NOTES ON THE CANCELLATION OF RIEMANNIAN MANIFOLDS

Hitoshi Takagi

(Received July 10, 1979)

Introduction. Let M, N and B be Riemannian manifolds. Then, we have a question "Is M isometric to N, if $M \times B$ is isometric to $N \times B$?" Uesu [1] proved that the answer is affirmative if M and N are complete and if B is compact locally symmetric. In the present note, we shall show that the answer is affirmative also if the last condition on B is replaced by one of the following (1) and (2):
(1) B is simply connected and complete.
(2) B is complete and B has the irreducible restricted holonomy group.
The last assertion is stated as Theorems A and B in the next section.
We assume, in the present note, that all Riemannian manifolds are connected and C^{∞}.

1. Proof of the theorems. First, we give some lemmas. Let $\Omega^{\prime}=$ $\{1, \cdots, r\}$ and $\Omega^{\prime \prime}=\{r+1, \cdots, n\}$. For a subset $\Omega \subset \Omega^{\prime} \cup \Omega^{\prime \prime}$, we denote by $S(\Omega)$ the symmetric group of Ω. And, by S_{n} and S_{r}, we denote $S\left(\Omega^{\prime} \cup \Omega^{\prime \prime}\right)$ and $S\left(\Omega^{\prime}\right)$, respectively. Let G be a subgroup of S_{r} and $\Omega_{0}^{\prime}=\left\{i \in \Omega^{\prime} \mid \tau(i)=i\right.$ for all $\tau \in G\}, \Omega_{1}^{\prime}=\left\{i \in \Omega^{\prime} \mid \tau(i) \neq i\right.$ for some $\left.\tau \in G\right\}$.

Lemma 1. Let σ be an element of S_{n}.
(i) If $\omega \in S\left(\sigma\left(\Omega_{0}^{\prime} \cup \Omega^{\prime \prime}\right)\right)$, then $(\omega \sigma) \tau(\omega \sigma)^{-1}=\sigma \tau \sigma^{-1}$ for all $\tau \in G$.
(ii) If $\sigma G \sigma^{-1} \subset S_{r}$, then $\sigma\left(\Omega_{1}^{\prime}\right) \subset \Omega^{\prime}$.

Proof. (i) We note $\tau\left(\Omega_{1}^{\prime}\right)=\Omega_{1}^{\prime}$ for all $\tau \in G$. If $i \in \Omega_{1}^{\prime}$, then $\omega \sigma(i)=$ $\sigma(i)$, and hence $\omega \sigma \tau \sigma^{-1} \omega^{-1}(\omega \sigma(i))=\omega \sigma(\tau(i))=\sigma \tau(i), \quad \sigma \tau \sigma^{-1}(\omega \sigma(i))=$ $\sigma \tau \sigma^{-1}(\sigma(i))=\sigma \tau(i)$. If $i \in \Omega_{0}^{\prime} \cup \Omega^{\prime \prime}$, then $\omega \sigma \tau \sigma^{-1} \omega^{-1}(\omega \sigma(i))=\omega \sigma \tau(i)=\omega \sigma(i)$ and $\left(\sigma \tau \sigma^{-1}\right)(\omega \sigma(i))=\omega \sigma(i)$, as $\omega \sigma(i)=\sigma(j)$ for some $j \in \Omega_{0}^{\prime} \cup \Omega^{\prime \prime}$. (ii) Assume $i \in \Omega_{1}^{\prime}$ and $\sigma(i) \in \Omega^{\prime \prime}$. Since $\sigma G \sigma^{-1} \subset S_{r}$, we have $\sigma \tau \sigma^{-1}(\sigma(i))=\sigma(i)$ and hence $\tau(i)=i$ for all $\tau \in G$, a contradiction.
q.e.d.

Throughout the present note, $I(M)$ denotes the group of all isometries of a simply connected and complete Riemannian manifold M.

Let $M_{1}=M_{2}=\cdots=M_{n}$ be a simply connected and complete Riemannian manifold whose homogeneous holonomy group is irreducible. Let M be the direct product Riemannian manifold $M_{1} \times M_{2} \times \cdots \times M_{n}$. For
each $\sigma \in S_{n}, \quad \lambda(\sigma): M \rightarrow M$ is defined by

$$
\lambda(\sigma)\left(x_{1}, \cdots, x_{n}\right)=\left(x_{\sigma^{-1}(1)}, \cdots, x_{\sigma^{-1}(n)}\right), \quad x_{i} \in M_{i} .
$$

Then, $\lambda(\sigma) \in I(M)$ and $\lambda: S_{n} \rightarrow I(M)$ is an isomorphism. Briefly we denote $\lambda(\sigma)$ by σ. Then S_{n} is a subgroup of $I(M)$.

