NOTES ON THE CANCELLATION OF RIEMANNIAN MANIFOLDS

HITOSHI TAKAGI

(Received July 10, 1979)

Introduction. Let M, N and B be Riemannian manifolds. Then, we have a question "Is M isometric to N, if $M \times B$ is isometric to $N \times B$?" Uesu [1] proved that the answer is affirmative if M and Nare complete and if B is compact locally symmetric. In the present note, we shall show that the answer is affirmative also if the last condition on B is replaced by one of the following (1) and (2):

(1) B is simply connected and complete.

(2) B is complete and B has the irreducible restricted holonomy group.

The last assertion is stated as Theorems A and B in the next section.

We assume, in the present note, that all Riemannian manifolds are connected and C^{∞} .

1. Proof of the theorems. First, we give some lemmas. Let $\Omega' = \{1, \dots, r\}$ and $\Omega'' = \{r+1, \dots, n\}$. For a subset $\Omega \subset \Omega' \cup \Omega''$, we denote by $S(\Omega)$ the symmetric group of Ω . And, by S_n and S_r , we denote $S(\Omega' \cup \Omega'')$ and $S(\Omega')$, respectively. Let G be a subgroup of S_r and $\Omega'_0 = \{i \in \Omega' | \tau(i) = i \text{ for all } \tau \in G\}$, $\Omega'_1 = \{i \in \Omega' | \tau(i) \neq i \text{ for some } \tau \in G\}$.

LEMMA 1. Let σ be an element of S_n .

(i) If $\omega \in S(\sigma(\Omega'_0 \cup \Omega''))$, then $(\omega \sigma)\tau(\omega \sigma)^{-1} = \sigma \tau \sigma^{-1}$ for all $\tau \in G$.

(ii) If $\sigma G \sigma^{-1} \subset S_r$, then $\sigma(\Omega'_1) \subset \Omega'$.

PROOF. (i) We note $\tau(\Omega'_1) = \Omega'_1$ for all $\tau \in G$. If $i \in \Omega'_1$, then $\omega\sigma(i) = \sigma(i)$, and hence $\omega\sigma\tau\sigma^{-1}\omega^{-1}(\omega\sigma(i)) = \omega\sigma(\tau(i)) = \sigma\tau(i)$, $\sigma\tau\sigma^{-1}(\omega\sigma(i)) = \sigma\tau\sigma^{-1}(\sigma(i)) = \sigma\tau(i)$. If $i \in \Omega'_0 \cup \Omega''$, then $\omega\sigma\tau\sigma^{-1}\omega^{-1}(\omega\sigma(i)) = \omega\sigma\tau(i) = \omega\sigma(i)$ and $(\sigma\tau\sigma^{-1})(\omega\sigma(i)) = \omega\sigma(i)$, as $\omega\sigma(i) = \sigma(j)$ for some $j \in \Omega'_0 \cup \Omega''$. (ii) Assume $i \in \Omega'_1$ and $\sigma(i) \in \Omega''$. Since $\sigma G \sigma^{-1} \subset S_r$, we have $\sigma\tau\sigma^{-1}(\sigma(i)) = \sigma(i)$ and hence $\tau(i) = i$ for all $\tau \in G$, a contradiction. q.e.d.

Throughout the present note, I(M) denotes the group of all isometries of a simply connected and complete Riemannian manifold M.

Let $M_1 = M_2 = \cdots = M_n$ be a simply connected and complete Riemannian manifold whose homogeneous holonomy group is irreducible. Let M be the direct product Riemannian manifold $M_1 \times M_2 \times \cdots \times M_n$. For H. TAKAGI

each $\sigma \in S_n$, $\lambda(\sigma): M \to M$ is defined by

$$\lambda(\sigma)(x_1, \cdots, x_n) = (x_{\sigma^{-1}(1)}, \cdots, x_{\sigma^{-1}(n)}), \quad x_i \in M_i.$$

Then, $\lambda(\sigma) \in I(M)$ and $\lambda: S_n \to I(M)$ is an isomorphism. Briefly we denote $\lambda(\sigma)$ by σ . Then S_n is a subgroup of I(M).

