THE FIRST EIGENVALUE OF THE LAPLACIAN ON EVEN DIMENSIONAL SPHERES

Hideo Muto
(Received August 1, 1979, revised September 28, 1979)

1. Introduction. Let $\left(M^{n}, g\right)$ be an n-dimensional compact connected Riemannian manifold. The Laplacian acting on smooth functions on M has a discrete spectrum with finite multiplicities. Hersch [6] showed that for any Riemannian metric g on the two dimensional sphere S^{2},

$$
\lambda_{1}(g) \operatorname{vol}\left(S^{2}, g\right) \leqq 8 \pi
$$

where $\lambda_{1}(g)$ denotes the first eigenvalue of the Laplacian with respect to g. The equality holds if and only if g is the canonical metric (up to a constant multiple).

This implies an affirmative answer to the Blaschke conjecture on S^{2} and gives another proof of Green's theorem [5] (cf. [3]). In connection with this result, Berger [1] posed a problem: Does there exist a constant $k(M)$ satisfying

$$
\lambda_{1}(g) \operatorname{vol}\left(M^{n}, g\right)^{2 / n} \leqq k(M)
$$

for any Riemannian metric g on M ? When M is a sphere, can one characterize the canonical metric up to a constant multiple by the above equality?

If this problem is affirmatively answered for an n-dimensional sphere S^{n}, the Blaschke conjecture is affirmatively answered for S^{n} (cf. [3]). And it is interesting to know some relations between the spectrum theory and differential geometry. It is known (cf [1], [9]) that the answer to this problem is affirmative when M is a flat torus. But Urakawa [8] gave a counterexample when M is a compact Lie group with the nontrivial commutator subgroup, in particular, S^{3}. Tanno [7] also answered the problem negatively when M is $S^{2 n+1}(n \geqq 1)$. Urakawa and Muto [10] showed that there are many counterexamples when M has Euler number zero.

In this paper, we give a negative answer also when M is $S^{2 n}(n \geqq 2)$.
Theorem. There exists a continuous deformation $g_{t}(0 \leqq t<\infty)$ of the canonical metric g_{0} on $S^{2 n}(n \geqq 2)$ such that

$$
\lambda_{1}\left(g_{t}\right) \operatorname{vol}\left(S^{2 n}, g_{t}\right)^{1 / n} \rightarrow \infty \quad(t \rightarrow \infty) .
$$

The author expresses his gratitude to Professors S. Tanno and H. Urakawa for their helpful suggestions.
2. Construction of the deformation g_{t}. Let ($u^{0}, u^{1}, \cdots, u^{2 n}$) be the canonical coordinate system on $R^{2 n+1}, N=(1,0, \cdots, 0)$ and $S=(-1,0, \cdots, 0)$ ($n \geqq 2$). Let $S^{2 n}$ be the unit sphere in $R^{2 n+1}$ and $g_{0}(2 n)$ the canonical metric on $S^{2 n}$ induced by the Euclidean structure on $\boldsymbol{R}^{2 n+1}$. Let $S^{2 n-1}=$ $\left\{\left(0, u^{1}, \cdots, u^{2 n}\right) \in S^{2 n}\right\}$. Let $(r, x), r \in(0, \pi), x \in S^{2 n-1}$, be a geodesic polar coordinate system around N on $S^{2 n}-\{N, S\}$ with respect to $g_{0}(2 n)$, that is, $x=\left(x^{1}, \cdots, x^{2 n-1}\right)$ is a local coordinate on $S^{2 n-1}$ and r is the distance from the north pole N. Let $g_{0}(2 n-1)$ be the metric on $S^{2 n-1}$ induced by $g_{0}(2 n)$. Then its metric on $S^{2 n-1}$ has constant curvature 1 . Let η be a contact form on $S^{2 n-1}$, that is, η is a unit Killing form on ($S^{2 n-1}$, $g_{0}(2 n-1)$). Then there exists a 1 -form $\tilde{\eta}$ on $\left(S^{2 n}, g_{0}(2 n)\right)$ such that

$$
\begin{aligned}
& \tilde{\eta}_{(r, x)}=(\sin r)^{2} \eta_{x} \text { on } S^{2 n}-\{N, S\} \\
& \tilde{\eta}_{N}=0, \quad \text { and } \quad \tilde{\eta}_{S}=0
\end{aligned}
$$

Here we regard η_{x} as a covector at (r, x) in $S^{2 n}$ via the geodesic polar coordinate.