Lemma 2. (i) $I(M)$ is generated by S_{n} and $I\left(M_{1}\right) \times \cdots \times I\left(M_{n}\right)$. (ii) If $\sigma \in S_{n}$ and $\left(f_{1}, \cdots, f_{n}\right) \in I\left(M_{1}\right) \times \cdots \times I\left(M_{n}\right)$, then

$$
\sigma\left(f_{1}, \cdots, f_{n}\right) \sigma^{-1}=\left(f_{\sigma^{-1}(1)}, \cdots, f_{\sigma^{-1}(n)}\right),
$$

where $\left(f_{\sigma^{-1}(1)}, \cdots, f_{\sigma^{-1}(n)}\right) \in I\left(M_{1}\right) \times \cdots \times I\left(M_{n}\right)$. In particular, $I\left(M_{1}\right) \times \cdots \times$ $I\left(M_{n}\right)$ is a normal subgroup of $I(M)$.

Proof. (i) is easily seen by the uniqueness of de Rham's decomposition (cf. Uesu [1] and Wolf [2]). (ii) $\sigma\left(f_{1}, \cdots, f_{n}\right) \sigma^{-1}\left(x_{1}, \cdots, x_{n}\right)=$ $\sigma\left(f_{1}, \cdots, f_{n}\right)\left(x_{\sigma(1)}, \cdots, x_{\sigma(n)}\right)=\sigma\left(f_{1}\left(x_{\sigma(1)}\right), \cdots, f_{n}\left(x_{\sigma(n)}\right)\right)=\left(f_{\sigma^{-1}(1)}\left(x_{1}\right), \cdots\right.$, $\left.f_{\sigma^{-1}(n)}\left(x_{n}\right)\right)=\left(f_{\sigma^{-1}(1)}, \cdots, f_{\sigma^{-1}(n)}\right)\left(x_{1}, \cdots, x_{n}\right) . \quad$ q.e.d.

By the above lemma, S_{n} is isomorphic to the quotient group $I(M) /$ $I\left(M_{1}\right) \times \cdots \times I\left(M_{n}\right)$. Let μ be the natural projection of $I(M)$ onto $I(M) /$ $I\left(M_{1}\right) \times \cdots \times I\left(M_{n}\right)$. Then, the image $\mu(\Gamma)$ of a subgroup Γ of $I(M)$ is considered as a subgroup of S_{n}.

Let us decompose M in Lemma 2 into M^{\prime} and $M^{\prime \prime}$, where $M^{\prime}=$ $M_{1} \times \cdots \times M_{r}$ and $M^{\prime \prime}=M_{r+1} \times \cdots \times M_{n}$. Then $M=M^{\prime} \times M^{\prime \prime}$.

Lemma 3. Let Γ be a subgroup of $I\left(M^{\prime}\right)$ and $f \in I(M)$. If $f \Gamma f^{-1} \subset$ $I\left(M^{\prime}\right)$, then there exists $f^{\prime} \in I\left(M^{\prime}\right)$ satisfying $f^{\prime} h f^{\prime-1}=f h f^{-1}$ for all $h \in \Gamma$.

Proof. Let G be the subgroup $\mu(\Gamma)$ which is a subgroup of S_{r}. Then, we may apply Lemma 1 with the other notations used. f is written as $f=\sigma\left(f_{1}, \cdots, f_{n}\right)$ by Lemma 2 , where $\sigma \in S_{n}$ and $\left(f_{1}, \cdots, f_{n}\right) \in$ $I\left(M_{1}\right) \times \cdots \times I\left(M_{n}\right)$. Let h be an element of Γ. Then h is written as $h=\tau\left(h_{1}, \cdots, h_{r}, h_{r+1}, \cdots, h_{n}\right)$, where $\tau \in S_{r}, \quad\left(h_{1}, \cdots, h_{r}, h_{r+1}, \cdots, h_{n}\right) \in$ $I\left(M_{1}\right) \times \cdots \times I\left(M_{r}\right) \times I\left(M_{r+1}\right) \times \cdots \times I\left(M_{n}\right)$ and $h_{r+1}=\cdots=h_{n}=1$. Then we have