LEMMA 2. (i) I(M) is generated by S_n and $I(M_1) \times \cdots \times I(M_n)$. (ii) If $\sigma \in S_n$ and $(f_1, \dots, f_n) \in I(M_1) \times \cdots \times I(M_n)$, then

$$\sigma(f_1, \cdots, f_n)\sigma^{-1} = (f_{\sigma^{-1}(1)}, \cdots, f_{\sigma^{-1}(n)})$$
 ,

where $(f_{\sigma^{-1}(1)}, \dots, f_{\sigma^{-1}(n)}) \in I(M_1) \times \dots \times I(M_n)$. In particular, $I(M_1) \times \dots \times I(M_n)$ is a normal subgroup of I(M).

PROOF. (i) is easily seen by the uniqueness of de Rham's decomposition (cf. Uesu [1] and Wolf [2]). (ii) $\sigma(f_1, \dots, f_n)\sigma^{-1}(x_1, \dots, x_n) = \sigma(f_1, \dots, f_n)(x_{\sigma(1)}, \dots, x_{\sigma(n)}) = \sigma(f_1(x_{\sigma(1)}), \dots, f_n(x_{\sigma(n)})) = (f_{\sigma^{-1}(1)}(x_1), \dots, f_{\sigma^{-1}(n)}(x_n)) = (f_{\sigma^{-1}(1)}, \dots, f_{\sigma^{-1}(n)})(x_1, \dots, x_n).$

By the above lemma, S_n is isomorphic to the quotient group $I(M)/I(M_1) \times \cdots \times I(M_n)$. Let μ be the natural projection of I(M) onto $I(M)/I(M_1) \times \cdots \times I(M_n)$. Then, the image $\mu(\Gamma)$ of a subgroup Γ of I(M) is considered as a subgroup of S_n .

Let us decompose M in Lemma 2 into M' and M'', where $M' = M_1 \times \cdots \times M_r$ and $M'' = M_{r+1} \times \cdots \times M_n$. Then $M = M' \times M''$.

LEMMA 3. Let Γ be a subgroup of I(M') and $f \in I(M)$. If $f \Gamma f^{-1} \subset I(M')$, then there exists $f' \in I(M')$ satisfying $f'hf'^{-1} = fhf^{-1}$ for all $h \in \Gamma$.

PROOF. Let G be the subgroup $\mu(\Gamma)$ which is a subgroup of S_r . Then, we may apply Lemma 1 with the other notations used. f is written as $f = \sigma(f_1, \dots, f_n)$ by Lemma 2, where $\sigma \in S_n$ and $(f_1, \dots, f_n) \in I(M_1) \times \dots \times I(M_n)$. Let h be an element of Γ . Then h is written as $h = \tau(h_1, \dots, h_r, h_{r+1}, \dots, h_n)$, where $\tau \in S_r$, $(h_1, \dots, h_r, h_{r+1}, \dots, h_n) \in I(M_1) \times \dots \times I(M_r) \times I(M_{r+1}) \times \dots \times I(M_n)$ and $h_{r+1} = \dots = h_n = 1$. Then we have

$$(*) \qquad fhf^{-1} = \sigma \tau \sigma^{-1}(f_{\tau \sigma^{-1}(1)}h_{\sigma^{-1}(1)}f_{\sigma^{-1}(1)}^{-1}, \cdots, f_{\tau \sigma^{-1}(n)}h_{\sigma^{-1}(n)}f_{\sigma^{-1}(n)}^{-1}),$$