Definition 2.1. We define a deformation $g_{t}(2 n)(0 \leqq t<\infty)$ of $g_{0}(2 n)$ as follows:

$$
\begin{equation*}
g_{t}(2 n)=g_{0}(2 n)+t \tilde{\eta} \otimes \tilde{\eta}, \quad(0 \leqq t<\infty) . \tag{2.1}
\end{equation*}
$$

In particular, on $S^{2 n}-\{N, S\}$,

$$
g_{t}(2 n)=(d r)^{2}+(\sin r)^{2}\left(g_{0}(2 n-1)+t(\sin r)^{2} \eta \otimes \eta\right)
$$

We notice here that $g_{0}(2 n-1)=\eta \otimes \eta+\pi^{*} h(n-1)$, where π is the Hopf fibering $S^{2 n-1} \rightarrow \boldsymbol{C} P^{n-1}$ and $h(n-1)$ is the canonical metric on $C P^{n-1}$. Therefore on $S^{2 n}-\{N, S\}$, we have

$$
\begin{equation*}
\left\{\operatorname{det} g_{t}(2 n)\right\}_{(r, x)}=\left(1+t(\sin r)^{2}\right)\left\{\operatorname{det} g_{0}(2 n)\right\}_{(r, x)} \tag{2.2}
\end{equation*}
$$

where we denote by $g_{t}(2 n)$ the coefficient matrix of $g_{t}(2 n)$ with respect to the coordinate (r, x) for any $t \in[0, \infty)$. Let $\xi=\left(\xi^{i}\right)$ be the dual vector field of η on ($S^{2 n-1}, g_{0}(2 n-1)$). Then ξ is a unit Killing vector field on $S^{2 n-1}$. Therefore the inverse matrix $g_{t}(2 n)^{-1}$ of $g_{t}(2 n)$ with respect to the coordinate (r, x) is of the following form on $S^{2 n}-\{N, S\}$:

$$
g_{t}(2 n)^{-1}=\left(\begin{array}{cc}
1 & 0 \tag{2.3}\\
0 & (\sin r)^{-2} g_{0}^{j k}(2 n-1)-t\left(1+t(\sin r)^{2}\right)^{-1} \xi^{j} \xi^{k}
\end{array}\right)
$$

Lemma 2.2. Let ${ }^{(t)} \Delta_{S^{2 n}}$ be the Laplacian on $S^{2 n}$ defined by $g_{t}(2 n)$ and $\Delta_{S^{2 n-1}}$ the Laplacian on $S^{2 n-1}$ defined by $g_{0}(2 n-1)$. Then, on $S^{2 n}-\{N, S\}$,

$$
\begin{aligned}
{ }^{(t)} \Delta_{S^{2 n}}= & \left(\partial^{2} / \partial r^{2}\right)+\left[(2 n-1)(\cos r)(\sin r)^{-1}\right. \\
& \left.+t(\sin r)(\cos r)\left\{1+t(\sin r)^{2}\right\}^{-1}\right](\partial / \partial r) \\
& +(\sin r)^{-2} \Delta_{S^{2 n-1}}-t\left\{1+t(\sin r)^{2}\right\}^{-1} \mathscr{L}_{\xi} \mathscr{L}_{\xi},
\end{aligned}
$$

where ξ is a unit Killing vector field on $S^{2 n-1}$ and \mathscr{L}_{ξ} is the Lie derivation with respect to ξ.

Proof. We denote the geodesic polar coordinate $\left(r, x^{-1}, \cdots, x^{2 n-1}\right)$ by $\left(v^{1}, \cdots, v^{2 n}\right)$ and set $\theta=\left(\operatorname{det} g_{t}(2 n)\right)^{1 / 2}$ with respect to $\left(v^{1}, \cdots, v^{2 n}\right)$. Then

$$
{ }^{(t)} \Delta_{S^{2 n}}=\theta^{-1}\left(\partial / \partial v^{j}\right)\left(\theta g_{t}^{j k}(2 n)\left(\partial / \partial v^{k}\right)\right) .
$$