where $\left(f_{\tau \sigma}^{-1_{(1)}} h_{\sigma^{-1}(1)} f_{\sigma^{-\frac{1}{1}(1)}}, \cdots, f_{\tau \sigma^{-1}(n)} h_{\sigma^{-1(n)}} f_{\sigma^{-1}(n)}^{-1_{1}}\right) \in I\left(M_{1}\right) \times \cdots \times I\left(M_{n}\right)$. Since $f h f^{-1} \in I\left(M^{\prime}\right)$, we have $\sigma \tau \sigma^{-1} \in S_{r}$ and $f_{\tau \sigma}{ }^{-1(i)} h_{\sigma^{-1(i)}} f_{\sigma^{-1}(i)}^{-1}=1$ if $i \in \Omega^{\prime \prime}$. On the other hand, by (ii) of Lemma 1 , if $i \in \Omega^{\prime \prime}$, then $\sigma^{-1}(i) \in \Omega_{0}^{\prime} \cup \Omega^{\prime \prime}$. Hence $\tau \sigma^{-1}(i)=\sigma^{-1}(i)$ and $h_{\sigma^{-1}(i)}=1$. Thus, if $j \in \sigma^{-1}\left(\Omega^{\prime \prime}\right) \cup \Omega^{\prime \prime}$, then $\tau(j)=j$ and $h_{j}=1$. We may assume for brevity that $\sigma^{-1}\left(\Omega^{\prime \prime}\right) \cap \Omega^{\prime}=$ $\{1, \cdots, s\}, s \leqq r$. Then $\Gamma \subset I\left(M_{s+1} \times \cdots \times M_{r}\right)$.

Now, we define $\omega \in S\left(\left\{\sigma\left(j_{1}\right), \cdots, \sigma\left(j_{s}\right), \sigma(1), \cdots, \sigma(s)\right\}\right)$ by $\omega\left(\sigma\left(j_{k}\right)\right)=$ $\sigma(k)$ and $\omega(\sigma(k))=\sigma\left(j_{k}\right), \quad k=1, \cdots, s$, where $\sigma^{-1}\left(\Omega^{\prime}\right) \cap \Omega^{\prime \prime}=\left\{j_{1}, \cdots, j_{s}\right\}$, $r+1 \leqq j_{1}<\cdots<j_{s} \leqq n$. And we define $f^{\prime} \in I\left(M^{\prime}\right)$ by $f^{\prime}=\omega \sigma(1, \cdots, 1$, $\left.f_{s+1}, \cdots, f_{r}, 1, \cdots, 1\right)$. Then, f^{\prime} is the desired one. Indeed, as $\Gamma \subset$ $I\left(M_{s+1} \times \cdots \times M_{r}\right), \quad \sigma\left(1, \cdots, 1, f_{s+1}, \cdots, f_{r}, 1, \cdots, 1\right) h\left(1, \cdots, 1, f_{s+1}, \cdots, f_{r}\right.$, $1, \cdots, 1)^{-1} \sigma^{-1}=f h f^{-1}$ for any $h \in \Gamma$. For any $h=\tau\left(h_{1}, \cdots, h_{n}\right) \in \Gamma$, $\sigma \tau \sigma^{-1} \in S(\{\sigma(s+1), \cdots, \sigma(r)\})$, as $\tau \in S(\{s+1, \cdots, r\})$. On the other hand, $f_{\tau \sigma^{-1}(j)} h_{\sigma^{-1}(j)} f_{\sigma^{-1}(j)}=1$ for any $j \in\{\sigma(1), \cdots, \sigma(s), \sigma(r+1), \cdots, \sigma(n)\}$. Then, by ($*$) $\sigma\left(1, \cdots, 1, f_{s+1}, \cdots, f_{r}, 1, \cdots, 1\right) \Gamma\left(1, \cdots, 1, f_{s+1}, \cdots, f_{r}, 1\right.$, $\cdots, 1)^{-1} \sigma^{-1} \subset I\left(M_{\sigma(s+1)} \times \cdots \times M_{\sigma(r)}\right)$. But, as $\omega \in S\left(\left\{\sigma\left(j_{1}\right), \cdots, \sigma\left(j_{s}\right), \sigma(1)\right.\right.$, $\cdots, \sigma(s)\}$), we have $f^{\prime} h f^{\prime-1}=f h f^{-1}$.

Let E^{n} be an n-dimensional Euclidean space. Let $E(n)=I\left(E^{n}\right)$. Then $E(n)$ is the semi-direct product group $O(n)+\boldsymbol{R}^{n}$, where $O(n)$ is the orthogonal group of the n-dimensional Euclidean vector space \boldsymbol{R}^{n} and, if $(A, a),(B, b) \in E(n)$, the $(A, a)(B, b)=(A B, A b+a)$.