where $(f_{\tau\sigma^{-1}(1)}h_{\sigma^{-1}(1)}f_{\sigma^{-1}(1)}^{-1}, \dots, f_{\tau\sigma^{-1}(n)}h_{\sigma^{-1}(n)}f_{\sigma^{-1}(n)}^{-1}) \in I(M_1) \times \dots \times I(M_n)$. Since $fhf^{-1} \in I(M')$, we have $\sigma\tau\sigma^{-1} \in S_r$ and $f_{\tau\sigma^{-1}(i)}h_{\sigma^{-1}(i)}f_{\sigma^{-1}(i)}^{-1} = 1$ if $i \in \Omega''$. On the other hand, by (ii) of Lemma 1, if $i \in \Omega''$, then $\sigma^{-1}(i) \in \Omega'_0 \cup \Omega''$. Hence $\tau\sigma^{-1}(i) = \sigma^{-1}(i)$ and $h_{\sigma^{-1}(i)} = 1$. Thus, if $j \in \sigma^{-1}(\Omega'') \cup \Omega''$, then $\tau(j) = j$ and $h_j = 1$. We may assume for brevity that $\sigma^{-1}(\Omega'') \cap \Omega' = \{1, \dots, s\}, s \leq r$. Then $\Gamma \subset I(M_{s+1} \times \dots \times M_r)$.

412

CANCELLATION OF RIEMANNIAN MANIFOLDS

Now, we define $\omega \in S(\{\sigma(j_1), \dots, \sigma(j_s), \sigma(1), \dots, \sigma(s)\})$ by $\omega(\sigma(j_k)) = \sigma(k)$ and $\omega(\sigma(k)) = \sigma(j_k)$, $k = 1, \dots, s$, where $\sigma^{-1}(\Omega') \cap \Omega'' = \{j_1, \dots, j_s\}$, $r + 1 \leq j_1 < \dots < j_s \leq n$. And we define $f' \in I(M')$ by $f' = \omega \sigma(1, \dots, 1, f_{s+1}, \dots, f_r, 1, \dots, 1)$. Then, f' is the desired one. Indeed, as $\Gamma \subset I(M_{s+1} \times \dots \times M_r)$, $\sigma(1, \dots, 1, f_{s+1}, \dots, f_r, 1, \dots, 1)h(1, \dots, 1, f_{s+1}, \dots, f_r, 1, \dots, 1)^{-1}\sigma^{-1} = fhf^{-1}$ for any $h \in \Gamma$. For any $h = \tau(h_1, \dots, h_n) \in \Gamma$, $\sigma\tau\sigma^{-1} \in S(\{\sigma(s + 1), \dots, \sigma(r)\})$, as $\tau \in S(\{s + 1, \dots, r\})$. On the other hand, $f_{\tau\sigma^{-1}(j)}h_{\sigma^{-1}(j)}f_{\sigma^{-1}(j)}^{-1} = 1$ for any $j \in \{\sigma(1), \dots, \sigma(s), \sigma(r + 1), \dots, \sigma(n)\}$. Then, by (*), $\sigma(1, \dots, 1, f_{s+1}, \dots, f_r, 1, \dots, 1)\Gamma(1, \dots, 1, f_{s+1}, \dots, f_r, 1, \dots, 1)^{-1}\sigma^{-1} \subset I(M_{\sigma(s+1)} \times \dots \times M_{\sigma(r)})$. But, as $\omega \in S(\{\sigma(j_1), \dots, \sigma(j_s), \sigma(1), \dots, \sigma(s)\}$, we have $f'hf'^{-1} = fhf^{-1}$.

Let E^n be an *n*-dimensional Euclidean space. Let $E(n) = I(E^n)$. Then E(n) is the semi-direct product group $O(n) + \mathbb{R}^n$, where O(n) is the orthogonal group of the *n*-dimensional Euclidean vector space \mathbb{R}^n and, if $(A, a), (B, b) \in E(n)$, the (A, a)(B, b) = (AB, Ab + a).

LEMMA 4. Let G be a subgroup of O(n), $A \in O(n)$ and $\overline{G} = AGA^{-1}$. Let $V = \{v \in \mathbb{R}^n | Xv = v \text{ for all } X \in G\}$ and $W = \{w \in \mathbb{R}^n | Yw = w \text{ for all } Y \in \overline{G}\}$. Then A(V) = W and hence $A(V^{\perp}) = W^{\perp}$, where V^{\perp} and W^{\perp} are orthogonal complements in \mathbb{R}^n of V and W, respectively.