Therefore by (2.2) and (2.3), we have

$$
\begin{align*}
{ }^{(t)} \Delta_{S^{2 n}}= & \left(\partial^{2} / \partial r^{2}\right)+\left[(2 n-1)(\cos r)(\sin r)^{-1}\right. \tag{2.4}\\
& \left.+t(\sin r)(\cos r)\left\{1+t(\sin r)^{2}\right\}^{-1}\right](\partial / \partial r)+(\sin r)^{-2} \Delta_{S^{2 n-1}} \\
& -t\left\{1+t(\sin r)^{2}\right\}^{-1}\left(\operatorname{det} g_{0}(2 n-1)\right)^{-1 / 2} \\
& \times\left(\partial / \partial x^{i}\right)\left\{\left(\operatorname{det} g_{0}(2 n-1)\right)^{1 / 2} \xi^{i} \xi^{j}\left(\partial / \partial x^{j}\right)\right\} .
\end{align*}
$$

As η is a coclosed form on ($S^{2 n-1}, g_{0}(2 n-1)$), we have $0=-\delta \eta=$ $\Gamma_{k i}^{k} \xi^{i}+\left(\partial \xi^{i} / \partial x^{i}\right)$, where δ is the co-differentiation of ($S^{2 n-1}, g_{0}(2 n-1)$) and $\Gamma_{j k}^{i}$ is the Christoffel's symbol on ($S^{2 n-1}, g_{0}(2 n-1)$). Therefore the last term on the right hand side of (2.4) coincides with $-t(1+$ $\left.t(\sin r)^{2}\right)^{-1} \mathscr{L}_{\xi} \mathscr{L}_{\xi}$. q.e.d.
3. The estimate of the first eigenvalue. We first consider the eigenfunctions of $\Delta_{S^{m}}$. Let λ_{k} be the k-th eigenvalue of $\Delta_{S^{m}}$ and V_{k} be the vector space of eigenfunctions corresponding to λ_{k}. Then on ($S^{m}, g_{0}(m)$) (cf [2]),

$$
\begin{aligned}
& \lambda_{k}=k(k+m-1), \quad k \geqq 0, \\
& \operatorname{dim} V_{k}={ }_{m+k} C_{k}-{ }_{m+k-2} C_{k-2}, \quad k \geqq 2, \\
& \operatorname{dim} V_{0}=1, \quad \operatorname{dim} V_{1}=m+1
\end{aligned}
$$

As ξ is a unit Killing vector field on $S^{2 n-1}(n \geqq 2)$, \mathscr{L}_{ξ} commutes with $\Delta_{S^{2 n-1}}$ and induces a linear endomorphism on V_{k}. We define an inner product 〈, > on smooth functions on S^{m} as follows:

$$
\langle f, g\rangle=\int_{S^{m}} f g d \operatorname{vol}\left(S^{m}, g_{0}(m)\right)
$$

for any $f, g \in C^{\infty}\left(S^{m}\right)$, where $d \operatorname{vol}\left(S^{m}, g_{0}(m)\right)$ is the volume element with respect to $g_{0}(m)$. By Stokes' theorem, \mathscr{L}_{ξ} induces a skew-symmetric linear endomorphism on V_{k} with respect to the above inner product. Tanno [7] gave a decomposition of V_{k} with respect to the action of $\mathscr{L}_{\xi} \mathscr{L}_{\xi}$.

Lemma 3.1 (Tanno [7]). On ($\mathrm{S}^{2 n-1}, g_{0}(2 n-1)$), $(n \geqq 2)$, we have

$$
V_{k}=V_{k, 0}+V_{k, 1}+\cdots+V_{k,[k / 2]},
$$

for any integer $k \geqq 0$, where $[k / 2]$ is the integer part of $k / 2$, and for any $f \in V_{k, p}, 0 \leqq p \leqq[k / 2], \mathscr{L}_{\xi} \mathscr{L}_{\xi} f+(k-2 p)^{2} f=0$.