Lemma 4. Let G be a subgroup of $O(n), A \in O(n)$ and $\bar{G}=A G A^{-1}$. Let $V=\left\{v \in \boldsymbol{R}^{n} \mid X v=v\right.$ for all $\left.X \in G\right\}$ and $W=\left\{w \in \boldsymbol{R}^{n} \mid Y w=w\right.$ for all $Y \in \bar{G}\}$. Then $A(V)=W$ and hence $A\left(V^{\perp}\right)=W^{\perp}$, where V^{\perp} and W^{\perp} are orthogonal complements in \boldsymbol{R}^{n} of V and W, respectively.

Let us consider E^{n} as the direct product Riemannian manifold $E^{r} \times E^{n-r}$ of the Euclidean spaces E^{r} and E^{n-r}.

Lemma 5. Let Γ be a subgroup of $E(r)=I\left(E^{r}\right)$ and $f \in E(n)$. If $f \Gamma f^{-1} \subset E(r)$, then there exists $f^{\prime} \in E(r)$ satisfying $f^{\prime} h f^{\prime-1}=f h f^{-1}$ for all $h \in \Gamma$.

Proof. Let $\bar{\Gamma}=f \Gamma f^{-1}, V_{0}=\left\{v \in \boldsymbol{R}^{r} \mid \mu(h) v=v\right.$ for all $\left.h \in \Gamma\right\}$ and $W_{0}=\left\{w \in \boldsymbol{R}^{r} \mid \mu(\bar{h}) w=w\right.$ for all $\left.\bar{h} \in \bar{\Gamma}\right\}$, where μ is the projection $E(n) \rightarrow$ $O(n)$. Let $V=V_{0} \oplus \boldsymbol{R}^{n-r}$ and $W=W_{0} \oplus \boldsymbol{R}^{n-r}$. Then $\boldsymbol{R}^{r}=V^{\perp} \oplus V_{0}=$ $W^{\perp} \oplus W_{0}$ and f is considered as a mapping $f: V^{\perp} \oplus V \rightarrow W^{\perp} \oplus W$, where V^{\perp} and W^{\perp} are orthogonal complements in \boldsymbol{R}^{n} of V and W, respectively. Then, by Lemma $4, \mu(f)\left(V^{\perp}\right)=W^{\perp}$ and $\mu(f)(V)=W$. Let $h=(X, x) \in \Gamma$ and $f=(A, a)$. Then $\left.X\right|_{V}=1$ and $x \in \boldsymbol{R}^{r}$. On the other hand, we-have (**) $\quad f h f^{-1}=(A, a)(X, x)\left(A^{-1},-A^{-1} a\right)=\left(A X A^{-1},-A X A^{-1} a+A x+a\right)$.
Since $f h f^{-1} \in E(r)$, we have $A X A^{-1} \in O(r),-A X A^{-1} a+A x+a \in \boldsymbol{R}^{r}$ and $\left.A X A^{-1}\right|_{W}=1$. Here, a is written as $a=a^{\prime}+a^{\prime \prime}$, where $a^{\prime} \in W^{\perp}$ and $a^{\prime \prime} \in W$. Then $-A X A^{-1} a+a=-A X A^{-1} a^{\prime}+a^{\prime} \in W^{\perp} \subset \boldsymbol{R}^{r}$. Thus $A x \in \boldsymbol{R}^{r}$, as $-A X A^{-1} a+A x+a \in \boldsymbol{R}^{r}$.

Now, let $U=\left\{v \in V_{0} \mid A v \in \boldsymbol{R}^{r}\right\}$. Then $V_{0}=U \bigoplus U^{\perp}$, where U^{\perp} is the orthogonal complement of U in V_{0}. Let A^{\prime} be an element of $O(r)$
satisfying $\left.A^{\prime}\right|_{V^{\perp} \otimes U}=\left.A\right|_{V^{\perp} \otimes U},\left.A^{\prime}\right|_{R^{n-r}}=1$ and $A^{\prime}\left(U^{\perp}\right)=A(U)^{\perp}$, where $A(U)^{\perp}$ is the orthogonal complement of $A(U)$ in W_{0}. Then $f^{\prime}=\left(A^{\prime}, a^{\prime}\right) \in E(r)$ is the desired one. In fact, let $h=(X, x) \in \Gamma$. If $v \in V^{\perp}$, then $A X A^{-1}(A v)=A X(v)=A^{\prime} X A^{\prime-1}(A v)$ as $\quad X v \in V^{\perp}$. If $v \in U$, then $A X A^{-1}(A v)=A v=A^{\prime} X A^{\prime-1}(A v)$ as $X v=v$. If $v \in R^{n-r}$, then $A X A^{-1}(A v)=$ $A v=A^{\prime} X A^{\prime-1}(A v)$ as $A v \in W, A^{\prime}\left(V_{0}\right)=W_{0}$ and $X v=v$. If $v \in U^{\perp}$, then $A X A^{-1}(A v)=A v=A^{\prime} X A^{\prime-1}(A v)$ as $X v=v$ and $A v \in R^{n-r}$. Then we have $A X A^{-1}=A^{\prime} X A^{\prime-1}$. Moreover, $A x=A^{\prime} x$ as $x \in V^{\perp} \oplus U$. Then $-A X A^{-1} a+$ $A x+a=-A^{\prime} X A^{\prime-1} a^{\prime}+A^{\prime} x+a^{\prime}$. Thus, by (**), we have $f^{\prime} h f^{\prime-1}=$ $f h f^{-1}$. q.e.d.