Let us consider E^n as the direct product Riemannian manifold $E^r \times E^{n-r}$ of the Euclidean spaces E^r and E^{n-r} .

LEMMA 5. Let Γ be a subgroup of $E(r) = I(E^r)$ and $f \in E(n)$. If $f\Gamma f^{-1} \subset E(r)$, then there exists $f' \in E(r)$ satisfying $f'hf'^{-1} = fhf^{-1}$ for all $h \in \Gamma$.

PROOF. Let $\overline{\Gamma} = f\Gamma f^{-1}$, $V_0 = \{v \in \mathbb{R}^r | \mu(h)v = v \text{ for all } h \in \Gamma\}$ and $W_0 = \{w \in \mathbb{R}^r | \mu(\overline{h})w = w \text{ for all } \overline{h} \in \overline{\Gamma}\}$, where μ is the projection $E(n) \rightarrow O(n)$. Let $V = V_0 \bigoplus \mathbb{R}^{n-r}$ and $W = W_0 \bigoplus \mathbb{R}^{n-r}$. Then $\mathbb{R}^r = V^{\perp} \bigoplus V_0 = W^{\perp} \bigoplus W_0$ and f is considered as a mapping $f: V^{\perp} \bigoplus V \rightarrow W^{\perp} \bigoplus W$, where V^{\perp} and W^{\perp} are orthogonal complements in \mathbb{R}^n of V and W, respectively. Then, by Lemma 4, $\mu(f)(V^{\perp}) = W^{\perp}$ and $\mu(f)(V) = W$. Let $h = (X, x) \in \Gamma$ and f = (A, a). Then $X|_V = 1$ and $x \in \mathbb{R}^r$. On the other hand, we have $(**) \quad fhf^{-1} = (A, a)(X, x)(A^{-1}, -A^{-1}a) = (AXA^{-1}, -AXA^{-1}a + Ax + a)$. Since $fhf^{-1} \in E(r)$, we have $AXA^{-1} \in O(r)$, $-AXA^{-1}a + Ax + a \in \mathbb{R}^r$ and $AXA^{-1}|_W = 1$. Here, a is written as a = a' + a'', where $a' \in W^{\perp}$ and $a'' \in W$. Then $-AXA^{-1}a + a = -AXA^{-1}a' + a' \in W^{\perp} \subset \mathbb{R}^r$. Thus $Ax \in \mathbb{R}^r$, as $-AXA^{-1}a + Ax + a \in \mathbb{R}^r$.

Now, let $U = \{v \in V_0 | Av \in \mathbb{R}^r\}$. Then $V_0 = U \bigoplus U^{\perp}$, where U^{\perp} is the orthogonal complement of U in V_0 . Let A' be an element of O(r)

H. TAKAGI

satisfying $A'|_{v^{\perp}\otimes U} = A|_{v^{\perp}\otimes U}$, $A'|_{\mathbf{R}^{n-r}} = 1$ and $A'(U^{\perp}) = A(U)^{\perp}$, where $A(U)^{\perp}$ is the orthogonal complement of A(U) in W_0 . Then $f' = (A', a') \in E(r)$ is the desired one. In fact, let $h = (X, x) \in \Gamma$. If $v \in V^{\perp}$, then $AXA^{-1}(Av) = AX(v) = A'XA'^{-1}(Av)$ as $Xv \in V^{\perp}$. If $v \in U$, then $AXA^{-1}(Av) = Av = A'XA'^{-1}(Av)$ as Xv = v. If $v \in \mathbf{R}^{n-r}$, then $AXA^{-1}(Av) =$ $Av = A'XA'^{-1}(Av)$ as $Av \in W$, $A'(V_0) = W_0$ and Xv = v. If $v \in U^{\perp}$, then $AXA^{-1}(Av) = Av = A'XA'^{-1}(Av)$ as Xv = v and $Av \in \mathbf{R}^{n-r}$. Then we have $AXA^{-1}(Av) = Av = A'XA'^{-1}(Av)$ as Xv = v and $Av \in \mathbf{R}^{n-r}$. Then we have $AXA^{-1} = A'XA'^{-1}$. Moreover, Ax = A'x as $x \in V^{\perp} \bigoplus U$. Then $-AXA^{-1}a +$ $Ax + a = -A'XA'^{-1}a' + A'x + a'$. Thus, by (**), we have $f'hf'^{-1} =$ fhf^{-1} .