Now let f be a non-zero eigenfunction of ${ }^{(t)} \Delta_{S^{2 n}}$ corresponding to λ. Then we can regard f as $f(r, x) \in C^{\infty}\left((0, \pi) \times S^{2 n-1}\right)$. Let $\left\{\varphi_{k, p}^{i}(k \geqq 0,0 \leqq\right.$ $\left.\left.p \leqq[k / 2], 1 \leqq i \leqq \operatorname{dim} V_{k, p}\right)\right\}$ be a complete orthonormal basis on the space of square integrable functions on $S^{2 n-1}$ with respect to $g_{0}(2 n-1)$, where $\varphi_{k p}^{i} \in V_{k, p}$. We set

$$
a_{k, p}^{i}(r)=\int_{S^{2 n-1}} f(r, x) \varphi_{k, p}^{i}(x) d \operatorname{vol}\left(S^{2 n-1}, g_{0}(2 n-1)\right)
$$

Then $a_{k, p}^{i} \in C^{2}([0, \pi])$. Note that there exist some k, p, i such that $\boldsymbol{a}_{k, p}^{i} \not \equiv 0$.

Now as $\Delta_{S^{2 n-1}}$ and $\mathscr{L}_{\xi} \mathscr{L}_{\xi}$ are self-adjoint with respect to $\langle\rangle,, a_{k, p}^{i}(r)$ must satisfy the following equation:

$$
\begin{align*}
& {\left[\left(d^{2} / d r^{2}\right)+\left[(2 n-1)(\cos r)(\sin r)^{-1}\right.\right.} \tag{3.1}\\
& \left.\quad+t(\sin r)(\cos r)\left\{1+t(\sin r)^{2}\right\}^{-1}\right](d / d r)+\left[\lambda-k(k+2 n-2)(\sin r)^{-2}\right. \\
& \left.\quad+t(k-2 p)^{2}\left\{1+t(\sin r)^{2}\right\}^{-1}\right] \varphi=0, \text { on }(0, \pi)
\end{align*}
$$

Lemma 3.2. When $\lambda<2 n-2$ and $k \geqq 1$, (3.1) has no nontrivial solution in $C^{2}([0, \pi])$ for any $p, 0 \leqq p \leqq[k / 2]$, and $t \geqq 0$.

Proof. By $\lambda<2 n-2$ and $k \geqq 1$, we see that on $(0, \pi)$,

$$
\lambda-k(k+2 n-2)(\sin r)^{-2}+t(k-2 p)^{2}\left\{1+t(\sin r)^{2}\right\}<0 .
$$

Let $\varphi \in C^{2}([0, \pi])$ be a solution of (3.1). Multiply both sides of (3.1) by $(\sin r)^{2}$ and take the limits as $r \rightarrow 0$ and $r \rightarrow \pi$. Then $\varphi(0)=\varphi(\pi)=0$. Therefore by Rolle's theorem, there exists $r_{0} \in(0, \pi)$ such that $(d \varphi / d r)\left(r_{0}\right)=0$. For any $r_{0} \in(0, \pi)$ satisfying $(d \varphi / d r)\left(r_{0}\right)=0$, we have $\left(d^{2} \varphi / d r^{2}\right)\left(r_{0}\right)=-\left[\lambda-k(k+2 n-2)\left(\sin r_{0}\right)^{-2}+t(k-2 p)^{2}\left\{1+t\left(\sin r_{0}\right)^{2}\right\}^{-1}\right] \rho\left(r_{0}\right)$.

If we assume φ is a non-trivial solution, then by the uniqueness of a solution for an initial condition, $\varphi\left(r_{0}\right) \neq 0$. So $\left(d^{2} \varphi / d r^{2}\right)\left(r_{0}\right)>0$ if $\varphi\left(r_{0}\right)>0$ and $\left(d^{2} \varphi / d r^{2}\right)\left(r_{0}\right)<0$ if $\varphi\left(r_{0}\right)<0$. This contradicts the fact $\varphi(0)=\varphi(\pi)=0$. q.e.d.