Lemma 6. Let M, N and B be complete Riemannian manifolds. If $M \times B$ is isometric to $N \times B$, then \widetilde{M} is isometric to \tilde{N}, where \widetilde{M} and \widetilde{N} are universal Riemannian covering manifolds of M and N, respectively.

Proof. Let $p: \widetilde{M} \rightarrow M, p^{\prime}: \widetilde{N} \rightarrow N$ and $q: \widetilde{B} \rightarrow B$ be the universal Riemannian coverings. And let $\phi: M \times B \rightarrow N \times B$ be an isometry. Then, the covering $\phi \circ(p, q): \widetilde{M} \times \widetilde{B} \rightarrow N \times B$ has a lift $\tilde{\phi}: \widetilde{M} \times \widetilde{B} \rightarrow \widetilde{N} \times \widetilde{B}$, since $\widetilde{M} \times \widetilde{B}$ and $\widetilde{N} \times \widetilde{B}$ are simply connected. Then $\tilde{\phi}$ is a covering and a local isometry as $\left(p^{\prime}, q\right) \circ \tilde{\phi}=\phi \circ(p, q)$. Hence, $\tilde{\phi}$ is an isometry. Thus \tilde{M} is isometric to \widetilde{N} by de Rham's decomposition theorem. q.e.d.

Lemma 7. Let \tilde{M} be a simply connected and complete Riemannian manifold. Let Γ and $\bar{\Gamma}$ be subgroups of $I(\widetilde{M})$ acting freely and properly discontinuously on \tilde{M}. Then the quotient \tilde{M} / Γ is isometric to the quotient $\tilde{M} / \bar{\Gamma}$ if and only if there exists an element $f \in I(\widetilde{M})$ satisfying $f \Gamma f^{-1}=\bar{\Gamma}$.

Proof. See Wolf [2].
Remark. Let \tilde{M} and \tilde{N} be simply connected and complete Riemannian manifolds. Let $\tilde{\phi}: \widetilde{M} \rightarrow \tilde{N}$ be an isometry. Let Γ and $\bar{\Gamma}$ be subgroups of $I(\widetilde{M})$ acting freely and properly discontinuosly on \widetilde{M}. Then, $\Delta=\tilde{\phi} \Gamma \tilde{\phi}^{-1}$ and $\bar{\Delta}=\tilde{\phi} \bar{\Gamma} \tilde{\phi}^{-1}$ are subgroups of $I(\tilde{N})$ acting freely and properly discontinuously on \tilde{N}. And $\tilde{\phi}$ induces natural isometries $\phi: \tilde{M} / \Gamma \rightarrow$ \widetilde{N} / Δ and $\bar{\phi}: \widetilde{M} / \bar{\Gamma} \rightarrow \widetilde{N} / \bar{\Delta}$. If there exists $f \in I(\widetilde{M})$ satisfying $\bar{\Gamma}=f \Gamma f^{-1}$, then $\bar{\Delta}=\left(\tilde{\phi} f \tilde{\phi}^{-1}\right) \Delta\left(\tilde{\phi} f \tilde{\phi}^{-1}\right)^{-1}$. Conversely, if there exists $g \in I(\tilde{N})$ satisfying $\bar{\Delta}=g \Delta g^{-1}$, then $\bar{\Gamma}=\left(\tilde{\phi}^{-1} g \tilde{\phi}\right) \Gamma\left(\tilde{\phi}^{-1} g \tilde{\phi}\right)^{-1}$. By Lemma 7, \tilde{M} / Γ is isometric to $\tilde{M} / \bar{\Gamma}$ if and only if \tilde{N} / Δ is isometric to $\tilde{N} / \bar{\Delta}$.

Theorem A. Let M and N be complete Riemannian manifolds. Let \widetilde{B} be a simply connected and complete Riemannian manifolds. If $M \times \widetilde{B}$ is isometric to $N \times \widetilde{B}$, then M is isometric to N.