LEMMA 6. Let M, N and B be complete Riemannian manifolds. If $M \times B$ is isometric to $N \times B$, then \tilde{M} is isometric to \tilde{N} , where \tilde{M} and \tilde{N} are universal Riemannian covering manifolds of M and N, respectively.

PROOF. Let $p: \widetilde{M} \to M$, $p': \widetilde{N} \to N$ and $q: \widetilde{B} \to B$ be the universal Riemannian coverings. And let $\phi: M \times B \to N \times B$ be an isometry. Then, the covering $\phi \circ (p, q): \widetilde{M} \times \widetilde{B} \to N \times B$ has a lift $\phi: \widetilde{M} \times \widetilde{B} \to \widetilde{N} \times \widetilde{B}$, since $\widetilde{M} \times \widetilde{B}$ and $\widetilde{N} \times \widetilde{B}$ are simply connected. Then ϕ is a covering and a local isometry as $(p', q) \circ \phi = \phi \circ (p, q)$. Hence, ϕ is an isometry. Thus \widetilde{M} is isometric to \widetilde{N} by de Rham's decomposition theorem. q.e.d.

LEMMA 7. Let \tilde{M} be a simply connected and complete Riemannian manifold. Let Γ and $\bar{\Gamma}$ be subgroups of $I(\tilde{M})$ acting freely and properly discontinuously on \tilde{M} . Then the quotient \tilde{M}/Γ is isometric to the quotient $\tilde{M}/\bar{\Gamma}$ if and only if there exists an element $f \in I(\tilde{M})$ satisfying $f\Gamma f^{-1} = \bar{\Gamma}$.

PROOF. See Wolf [2].

REMARK. Let \tilde{M} and \tilde{N} be simply connected and complete Riemannian manifolds. Let $\tilde{\phi}: \tilde{M} \to \tilde{N}$ be an isometry. Let Γ and $\bar{\Gamma}$ be subgroups of $I(\tilde{M})$ acting freely and properly discontinuously on \tilde{M} . Then, $\Delta = \tilde{\phi} \Gamma \tilde{\phi}^{-1}$ and $\bar{\Delta} = \tilde{\phi} \bar{\Gamma} \tilde{\phi}^{-1}$ are subgroups of $I(\tilde{N})$ acting freely and properly discontinuously on \tilde{N} . And $\tilde{\phi}$ induces natural isometries $\phi: \tilde{M}/\Gamma \to$ \tilde{N}/Δ and $\bar{\phi}: \tilde{M}/\bar{\Gamma} \to \tilde{N}/\bar{\Delta}$. If there exists $f \in I(\tilde{M})$ satisfying $\bar{\Gamma} = f\Gamma f^{-1}$, then $\bar{\Delta} = (\tilde{\phi} f \tilde{\phi}^{-1}) \Delta (\tilde{\phi} f \tilde{\phi}^{-1})^{-1}$. Conversely, if there exists $g \in I(\tilde{N})$ satisfying $\bar{\Delta} = g \Delta g^{-1}$, then $\bar{\Gamma} = (\tilde{\phi}^{-1} g \tilde{\phi}) \Gamma (\tilde{\phi}^{-1} g \tilde{\phi})^{-1}$. By Lemma 7, \tilde{M}/Γ is isometric to $\tilde{M}/\bar{\Gamma}$ if and only if \tilde{N}/Δ is isometric to $\tilde{N}/\bar{\Delta}$.

