspace of TXM. Thus
by Lemma 2 we have Nd^x. Lemmas 3 and 4 imply %SxczN and we
get ^ = N. Hence Lemma 2 implies (a), and Lemma 3 implies (b).
This completes the proof of Proposition 1.

3. Proof of Proposition 2. For n ^ 4 and p <; w — 3, let M be an
^-dimensional conformally flat submanifold of the (w + p)-dimensional
Euclidean space En+P. Then by Proposition 1 we can define a normal
vector Ύ)(x) at xeM by η{x) = a(X, X), where X is a unit vector in ^ .
We call rj the normal curvature vector field.

LEMMA 5. There exists an open subset of M on which the normal
curvature vector field ΎJ is smooth.

PROOF. Let TM1 be the normal bundle over M. We consider the
Whitney sum TM1 0 RM 0 RM, where RM is the trivial real line bundle
over M. For each fiber TXM

L 0 R 0 R, the Lorentzian metric (( , }) and
the symmetric bilinear map β: TXM x TxM-> TXM

L 0 R 0 R were defined
by (3) and (4). We introduce a function λ on TM by λ(X) = rank β(X, •)
for XG Tikf. Let F o e Γlf be a maximum point of λ and let x0 = π(V0),
χQ = λ(F0), where TΓ is the canonical projection π:TM-^M. Choose a
smooth tangent vector field V on M such that V(x0) = Fo. Since the
function λ(F) defined on ikί is lower semi-continuous, there exists a
neighborhood U of #0 such that λ(F) = λ0 on U.

For each point x in ί7, F(x) is a regular element of /3 in the sense
of [2, p. 92]. As in the proof of [2, Proposition 2], we see that the re-
striction of <( , )) to β(V(x), TXM) is degenerate. Thus we have d i m ^ ^ l ,
where £fm = {eeβ(V(x), TXM): {{e, e)) = 0 for all eeβ(V(x), TXM)}. Since
(( , )) is Lorentzian, we have dim Jifx ̂  1. Hence dim J?fx = 1 and we see
that £f = Uxeu Sf* is a smooth subbundle of ΓM1 0 i?,, 0 RM \ U.

It is not difficult to show by linear algebra that there exists an
open subset UoaU on which there exists a local frame (elf , ep+2) of
TM1

 ®RMΘRM such that
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(1 - δtJ for 1 rg i, j £ 2 .

' " ^ J* otherwise.

For each point x in Uo, there exist symmetric bilinear functions /*:
TXM x TxM-> R such that /3 = Σ f i W A s i n t h e P r o o f o f [2» Proposi-
tion 2], we have

(8 ) dim Nx(β - fιeλ) ^ % - p ^ 3 ,

where Nx(β - /%) = { I e Γ.Λf: (£ - / ^ ( X , Γ) = 0 for all 7 e ΓJkf}.
We write eι — (£, s, ί), where ς is a smooth normal vector field on Uo

and s and ί are smooth functions on Uo. Then we have

(9) a(X, Y)= (X, Y)ξ(x)/8(x)

for XeNx(β - / ^ J and Ye TXM. The formulas (8) and (9) imply that
Nχ(β — flei) is a n umbilic subspace of TXM. Hence by Proposition 1
and (9) we have η(x) = ζ(x)/s(x). Thus the normal curvature vector field
η is smooth on Uo. q.e.d.

Let L(TM; TM1) be a vector bundle over M with fiber L(TXM; TXM
L),

where L(TXM; TXM
L) is the space of linear maps TxM-> TXM

L. By
Lemma 5 there exists an open subset U of M on which the normal
curvature vector field η is smooth. For each point x in U, we define a
linear map φβ: TXM^L(TXM; TxM

λ) by [φx(X)]{Y) - α(Jf, Y) - <X, Γ>>?(z).
Then we obtain a smooth bundle map ψ: TM\U-> L(TM; TML)\U. By
Proposition 1 we have ^ = Ker φx. Hence there exists an open subset
UQCZU such that Uo 3 x i—• <%SX is smooth. This completes the proof of
Proposition 2.

4. Proof of Theorem. Let ^ be the umbilic distribution and let
Ύ] be the normal curvature vector field. For each point x in M, by
Proposition 1 we have

(10) ^ = { I e TXM: a(X, Y) = <X, Γ>i?(aj) for all Ye TXM} .

We define a distribution ^ by ^^i Msx^^, where ^ ΐ is the
orthogonal complement of ^ in TXM. Let C7 be an open subset of M
on which Ήf is smooth. Then η and < ^ 1 are also smooth on U.

Let X and Y be smooth sections in f¥\U and let Z be a smooth
section in ^±\U. Then we have the following:

, Z) - (FxYf Z)η - α(F xΓ, Z) ,

) = <FFX, Z}η - a(VγX, Z) ,

ψzά){X, Y) = {X, Y)DzV .
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We refer the reader to [1, Chapter 7] for the definitions of V and D.
Since the Codazzi equation implies (Fzά)(Y, Z) = (Fγa)(X, Z) = (Fza)(X, Y),
we have the following:

(11) a([X, Y], Z) = <[X, Y], Z}η ,

(12) (FXY, Z)V - a{FxY, Z) = <X, Y)Dzη .

By (10) and (11) we see that [X, Y] belongs to <%f\U. Hence %S\U is
involutive.

Let L be a leaf of ^ | U and let x be a point in L. We denote by
7 the second fundamental form with respect to the immersion LaM.
For all smooth sections X and Y in ^/\U, we see that 7(X(#), F(αO) is
the ^-component of (FxF)(ίc). Hence by (12) we have

(y(Xx, Yx\ Zx)η(x) - a(y(Xx, Yx\ Zx) = (Xx, Yx}Dzv

for XX9 Yxe^x and Zxe^. If Xx and Yx are unit vectors in ^ , the
above formula implies

<7(X,, XJ, Zz)η(x) - α(7(X,, XJ, Zβ)

- <τ(Γβ, Γβ), Z.>57(Λ?) - α(7(Γ., ΓJ, Z.)

for ^ e ̂ - . Hence by (10) we have y(Xx, Xx) - Ί{YX, YX) e ^ . Since
7(X,, Xx) - 7(Fβ, Γ.) e ̂ ϊ , we get 7(X,, XJ - 7(FίC, Γx). Hence L is
totally umbilic in M.

We denote by <? the second fundamental form with respect to the
immersion LaEn+p. Then we have δ = a + 7 on %SX. For all unit
vectors Xx and Yx in ^ , we see that 8{XΛ9 Xx) = a(Xβ, Xx) + y(Xβ, Xx) =
a(Yx, Yx) + 7(YX, Yx) - δ(Yβ, Yx). Hence L is totally umbilic in En+P.
This completes the proof of Theorem.
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