Proof. By Lemma 6, we may assume that M and N are isometric
to \widetilde{M} / Γ and $\widetilde{M} / \bar{\Gamma}$, respectively, where Γ and $\bar{\Gamma}$ are subgroups of $I(\widetilde{M})$ acting freely and properly discontinuously on \widetilde{M}. Since $\widetilde{M} / \Gamma \times \widetilde{B}$ is isometric to $\widetilde{M} / \bar{\Gamma} \times \widetilde{B}$, there exists $f \in I(\widetilde{M} \times \widetilde{B})$ satisfying $f \Gamma f^{-1}=\bar{\Gamma}$ by Lemma 7. It is sufficient to prove that there exists $f^{\prime} \in I(\widetilde{M})$ satisfying $f^{\prime} h f^{\prime-1}=f h f^{-1}$ for all $h \in \Gamma$.

Now, by de Rham's decomposition theorem, we may assume that \widetilde{M} and \widetilde{B} are isometric to the direct product Riemannian manifolds $N_{0} \times N_{1} \times \cdots \times N_{m} \times N^{*}$ and $B_{0} \times B_{1} \times \cdots \times B_{m} \times B^{*}$, respectively, which have the following properties (1)~(4):
(1) $N_{0}, \cdots, N_{m}, N^{*}, B_{0}, \cdots, B_{m}$ and B^{*} are all simply connected and complete.
(2) $N_{0} \times B_{0}$ is a Euclidean space.
(3) For each $i \in\{1, \cdots, m\}, \quad N_{i} \times B_{i}$ is a product of some Riemannian manifolds which are all isometric to one simply connected and complete Riemannian manifold M_{i} whose homogeneous holonomy group is irreducible. And if $i \neq j$, then M_{i} is not isometric to M_{j}.
(4) Any component of de Rham's decomposition of $N^{*} \times B^{*}$ has the irreducible homogeneous holonomy group. And any component of N^{*} is not isometric to any of B^{*}.

By the above remark, we may suppose $\widetilde{M}=N_{0} \times N_{1} \times \cdots \times N_{m} \times N^{*}$ and $\widetilde{B}=B_{0} \times B_{1} \times \cdots \times B_{m} \times B^{*}$. Moreover, we have a natural isometry $\phi: \tilde{M} \times \widetilde{B} \rightarrow P=\left(N_{0} \times B_{0}\right) \times \cdots \times\left(N_{m} \times B_{m}\right) \times N^{*} \times B^{*}$. By the uniqueness of de Rham's decomposition, we have $I(P)=I\left(N_{0} \times B_{0}\right) \times \cdots \times I\left(N_{m} \times B_{m}\right) \times$ $I\left(N^{*}\right) \times I\left(B^{*}\right)$, (cf. Uesu [1]). Since Γ and $\bar{\Gamma}$ are contained in $I(\tilde{M})$, $\phi \Gamma \phi^{-1}$ and $\phi \bar{\Gamma} \phi^{-1}$ are contained in $I\left(N_{0}\right) \times \cdots \times I\left(N_{m}\right) \times I\left(N^{*}\right) \times\{1\}$, where $I\left(N_{i}\right)$ is interpreted as $I\left(N_{i}\right) \subset I\left(N_{i} \times B_{i}\right)$ for each $i \in\{0,1, \cdots, m\}$. Again, by the remark, we may consider $\phi \Gamma \phi^{-1}$ and $\phi \bar{\Gamma} \phi^{-1}$ as Γ and $\bar{\Gamma}$, respectively. Then, it is sufficient to prove the following: Let Γ and $\bar{\Gamma}$ be subgroups of $I\left(N_{0}\right) \times \cdots \times I\left(N_{m}\right) \times I\left(N^{*}\right) \times\{1\}$. If there exists $f \in I(P)$ satisfying $f \Gamma f^{-1}=\bar{\Gamma}$, then there exists $f^{\prime} \in I\left(N_{0}\right) \times \cdots \times I\left(N_{m}\right) \times I\left(N^{*}\right) \times$ \{1\} satisfying $f^{\prime} h f^{\prime-1}=f h f^{-1}$ for all $h \in \Gamma$.