THEOREM A. Let M and N be complete Riemannian manifolds. Let \tilde{B} be a simply connected and complete Riemannian manifolds. If $M \times \tilde{B}$ is isometric to $N \times \tilde{B}$, then M is isometric to N.

PROOF. By Lemma 6, we may assume that M and N are isometric

414

to \widetilde{M}/Γ and $\widetilde{M}/\overline{\Gamma}$, respectively, where Γ and $\overline{\Gamma}$ are subgroups of $I(\widetilde{M})$ acting freely and properly discontinuously on \widetilde{M} . Since $\widetilde{M}/\Gamma \times \widetilde{B}$ is isometric to $\widetilde{M}/\overline{\Gamma} \times \widetilde{B}$, there exists $f \in I(\widetilde{M} \times \widetilde{B})$ satisfying $f\Gamma f^{-1} = \overline{\Gamma}$ by Lemma 7. It is sufficient to prove that there exists $f' \in I(\widetilde{M})$ satisfying $f'hf'^{-1} = fhf^{-1}$ for all $h \in \Gamma$.

Now, by de Rham's decomposition theorem, we may assume that \widetilde{M} and \widetilde{B} are isometric to the direct product Riemannian manifolds $N_0 \times N_1 \times \cdots \times N_m \times N^*$ and $B_0 \times B_1 \times \cdots \times B_m \times B^*$, respectively, which have the following properties $(1) \sim (4)$:

(1) $N_0, \dots, N_m, N^*, B_0, \dots, B_m$ and B^* are all simply connected and complete.

(2) $N_0 \times B_0$ is a Euclidean space.

(3) For each $i \in \{1, \dots, m\}$, $N_i \times B_i$ is a product of some Riemannian manifolds which are all isometric to one simply connected and complete Riemannian manifold M_i whose homogeneous holonomy group is irreducible. And if $i \neq j$, then M_i is not isometric to M_j .

(4) Any component of de Rham's decomposition of $N^* \times B^*$ has the irreducible homogeneous holonomy group. And any component of N^* is not isometric to any of B^* .

By the above remark, we may suppose $\tilde{M} = N_0 \times N_1 \times \cdots \times N_m \times N^*$ and $\tilde{B} = B_0 \times B_1 \times \cdots \times B_m \times B^*$. Moreover, we have a natural isometry $\phi: \tilde{M} \times \tilde{B} \to P = (N_0 \times B_0) \times \cdots \times (N_m \times B_m) \times N^* \times B^*$. By the uniqueness of de Rham's decomposition, we have $I(P) = I(N_0 \times B_0) \times \cdots \times I(N_m \times B_m) \times$ $I(N^*) \times I(B^*)$, (cf. Uesu [1]). Since Γ and $\bar{\Gamma}$ are contained in $I(\tilde{M})$, $\phi \Gamma \phi^{-1}$ and $\phi \bar{\Gamma} \phi^{-1}$ are contained in $I(N_0) \times \cdots \times I(N_m) \times I(N^*) \times \{1\}$, where $I(N_i)$ is interpreted as $I(N_i) \subset I(N_i \times B_i)$ for each $i \in \{0, 1, \cdots, m\}$. Again, by the remark, we may consider $\phi \Gamma \phi^{-1}$ and $\phi \bar{\Gamma} \phi^{-1}$ as Γ and $\bar{\Gamma}$, respectively. Then, it is sufficient to prove the following: Let Γ and $\bar{\Gamma}$ be subgroups of $I(N_0) \times \cdots \times I(N_m) \times I(N^*) \times \{1\}$. If there exists $f \in I(P)$ satisfying $f\Gamma f^{-1} = \bar{\Gamma}$, then there exists $f' \in I(N_0) \times \cdots \times I(N_m) \times I(N^*) \times \{1\}$ satisfying $f'hf'^{-1} = fhf^{-1}$ for all $h \in \Gamma$.