Next we consider the case of $k=0$ in (3.1). Set $z=\cos r$. If $y(\cos r)$ is a solution of (3.1), then the function $y(z)$ must be in $C^{2}(-1,1)$ and satisfy the following equation (3.1'):

$$
\begin{equation*}
\left(1-z^{2}\right) y^{\prime \prime}-\left[2 n+t\left(1-z^{2}\right)\left\{1+t\left(1-z^{2}\right)\right\}^{-1}\right] z y^{\prime}+\lambda y=0 \quad \text { on }(-1,1), \tag{3.1'}
\end{equation*}
$$

where $y^{\prime}(z)\left(\operatorname{resp} . y^{\prime \prime}(z)\right)$ denotes $(d y / d z)(z)\left(\right.$ resp. $\left.\left(d^{2} y / d z^{2}\right)(z)\right)$. Set $y(z)=$ $\sum_{j \geqq 0} a_{j} z^{j}$ formally. Then we obtain $2 a_{2}=-\lambda a_{0}, 6(1+t) a_{3}=\{(2 n-\lambda)+$ $(2 n+1-\lambda) t\} a_{1}$ and
(3.2) $(1+t)\left((j+2)(j+1) a_{j+2}-t\left\{(j+2)^{2}+(2 n-4)(j+2)-2(2 n-2)-\lambda\right\} a_{j}\right.$

$$
\begin{aligned}
= & (1+t) j(j-1) a_{j}-t\left\{j^{2}+(2 n-4) j-2(2 n-2)-\lambda\right\} a_{j-2} \\
& +(2 n j-\lambda) a_{j}, \quad j \geqq 2 .
\end{aligned}
$$

The function y is well-defined by (3.2), that is, $\sum_{j \geqq 0} a_{j} z^{j}$ is absolutely convergent on ($-1,1$). It is classical that (3.1) is equivalent to (3.1'). By (3.2), we can choose $y_{1}=\sum_{j \geqq 0} a_{2 j} z^{2 j}$ and $y_{2}=\sum_{j \geqq 1} a_{2 j-1} z^{2 j-1}$ as a fundamental system of (3.1').

Lemma 3.3. Let $a_{0}=-1$ and $a_{1}=1$. Then $a_{j}>0(j \geqq 1)$ if $0<\lambda<$ $2 n$.

Proof. We first consider $a_{2 j}$. By $a_{0}=-1$ and $a_{2}=\lambda / 2$, we have $12(1+t) a_{4}-t\left\{4^{2}+4(2 n-4)-2(2 n-2)-\lambda\right\} a_{2}=2 a_{2}+(4 n-\lambda) a_{2}>0$. Therefore $a_{4}>0$. We assume $a_{j}>0$ for any even integer $j, 4 \leqq j \leqq m$ for some even integer m. Set $b_{j}=(1+t)(j+2)(j+1) a_{j+2}-t\left\{(j+2)^{2}+\right.$ $(2 n-4)(j+2)-2(2 n-2)-\lambda\} a_{j}$. Then by $(3.2), b_{j}=b_{j-2}+(2 n j-\lambda) a_{j}$. By our assumption, $b_{m}=b_{m-2}+(2 n m-\lambda) a_{m}>b_{m-2}>\cdots>b_{2}>0$. Thus $a_{m+2}>0$.

Next we consider $a_{2 j-1}$. By $a_{1}=1$ and $a_{3}=6^{-1}[\{2 n+(2 n+1) t\}(1+$ $\left.t)^{-1}-\lambda\right]>0$, we have $b_{3}=(2 n-\lambda)+(6 n-\lambda) a_{3}>0$. In the same way as in the case of $a_{2 j}$, we obtain $a_{j}>0$ for any odd integer $j>0$. q.e.d.

Lemma 3.4. When $0<\lambda<n$, (3.1') has no nontrivial bounded solution in $C^{2}(-1,1)$ for any $t \geqq 0$.

Proof. We first consider y_{1}. By (3.2),

$$
\begin{array}{rl}
a_{2 j+2}=t & t \\
& \times\left\{(2 j+t)^{-1}\left\{(2 j+2)^{2}+(2 n-4)(2 j+2)-2(2 n-2)-\lambda\right\}\right. \\
& \times\left\{2 a_{2}+\sum_{i=1}^{j}(4 n i-\lambda) a_{2 i}\right\}
\end{array}
$$

When $0<\lambda<n$ and $1 \leqq i \leqq j$, we have $4 n i-\lambda>3 n i$. When $0<\lambda<n, n \geqq 2$ and $j \geqq 3$, we have

$$
\begin{aligned}
& \left\{(2 j+2)^{2}+(2 n-4)(2 j+2)-2(2 n-2)-\lambda\right\}\{(2 j+2)(2 j+1)\}^{-1} \\
& \quad=(2 j / 2 j+2)\left[1+(4 n j-2 j-\lambda)\{2 j(2 j+1)\}^{-1}\right]>(2 j / 2 j+2)
\end{aligned}
$$