Indeed, f is written as $f=\left(g_{0}, g_{1}, \cdots, g_{m}, g^{*}, g^{* *}\right)$, where $g_{i} \in$ $I\left(N_{i} \times B_{i}\right), g^{*} \in I\left(N^{*}\right)$ and $g^{* *} \in I\left(B^{*}\right) . \quad h$ is written as $h=\left(k_{0}, k_{1}, \cdots\right.$, $\left.k_{m}, k^{*}, 1\right)$, where $k_{i} \in I\left(N_{i}\right)$ and $k^{*} \in I\left(N^{*}\right)$. Then $f h f^{-1}=\left(g_{0} k_{0} g_{0}^{-1}, g_{1} k_{1} g_{1}^{-1}\right.$, $\cdots, g_{m} k_{m} g_{m}^{-1}, g^{*} k^{*} g^{*-1}, 1$). Now, the assertion is clear by Lemmas 3 and 5.
q.e.d.

Theorem B. Let B be a complete Riemannian manifold whose restricted homogeneous holonomy group is irreducible. And let M and N be complete Riemannian manifolds. If $M \times B$ is isometric to $N \times B$, then M is isometric to N.

Proof. Let \widetilde{B} and \tilde{M} be universal Riemannian covering manifolds of B and M, respectively. Then, by Lemma $6, M, N$ and B are isometric to the quotients $\widetilde{M} / \Gamma, \widetilde{M} / \bar{\Gamma}$ and \widetilde{B} / Δ, respectively. Then, by Lemma 7, it is sufficient to prove: If there exists $f \in I(\widetilde{M} \times \widetilde{B})$ satisfying $f(\Gamma \times \Delta) f^{-1}=\bar{\Gamma} \times \Delta$, then there exists $f^{\prime} \in I(\widetilde{M})$ satisfying $f^{\prime} \Gamma f^{\prime-1}=\bar{\Gamma}$.

Let $M_{1} \times \cdots \times M_{n-1} \times M_{n}$ be de Rham's decomposition of $\tilde{M} \times \widetilde{B}$, where $\widetilde{M}=M_{1} \times \cdots \times M_{n-1}$ and $\widetilde{B}=M_{n}$. Then, by the uniqueness of de Rham's decomposition, $I(\tilde{M} \times \widetilde{B})$ is generated by $I\left(M_{1}\right), \cdots, I\left(M_{n}\right)$ and by all permutations of M_{i}^{\prime} 's which are isometric to each other, where we identify M_{i} with M_{j} by an isometry if M_{i} is isometric to M_{j} (cf. Uesu [1]). Moreover, we have a statement similar to (ii) of Lemma 2. Then f is written as $f=\sigma\left(f_{1}, \cdots, f_{n-1}, f_{n}\right)$, where $\sigma \in S_{n}$ and $\left(f_{1}, \cdots, f_{n-1}, f_{n}\right) \in$ $I\left(M_{1}\right) \times \cdots \times I\left(M_{n-1}\right) \times I\left(M_{n}\right)$. Let $r=\sigma(n) \quad$ and $\quad s=\sigma^{-1}(n)$. Suppose $r \leqq n-1$ and hence $s \leqq n-1$. Then M_{r}, M_{s} and M_{n} are isometric to each other. We shall prove

$$
\bar{\Gamma}=g_{r} \Delta_{r} g_{r}^{-1} \times\left(f \Gamma f^{-1} \cap \bar{\Gamma}\right) \quad \text { (the direct product group) }
$$

where $g_{r}=\left(1, \cdots, f_{n}, 1, \cdots, 1,1\right) \in I\left(M_{r}\right), \quad f \Gamma f^{-1} \cap \bar{\Gamma} \subset I\left(M_{1} \times \cdots \times M_{r-1} \times\right.$ $M_{r+1} \times \cdots \times M_{n-1}$) and Δ_{r} is the group Δ considered as a subgroup of $I\left(M_{r}\right)$. Let $h=\tau\left(h_{1}, \cdots, h_{n-1}, h_{n}\right) \in \Gamma \times \Delta$, where $\tau \in S_{n-1}$ and $\left(h_{1}, \cdots, h_{n-1}\right.$, $\left.h_{n}\right) \in I\left(M_{1}\right) \times \cdots \times I\left(M_{n-1}\right) \times I\left(M_{n}\right)$. Then

$$
f h f^{-1}=\sigma \tau \sigma^{-1}\left(f_{\tau \sigma^{-1}(1)} h_{\sigma^{-1}(1)} f_{\sigma^{-1}(1)}^{-1}, \cdots, f_{\tau \sigma^{-1}(n)} h_{\sigma^{-1(n)}} f_{\sigma^{-1}(n)}^{-1}\right),
$$