Indeed, f is written as $f = (g_0, g_1, \dots, g_m, g^*, g^{**})$, where $g_i \in I(N_i \times B_i)$, $g^* \in I(N^*)$ and $g^{**} \in I(B^*)$. h is written as $h = (k_0, k_1, \dots, k_m, k^*, 1)$, where $k_i \in I(N_i)$ and $k^* \in I(N^*)$. Then $fhf^{-1} = (g_0k_0g_0^{-1}, g_1k_1g_1^{-1}, \dots, g_mk_mg_m^{-1}, g^*k^*g^{*-1}, 1)$. Now, the assertion is clear by Lemmas 3 and 5.

THEOREM B. Let B be a complete Riemannian manifold whose restricted homogeneous holonomy group is irreducible. And let M and N be complete Riemannian manifolds. If $M \times B$ is isometric to $N \times B$, then M is isometric to N.

H. TAKAGI

PROOF. Let \tilde{B} and \tilde{M} be universal Riemannian covering manifolds of *B* and *M*, respectively. Then, by Lemma 6, *M*, *N* and *B* are isometric to the quotients \tilde{M}/Γ , $\tilde{M}/\bar{\Gamma}$ and \tilde{B}/Δ , respectively. Then, by Lemma 7, it is sufficient to prove: If there exists $f \in I(\tilde{M} \times \tilde{B})$ satisfying $f(\Gamma \times \Delta)f^{-1} = \bar{\Gamma} \times \Delta$, then there exists $f' \in I(\tilde{M})$ satisfying $f'\Gamma f'^{-1} = \bar{\Gamma}$.

Let $M_1 \times \cdots \times M_{n-1} \times M_n$ be de Rham's decomposition of $\tilde{M} \times \tilde{B}$, where $\tilde{M} = M_1 \times \cdots \times M_{n-1}$ and $\tilde{B} = M_n$. Then, by the uniqueness of de Rham's decomposition, $I(\tilde{M} \times \tilde{B})$ is generated by $I(M_1), \dots, I(M_n)$ and by all permutations of M_i 's which are isometric to each other, where we identify M_i with M_j by an isometry if M_i is isometric to M_j (cf. Uesu [1]). Moreover, we have a statement similar to (ii) of Lemma 2. Then f is written as $f = \sigma(f_1, \dots, f_{n-1}, f_n)$, where $\sigma \in S_n$ and $(f_1, \dots, f_{n-1}, f_n) \in I(M_1) \times \cdots \times I(M_{n-1}) \times I(M_n)$. Let $r = \sigma(n)$ and $s = \sigma^{-1}(n)$. Suppose $r \leq n-1$ and hence $s \leq n-1$. Then M_r , M_s and M_n are isometric to each other. We shall prove

$$ar{\Gamma} = g_r \varDelta_r g_r^{-1} imes (f \Gamma f^{-1} \cap \Gamma) \qquad (ext{the direct product group}) ext{,}$$

where $g_r = (1, \dots, f_n, 1, \dots, 1, 1) \in I(M_r)$, $f \Gamma f^{-1} \cap \overline{\Gamma} \subset I(M_1 \times \dots \times M_{r-1} \times M_{r+1} \times \dots \times M_{n-1})$ and Δ_r is the group Δ considered as a subgroup of $I(M_r)$. Let $h = \tau(h_1, \dots, h_{n-1}, h_n) \in \Gamma \times \Delta$, where $\tau \in S_{n-1}$ and $(h_1, \dots, h_{n-1}, h_n) \in I(M_1) \times \dots \times I(M_{n-1}) \times I(M_n)$. Then

$$fhf^{-1} = \sigma au \sigma^{-1}(f_{ au \sigma^{-1}(1)}h_{\sigma^{-1}(1)}f_{\sigma^{-1}(1)}^{-1}, \cdots, f_{ au \sigma^{-1}(n)}h_{\sigma^{-1}(n)}f_{\sigma^{-1}(n)}^{-1})$$
 ,