By Lemma 3.3, we have $a_{j}>0(j \geqq 1)$ when $0<\lambda<n, a_{0}=-1$ and $a_{1}=1$. Thus there exists a positive constant K such that $a_{2}>(K / 2) a_{2}$, $a_{4}>(K / 4) a_{2}$ and $a_{6}>(K / 6) a_{2}$. We assume $a_{2 j}>(K / 2 j) a_{2}$ for $3 \leqq j \leqq m$.

Then as $n \geqq 2$ and $m \geqq 3$, we have

$$
\begin{aligned}
& a_{2 m+2}>(t / 1+t)(2 m / 2 m+2)(K / 2 m) a_{2}+\{(1+t)(2 m+2)(2 m+1)\}^{-1} \\
& \times \sum_{j=1}^{m}(3 n j / 2 j) K a_{2} \\
&>(t / 1+t)(K / 2 m+2) a_{2}+(1 / 1+t)(K / 2 m+2) a_{2}=(K / 2 m+2) a_{2}
\end{aligned}
$$

Therefore $y_{1}(z)>-1+(K / 2) a_{2}\left\{\log \left(1-z^{2}\right)^{-1}\right\}$, when $z \neq 0$. Thus $y_{1}(z)$ is unbounded on $(-1,1)$. Similarly we can show that $y_{2}(z)$ is unbounded on ($-1,1$). Since $\left\{y_{1}, y_{2}\right\}$ give a fundamental system of (3.1'), we obtain the desired result.
q.e.d.

Theorem 3.5. There exists a continuous deformation $g_{t}(0 \leqq t<\infty)$ of the canonical metric g_{0} on $S^{2 n}(n \geqq 2)$ such that

$$
\lambda_{1}\left(g_{t}\right) \operatorname{vol}\left(S^{2 n}, g_{t}\right)^{1 / n} \rightarrow \infty \quad(t \rightarrow \infty) .
$$

Proof. Set $g_{t}=g_{t}(2 n)$. Then Lemmas 3.2 and 3.4 imply $\lambda_{1}\left(g_{t}\right) \geqq n$ for any $t \geqq 0$. By (2.2), we have

$$
\begin{aligned}
\operatorname{vol}\left(S^{2 n}, g_{t}\right) & =\operatorname{vol}\left(S^{2 n-1}, g_{0}(2 n-1)\right) \int_{0}^{\pi}\left(1+t(\sin r)^{2}\right)^{1 / 2}(\sin r)^{2 n-1} d r \\
& \rightarrow \infty \quad(t \rightarrow \infty)
\end{aligned}
$$

References

[1] M. Berger, Sur les premières valeurs propres des variétés riemanniennes, Compositio Math. 26 (1973), 129-149.
[2] M. Berger, P. Gauduchon and E. Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Math. 194, Springer-Verlag, Berlin, Heidelberg, New York, 1971.
[3] A. L. Besse, Manifolds all of whose Geodesics are Closed, Springer-Verlag, Berlin, Heidelberg, New York, 1978.
[4] R. Courant and D. Hilbert, Methoden der Mathematischen Physik, Springer-Verlag, Berlin, Heidelberg, New York, 1931.
[5] L. W. Green, Auf Wiedersehensflächen, Ann. of Math. 78 (1963), 289-299.
[6] J. HERSCH, Quatre propriétés isopérimétriques des membranes sphériques homogènes, C. R. Acad. Sc. Sèrie A 270 (1970), 1645-1648.
[7] S. Tanno, The first eigenvalue of the Laplacian on spheres, Tôhoku Math. J. 31 (1979), 179-185.
[8] H. Urakawa, On the least eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979), 209-226.
[9] H. Urakawa, On the least positive eigenvalue of the Laplacian for the compact quotient of a certain Riemannian symmetric space, Nagoya Math. J. 78 (1980), 137-152.
[10] H. Urakawa and H. Muto, On the least positive eigenvalue of Laplacian on compact homogeneous spaces, (to appear in Osaka J. Math.).

Mathematical Institute

Tôhoku University
SEndai, 980 Japan