where $\left(f_{\tau \sigma^{-1}(1)} h_{\sigma^{-1(1)}} f_{\sigma^{-1}(1)}^{-1}, \cdots, f_{\tau \sigma^{-1}(n)} h_{\sigma^{-1}(n)} f_{\sigma^{-1}(n)}^{-1}\right) \in I\left(M_{1}\right) \times \cdots \times I\left(M_{n}\right)$. \quad Since $\sigma \tau \sigma^{-1}(r)=r$, we have $\bar{\Gamma} \subset I\left(M_{r}\right) \times I\left(M_{1} \times \cdots \times M_{r-1} \times M_{r+1} \times \cdots \times M_{n-1}\right)$. Moreover $g_{r} \Delta_{r} g_{r}^{-1}=f \Delta f^{-1} \subset \bar{\Gamma} \cap I\left(M_{r}\right)$. Next, let $\bar{h} \in \bar{\Gamma}$. Then \bar{h} is written as $\bar{h}=f h f^{-1}$, where $h \in \Gamma \times \Delta$. But h is written as $h=h^{\prime} h^{\prime \prime}$, where $h^{\prime} \in \Gamma, h^{\prime \prime} \in \Delta$. Then $f h f^{-1}=f h^{\prime} f^{-1} f h^{\prime \prime} f^{-1}$. Since $f h^{\prime \prime} f^{-1} \in I\left(M_{r}\right) \cap \bar{\Gamma}$, we have $f h^{\prime} f^{-1} \in \bar{\Gamma}$. Hence $f h^{\prime} f^{-1} \in f \Gamma f^{-1} \cap \bar{\Gamma}$. By the above argument, it is evident that $f h^{\prime} f^{-1} \in I\left(M_{1} \times \cdots \times M_{r-1} \times M_{r+1} \times \cdots \times M_{n-1}\right)$.

Now, let ω be the transposition $(r, n) \in I\left(M_{r} \times M_{n}\right)$ and $f^{\prime}=g_{r} \omega \sigma\left(f_{1}, \cdots\right.$ $\left.f_{n-1}, 1\right) \in I(\tilde{M})$. Then f^{\prime} is the desired one. In fact, let $h=\tau\left(h_{1}, \cdots\right.$, $\left.h_{n-1}, 1\right) \in \Gamma$. As $\quad \tau \in S_{n-1}$, we have $f h f^{-1}=\sigma\left(f_{1}, \cdots, f_{n-1}, 1\right) h\left(f_{1}, \cdots\right.$, $\left.f_{n-1}, \mathbf{1}\right)^{-1} \sigma^{-1}$. On the other hand, as $f h f^{-1} \in \bar{\Gamma} \times \Delta$, we have $\sigma \tau \sigma^{-1}(n)=n$, that is, $\tau(s)=s$ and hence $f h f^{-1}$ is written as $f h f^{-1}=\left(\bar{h}^{\prime}, f_{s} h_{s} f_{s}^{-1}\right)$. where ($\left.\bar{h}^{\prime}, 1\right) \in f \Gamma f^{-1} \cap \bar{\Gamma} \subset I\left(M_{1} \times \cdots \times M_{r-1} \times M_{r+1} \times \cdots \times M_{n-1}\right)$ and (1, \cdots, $\left.1, f_{s} h_{s} f_{s}^{-1}\right) \in \Delta \subset I\left(M_{n}\right)$. Then we have $\omega \sigma\left(f_{1}, \cdots, f_{n-1}, 1\right) h\left(f_{1}, \cdots, f_{n-1}\right.$, $1)^{-1} \sigma^{-1} \omega^{-1}=\left(1, \cdots, 1, f_{s} h_{s} f_{s}^{-1}, 1, \cdots, 1,1\right)\left(\bar{h}^{\prime}, 1\right) \in I\left(M_{r}\right) \times\left(f \Gamma f^{-1} \cap \bar{\Gamma}\right)$. Hence $f^{\prime} h f^{\prime-1}=g_{r}\left(1, \cdots, 1, f_{s} h_{s} f_{s}^{-1}, 1, \cdots, 1,1\right) g_{r}^{-1}\left(\bar{h}^{\prime}, 1\right) \in\left(g_{r} \Delta_{r} g_{r}^{-1}\right) \times\left(f \Gamma f^{-1} \cap \bar{\Gamma}\right)=$ $\bar{\Gamma}$. Thus, $f^{\prime} \Gamma f^{\prime-1} \subset \bar{\Gamma}$. By the above argument, it is evident that $f^{\prime} \Gamma f^{\prime-1}=\bar{\Gamma}$.
q.e.d.

References

[1] K. Uesu, On cancellation of compact Riemannian manifolds, to appear.
[2] J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.
Department of Mathematics
College of General Education
Tômoku University
Sendai, 980 Japan