where $(f_{\tau\sigma^{-1}(1)}h_{\sigma^{-1}(1)}f_{\sigma^{-1}(1)}, \cdots, f_{\tau\sigma^{-1}(n)}h_{\sigma^{-1}(n)}f_{\sigma^{-1}(n)}) \in I(M_1) \times \cdots \times I(M_n)$. Since $\sigma\tau\sigma^{-1}(r) = r$, we have $\overline{\Gamma} \subset I(M_r) \times I(M_1 \times \cdots \times M_{r-1} \times M_{r+1} \times \cdots \times M_{n-1})$. Moreover $g_r \mathcal{A}_r g_r^{-1} = f \mathcal{A} f^{-1} \subset \overline{\Gamma} \cap I(M_r)$. Next, let $\overline{h} \in \overline{\Gamma}$. Then \overline{h} is written as $\overline{h} = f h f^{-1}$, where $h \in \Gamma \times \mathcal{A}$. But h is written as h = h'h'', where $h' \in \Gamma$, $h'' \in \mathcal{A}$. Then $f h f^{-1} = f h' f^{-1} f h'' f^{-1}$. Since $f h'' f^{-1} \in I(M_r) \cap \overline{\Gamma}$, we have $f h' f^{-1} \in \overline{\Gamma}$. Hence $f h' f^{-1} \in \Gamma \cap \overline{\Gamma}$. By the above argument, it is evident that $f h' f^{-1} \in I(M_1 \times \cdots \times M_{r-1} \times M_{r+1} \times \cdots \times M_{n-1})$.

Now, let ω be the transposition $(r, n) \in I(M_r \times M_n)$ and $f' = g_r \omega \sigma(f_1, \cdots, f_{n-1}, 1) \in I(\tilde{M})$. Then f' is the desired one. In fact, let $h = \tau(h_1, \cdots, h_n) \in \Gamma$. As $[\tau \in S_{n-1}]$, we have $fhf^{-1} = \sigma(f_1, \cdots, f_{n-1}, 1)h(f_1, \cdots, f_{n-1}, 1)^{-1}\sigma^{-1}$. On the other hand, as $fhf^{-1} \in \overline{\Gamma} \times \Delta$, we have $\sigma\tau\sigma^{-1}(n) = n$, that is, $\tau(s) = s$ and hence fhf^{-1} is written as $fhf^{-1} = (\overline{h}', f_sh_sf_s^{-1})$. where $(\overline{h}', 1) \in f\Gamma f^{-1} \cap \overline{\Gamma} \subset I(M_1 \times \cdots \times M_{r-1} \times M_{r+1} \times \cdots \times M_{n-1})$ and $(1, \cdots, 1, f_sh_sf_s^{-1}) \in \Delta \subset I(M_n)$. Then we have $\omega\sigma(f_1, \cdots, f_{n-1}, 1)h(f_1, \cdots, f_{n-1}, 1)^{-1}\sigma^{-1}\omega^{-1} = (1, \cdots, 1, f_sh_sf_s^{-1}, 1, \cdots, 1, 1)(\overline{h}', 1) \in I(M_r) \times (f\Gamma f^{-1} \cap \overline{\Gamma})$. Hence $f'hf'^{-1} = g_r(1, \cdots, 1, f_sh_sf_s^{-1}, 1, \cdots, 1, 1)g_r^{-1}(\overline{h}', 1) \in (g_r\Delta_rg_r^{-1}) \times (f\Gamma f^{-1} \cap \overline{\Gamma}) = \overline{\Gamma}$. Thus, $f'\Gamma f'^{-1} \subset \overline{\Gamma}$. By the above argument, it is evident that $f'\Gamma f'^{-1} = \overline{\Gamma}$.

416

References

K. UESU, On cancellation of compact Riemannian manifolds, to appear.
J. A. WOLF, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.

DEPARTMENT OF MATHEMATICS College of General Education Tôhoku University Sendai, 980 Japan